
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

Onthis MetaMask Snap

Veridise Inc.
March 6, 2024

▶ Prepared For:

Onthis
https://www.onthis.xyz/

▶ Prepared By:

Benjamin Mariano
Jacob Van Geffen

▶ Contact Us: contact@veridise.com

▶ Version History:

Mar. 06 2024 V2
Feb. 09, 2024 V1

© 2024 Veridise Inc. All Rights Reserved.

https://www.onthis.xyz/
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 5

4 Vulnerability Report 7
4.1 Detailed Description of Issues . 8

4.1.1 V-OTH-VUL-001: Incorrect chain ID . 8
4.1.2 V-OTH-VUL-002: Imprecise user message 9
4.1.3 V-OTH-VUL-003: Type mismatch in function return 11
4.1.4 V-OTH-VUL-004: Check for Mainnet chain ID should be moved up . . . 12

Veridise Audit Report: Onthis MetaMask Snap © 2024 Veridise Inc.

Executive Summary 1
From Feb. 8, 2024 to Feb. 9, 2024, Onthis engaged Veridise to review the security of their Onthis
MetaMask Snap. The review covered the client’s Metamask snap implementation, which is
used to notify users on transactions with verification that the transaction recipient is a valid
Onthis Shortcut contract. The snap also provides an estimate on rewards points that will be
earned by valid transactions. Veridise conducted the assessment over 4 person-days, with
2 engineers reviewing code over 2 days on commit 6a8c7ed. The auditing strategy involved
extensive manual auditing performed by Veridise engineers.

Code assessment. The Onthis MetaMask Snap developers provided the source code of the
Onthis MetaMask Snap contracts for review. The code is based off of MetaMask’s example snap
infrastructure and mostly consists of very basic API calls. Documentation of the code itself is
scarce, although it is fairly straightforward. Developers did provide documentation for their
more general Shortcut infrastructure as well as a video showing some of the intended behavior
of the snap.

As far as Veridise auditors can tell, the source code contains no tests.

Summary of issues detected. The audit uncovered 4 issues, including one critical severity
issue (V-OTH-VUL-001). The critical issue is an incorrectly specified chain ID which means no
verification is ever performed. In addition to this error, there were a few other low, warning,
and info-level errors, including issues with imprecise user-facing messages (V-OTH-VUL-002)
and some other usability issues.

Recommendations. After auditing the protocol, in addition to fixing the bugs shared in
the report, the auditors suggest that the developers should consider adding tests of basic
functionality for the snap. The most major issue likely could have been avoided via basic
testing.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

Veridise Audit Report: Onthis MetaMask Snap © 2024 Veridise Inc.

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
Onthis MetaMask Snap 6a8c7ed TypeScript MetaMask Snap

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
Feb. 8 - Feb. 9, 2024 Manual 2 4 person-days

Table 2.3: Vulnerability Summary.

Name Number Fixed Acknowledged
Critical-Severity Issues 1 1 1
High-Severity Issues 0 0 0
Medium-Severity Issues 0 0 0
Low-Severity Issues 1 1 1
Warning-Severity Issues 0 0 0
Informational-Severity Issues 2 2 2
TOTAL 4 4 4

Table 2.4: Category Breakdown.

Name Number
Logic Error 1
Usability Issue 1
Maintainability 1
Optimization 1

Veridise Audit Report: Onthis MetaMask Snap © 2024 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of Onthis MetaMask Snap’s
MetaMask snap.

▶ Are all transactions appropriately verified to be sent to Onthis’s Shortcut contracts?
▶ Does estimation of rewards follow the intended formula?
▶ Does the protocol leave users vulnerable to phising attacks – e.g., do user prompts clearly

describe actions?
▶ Will the snap operate only on Mainnet transactions as intended?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved intense manual
auditing by human experts. Auditors consulted relevant documentation of the snap itself as
well as more general documentation including MetaMask snap, Supabase, and more general
Onthis Shortcuts documentation.

Scope. The scope of this audit is limited to the code in the /packages/snap folder of the source code
provided by the Onthis MetaMask Snap developers, which contains the snap implementation.

Methodology. Veridise auditors first read the Onthis MetaMask Snap documentation as well
as related documentation for the surrounding tooling (MetaMask, TypeScript, Supabase, etc.).
They then began a manual audit of the code. During the audit, the Veridise communicated
issues and asked questions with the Onthis MetaMask Snap developers via a Telegram chat.

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

In this case, we judge the likelihood of a vulnerability as follows in Table 3.2:

In addition, we judge the impact of a vulnerability as follows in Table 3.3:

Veridise Audit Report: Onthis MetaMask Snap © 2024 Veridise Inc.

6 3 Audit Goals and Scope

Table 3.2: Likelihood Breakdown

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

Table 3.3: Impact Breakdown

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2024 Veridise Inc. Veridise Audit Report: Onthis MetaMask Snap

Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowledged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-OTH-VUL-001 Incorrect chain ID Critical Fixed
V-OTH-VUL-002 Imprecise user message Low Fixed
V-OTH-VUL-003 Type mismatch in function return Info Fixed
V-OTH-VUL-004 Check for Mainnet chain ID should be moved up Info Fixed

Veridise Audit Report: Onthis MetaMask Snap © 2024 Veridise Inc.

8 4 Vulnerability Report

4.1 Detailed Description of Issues

4.1.1 V-OTH-VUL-001: Incorrect chain ID

Severity Critical Commit 6a8c7ed
Type Logic Error Status Fixed

File(s) index.ts

Location(s) onTransaction()
Confirmed Fix At N/A

The onTransaction() function is invoked when the user is about to perform a transaction. One of
the arguments to onTransaction() is a CAIP-2 chain ID indicating the chain that the transaction
will be performed on. As per the CAIP-2 standard, the chain ID has the format namespace:id
where namespace covers a class of blockchains and id is an integer identifier for a particular
chain.

In the snap, the developers only want to validate chains on Mainnet and thus include the
following check:

1 if(chainId !== ’1’) {
2 return {
3 content: panel([
4 divider(),
5 text(‘Shortcuts availabe ONLY‘),
6 text(‘for MAINNET addresses‘),
7 divider(),
8]),
9 };

10 }

Snippet 4.1: Snippet from onTransaction()

However, their check chainId !== ’1’ will actually be satisfied by all chain IDs in the CAIP-2
standard, meaning all transactions (including Mainnet transactions) will be denied.

Impact No transactions will be validated, even Mainnet ones which are intended to be
validated.

Recommendation Change the check to use the proper CAIP-2 ID for Mainnet: eip155:1.

Developer Response Shortcut validations has been changed to if(chainId !== ’eip155:1’)

as suggested.

© 2024 Veridise Inc. Veridise Audit Report: Onthis MetaMask Snap

https://github.com/ChainAgnostic/CAIPs/blob/master/CAIPs/caip-2.md

4.1 Detailed Description of Issues 9

4.1.2 V-OTH-VUL-002: Imprecise user message

Severity Low Commit 6a8c7ed
Type Usability Issue Status Fixed

File(s) index.ts

Location(s) onTransaction()
Confirmed Fix At N/A

The main function of this snap is to validate that the recipient of a transaction matches one of
Onthis’s Shortcut contracts. This validation is done by fetching all of the Shortcuts and checking
that one matches the transaction’s to address field. Presuming this check is successful and a
Shortcut contract is matched, an estimate of the reward points earned is computed and the
following message is shown to the user indicating the transaction has been verified:

1 content: panel([
2 text(‘Shortcut: ${validatedShortcutData.ens_name}‘),
3 divider(),
4 text(‘Contract: ${validatedShortcutData.address}‘),
5 divider(),
6 text(‘Verified by ONTHIS ‘),
7 divider(),
8 text(‘Est. Points Receive: ${estimatedPoints}‘)
9]),

Snippet 4.2: Message after Shortcut verified

A potential issue is that the message indicates the user that the transaction is verified but the
verification had nothing to do with the actual transaction data and no information about the
transaction data is presented to the user.

Impact This may lead to a user falling victim to a scam where they accidentally verify a
transaction (believing it has been verified by Onthis) because the scam made the user believe
they are sending a transaction which they are not.

For instance, suppose the user believes they are transferring 1 ETH using the Shortcut toArbi-
trum.eth from their account on Ethereum to their account on Arbitrum. However, in reality, a
malicious actor has tricked them into sending 1 ETH from their account on Ethereum to the
attacker’s account on Arbitrum. The malicious transaction will be "verified" by the Snap and
all information presented to the user would be identical to the transaction the user intends to
send.

Recommendation Add additional information to the verification message indicating other
details about the transaction. Or, at the very least, add some disclaimers that verification only
means the shortcut address is correct, and does not indicate any verification of the validity of
the transaction itself.

Developer Response validatedShortcutData.address address variable has been changed to
transaction.to which always will show the proper "to" address. Additionally, we now display

Veridise Audit Report: Onthis MetaMask Snap © 2024 Veridise Inc.

10 4 Vulnerability Report

the validatedShortcutData.description which gives more detail about the transaction being
executed.

1 return {

2 content: panel([

3 text(‘Shortcut: ${validatedShortcutData.ens_name}‘),

4 divider(),

5 text(‘Shortcut contract: ${transaction.to}‘),

6 divider(),

7 text(

8 ‘ ${

9 validatedShortcutData.desciption

10 ? ‘ Shortcut Description:‘ + validatedShortcutData.desciption

11 : ’ ’

12 }‘,

13),

14 divider(),

15 text(‘Verified by ONTHIS ‘),

16 divider(),

17 text(‘Est. Points Receive: ${estimatedPoints}‘)

18]),

19 };

© 2024 Veridise Inc. Veridise Audit Report: Onthis MetaMask Snap

4.1 Detailed Description of Issues 11

4.1.3 V-OTH-VUL-003: Type mismatch in function return

Severity Info Commit 6a8c7ed
Type Maintainability Status Fixed

File(s) helper/index.ts

Location(s) estimateRewardPoints()
Confirmed Fix At N/A

The function estimateRewardPoints() returns the estimated reward points earned by the user
for the validated transaction which is computed as described here. After it is computed, the
reward points amount are rounded to an integer using the toFixed call (or just 0 is returned in
the case that no rewards are earned) as shown below:

1 return stage.length
2 ? (value * validatedShortcutData.complexity * stage[0].stage_multiplier / 10**19).

toFixed(0)
3 : 0;

Snippet 4.3: Snippet from estimateRewardPoints()

The concern here is that toFixed returns a string while 0 is an integer.

Impact At the moment, the code should work fine in both cases, as the caller just adds the value
to the message sent to the user, which will convert the value to a string as necessary. However,
future iterations of the code might miss this difference and make incorrect assumptions about
the behavior of the code.

Recommendation Standardize the output type of the function to be either an integer or a
string.

Developer Response Added Promise<string> as return type and return value has been
standardized to string as well.

1 export const estimateRewardPoints = async (

2 value: any,

3 validatedShortcutData: any,

4 supabase: any,

5):Promise<string> => {

6 const { data: stage } = await supabase

7 .from(’points_distribution_state’)

8 .select(’*’);

9

10 return stage.length

11 ? (value * validatedShortcutData.complexity * stage[0].stage_multiplier / 10**19)

.toFixed(0)

12 : "0";

13 };

Veridise Audit Report: Onthis MetaMask Snap © 2024 Veridise Inc.

https://docs.onthis.xyz/overview/shortcut-points/overview#how-are-shortcut-points-claimed

12 4 Vulnerability Report

4.1.4 V-OTH-VUL-004: Check for Mainnet chain ID should be moved up

Severity Info Commit 6a8c7ed
Type Optimization Status Fixed

File(s) index.ts

Location(s) onTransaction()
Confirmed Fix At N/A

The Onthis snap only supports Mainnet transactions, and so checks the chainId of the transaction.
Before checking, the snap performs several queries to validate the shortcut that was used.

1 const supabase = await createSupabaseClient();
2 const { data: shortcuts } = await supabase.from(’shortcuts’).select(’*’);
3 const validatedShortcutData = validateShortcut(
4 shortcuts,
5 transaction.to as string,
6);
7

8 if(chainId !== ’1’) {
9 // return an error panel

10 }

Snippet 4.4: Snippet from onTransaction()

Since the result of these queries is not used when chainId does not correspond to Mainnet, the
check should be moved up to occur before the queries.

Impact If chainId does not correspond to Mainnet, the snap will issue server queries that will
not be used.

Recommendation Move the check against chainId to the start of onTransaction to avoid
unnecessary server queries.

Developer Response Code was optimized to avoid unnecessary calls to the database by
moving validation to the top of function body as was suggested.

1 export const onTransaction: OnTransactionHandler = async ({ transaction, chainId })

=> {

2 if(chainId !== ’eip155:1’) {

3 return {

4 content: panel([

5 divider(),

6 text(‘Shortcuts availabe ONLY‘),

7 text(‘for MAINNET addresses‘),

8 divider(),

9]),

10 };

11 }

© 2024 Veridise Inc. Veridise Audit Report: Onthis MetaMask Snap

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	V-OTH-VUL-001: Incorrect chain ID
	V-OTH-VUL-002: Imprecise user message
	V-OTH-VUL-003: Type mismatch in function return
	V-OTH-VUL-004: Check for Mainnet chain ID should be moved up

