
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

Edgeless Contracts

Veridise Inc.
March 22, 2024

▶ Prepared For:

Edgeless Labs
https://www.edgeless.network

▶ Prepared By:

Benjamin Sepanski
Ian Neal

▶ Contact Us: contact@veridise.com

▶ Version History:

Mar. 2, 2024 V1
Mar. 19, 2024 Initial Draft

© 2024 Veridise Inc. All Rights Reserved.

https://www.edgeless.network
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 6

4 Vulnerability Report 7
4.1 Detailed Description of Issues . 8

4.1.1 V-EDG-VUL-001: Fund recovery after strategy removal requires full
shutdown . 8

4.1.2 V-EDG-VUL-002: unstEth value not tracked 10
4.1.3 V-EDG-VUL-003: Wrong amount emitted on withdraw() 11
4.1.4 V-EDG-VUL-004: Removing strategy may pause contract 12
4.1.5 V-EDG-VUL-005: Missing address zero-checks 15
4.1.6 V-EDG-VUL-006: Centralization Risk . 16
4.1.7 V-EDG-VUL-007: Strategy with staked funds can be removed 17
4.1.8 V-EDG-VUL-008: Unused program constructs 18
4.1.9 V-EDG-VUL-009: Initializable best practices 19
4.1.10 V-EDG-VUL-010: Wrong amount emitted on stake 20
4.1.11 V-EDG-VUL-011: No range check on active strategy 21
4.1.12 V-EDG-VUL-012: Strategies may be duplicates 22
4.1.13 V-EDG-VUL-013: Unusable strategies may be added 24
4.1.14 V-EDG-VUL-014: Staking manager withdrawal amount unchecked . . . 25
4.1.15 V-EDG-VUL-015: Incorrect Lido interface function 26
4.1.16 V-EDG-VUL-016: Issues from previous audits 27
4.1.17 V-EDG-VUL-017: Unchecked approve . 28
4.1.18 V-EDG-VUL-018: Variable could be immutable 29
4.1.19 V-EDG-VUL-019: override keyword unused 30
4.1.20 V-EDG-VUL-020: Code duplication . 31
4.1.21 V-EDG-VUL-021: Make chain-specific values immutable 32
4.1.22 V-EDG-VUL-022: Typos and incorrect comments 33
4.1.23 V-EDG-VUL-023: Unused submit return value 34
4.1.24 V-EDG-VUL-024: Compiler warning in ForceCompile.sol 35

5 Fuzz Testing 37
5.1 Methodology . 37
5.2 Properties Fuzzed . 37
5.3 Detailed Description of Fuzzed Specifications 38

5.3.1 V-EDG-SPEC-001: Balance of ewEth bounded by Eth and stEth 38

Veridise Audit Report: Edgeless Contracts © 2024 Veridise Inc.

5.3.2 V-EDG-SPEC-002: Edgeless deposit has proper access control 39
5.3.3 V-EDG-SPEC-003: Only owner can stake to LIDO without autoStake . . 40
5.3.4 V-EDG-SPEC-004: Wrapped Eth has proper access control 41

Glossary 43

Executive Summary 1
From Mar. 15, 2024 to Mar. 19, 2024, Edgeless Labs engaged Veridise to review the security
of their Edgeless Contracts. The review covered the smart contracts used to stake into the
Edgeless Network from Ethereum. Veridise conducted the assessment over 6 person-days, with
2 engineers reviewing code over 3 days on commit e185095b. The auditing strategy involved a
tool-assisted analysis of the source code performed by Veridise engineers as well as extensive
manual auditing.

Project summary. The provided source code defines a contract named EdgelessDeposit. Users
may stake Ethereum into the deposit contract. A manager contract deposits these funds into a
strategy. Currently, the only supported strategy either holds the funds, or deposits them into
LIDO*. The management of these funds and strategies is performed by a whitelisted entity.

Code assessment. The Edgeless Contracts developers provided the source code of their
Edgeless Contracts contracts for review. The source code appears to be original code written by
the developers. It contains some documentation in the form of READMEs, which included a
description of the design and listed key invariants, and documentation comments on functions
and storage variables. To facilitate the Veridise auditors’ understanding of the code, Edgeless
Labs also provided application documentation†.

The source code contained a test suite, which the Veridise auditors noted had high coverage,
testing over 95% of the lines of code in the project. Most main workflows were tested, and tests
were performed within the deployment environment.

Summary of issues detected. The audit uncovered 24 issues, 2 of which are assessed to be of
high or critical severity by the Veridise auditors. Specifically, V-EDG-VUL-001 describes how
recovering funds after a strategy is removed requires a full contract shutdown, and V-EDG-
VUL-002 describes improper tracking of Eth staked in LIDO while in the withdrawal queue.
The Veridise auditors also identified 2 medium-severity issues, including emitting incorrect
values (V-EDG-VUL-003) and accidentally pausing the contract when removing strategies
(V-EDG-VUL-004). The auditors reported 3 low-severity issues, as well as 9 warnings and 8
informational findings. Of the 24 issues, Edgeless Labs has fixed 19 issues. This includes the 2
high-severity issues. Of the remaining issues, Edgeless Labs has acknowledged 5 issues but
deemed them too minor to fix.

Recommendations. After auditing the protocol, the auditors had a few suggestions to improve
the Edgeless Contracts.

* https://lido.fi
† https://docs.edgeless.network

Veridise Audit Report: Edgeless Contracts © 2024 Veridise Inc.

https://lido.fi
https://docs.edgeless.network

2 1 Executive Summary

First, the Veridise team recommends relying more heavily on mappings than arrays. While the
array design is convenient for computing the total assets under management, it was also the
source of several issues, such as V-EDG-VUL-001 and V-EDG-VUL-004.

Second, the Veridise team strongly recommends having a timelocked contract as the protocol
owner. As described in V-EDG-VUL-006, the protocol owner can cause severe damage to the
protocol, or even remove user funds. This effect is amplified by the fact that user funds may be
staked into LIDO, meaning they cannot be withdrawn quickly. As mentioned in V-EDG-VUL-006,
only the owner can claim LIDO withdrawals.

This leads into our third recommendation, which is to allow another mechanism by which
users can cause LIDO withdrawals to be requested/claimed to further reduce this risk of
centralization.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

© 2024 Veridise Inc. Veridise Audit Report: Edgeless Contracts

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
Edgeless Contracts e185095b Solidity Arbitrum, Ethereum

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
Mar. 15 - Mar. 19, 2024 Manual & Tools 2 6 person-days

Table 2.3: Vulnerability Summary.

Name Number Fixed Acknowledged
Critical-Severity Issues 0 0 0
High-Severity Issues 2 2 2
Medium-Severity Issues 2 2 2
Low-Severity Issues 3 0 3
Warning-Severity Issues 9 8 9
Informational-Severity Issues 8 7 8
TOTAL 24 19 24

Table 2.4: Category Breakdown.

Name Number
Maintainability 8
Data Validation 7
Logic Error 3
Missing/Incorrect Events 3
Access Control 1
Usability Issue 1
Gas Optimization 1

Veridise Audit Report: Edgeless Contracts © 2024 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of Edgeless Contracts’s smart
contracts. In our audit, we sought to answer questions such as:

▶ Are common Solidity vulnerabilities such as reentrancy, front-running, or flash loans
present in the system?

▶ Does the wrapped token properly correspond to the amount of its underlying asset?
▶ Are funds properly tracked and accounted for?
▶ Can funds become locked in the protocol?
▶ Can funds be stolen from the protocol?
▶ Are upgradeability best practices followed?
▶ What authority are centralized entities given over user funds?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a combination of
human experts and automated program analysis & testing tools. In particular, we conducted
our audit with the aid of the following techniques:

▶ Static analysis. To identify potential common vulnerabilities, we leveraged our custom
smart contract analysis tool Vanguard. These tools are designed to find instances of
common smart contract vulnerabilities, such as reentrancy and uninitialized variables.

▶ Fuzzing/Property-based Testing. We also leverage fuzz testing to determine if the protocol
may deviate from the expected behavior. To do this, we formalize the desired behavior of
the protocol as [V] specifications and then use our fuzzing framework OrCa to determine
if a violation of the specification can be found. See Section 5 for more information.

Scope. The scope of this audit is limited to the src/ folder of the source code provided by
the Edgeless Contracts developers, which contains the smart contract implementation of the
Edgeless Contracts. In particular, the following contracts within the src/ were in scope:

▶ Constants.sol

▶ WrappedToken.sol

▶ EdgelessDeposit.sol

▶ StakingManager.sol

▶ strategies/EthStrategy.sol

Methodology. Veridise auditors reviewed the reports of previous audits for Edgeless Contracts,
inspected the provided tests, and read the Edgeless Contracts documentation. They then began
a manual audit of the code assisted by both static analyzers and automated testing. During

Veridise Audit Report: Edgeless Contracts © 2024 Veridise Inc.

6 3 Audit Goals and Scope

the audit, the Veridise auditors regularly met with the Edgeless Contracts developers to ask
questions about the code.

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

In this case, we judge the likelihood of a vulnerability as follows in Table 3.2:

Table 3.2: Likelihood Breakdown

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows in Table 3.3:

Table 3.3: Impact Breakdown

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2024 Veridise Inc. Veridise Audit Report: Edgeless Contracts

Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowledged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-EDG-VUL-001 Fund recovery after strategy removal requires f. . . High Fixed
V-EDG-VUL-002 unstEth value not tracked High Fixed
V-EDG-VUL-003 Wrong amount emitted on withdraw() Medium Fixed
V-EDG-VUL-004 Removing strategy may pause contract Medium Fixed
V-EDG-VUL-005 Missing address zero-checks Low Acknowledged
V-EDG-VUL-006 Centralization Risk Low Acknowledged
V-EDG-VUL-007 Strategy with staked funds can be removed Low Acknowledged
V-EDG-VUL-008 Unused program constructs Warning Fixed
V-EDG-VUL-009 Initializable best practices Warning Fixed
V-EDG-VUL-010 Wrong amount emitted on stake Warning Fixed
V-EDG-VUL-011 No range check on active strategy Warning Fixed
V-EDG-VUL-012 Strategies may be duplicates Warning Fixed
V-EDG-VUL-013 Unusable strategies may be added Warning Fixed
V-EDG-VUL-014 Staking manager withdrawal amount unchecked Warning Fixed
V-EDG-VUL-015 Incorrect Lido interface function Warning Fixed
V-EDG-VUL-016 Issues from previous audits Warning Acknowledged
V-EDG-VUL-017 Unchecked approve Info Fixed
V-EDG-VUL-018 Variable could be immutable Info Fixed
V-EDG-VUL-019 override keyword unused Info Fixed
V-EDG-VUL-020 Code duplication Info Fixed
V-EDG-VUL-021 Make chain-specific values immutable Info Acknowledged
V-EDG-VUL-022 Typos and incorrect comments Info Fixed
V-EDG-VUL-023 Unused submit return value Info Fixed
V-EDG-VUL-024 Compiler warning in ForceCompile.sol Info Fixed

Veridise Audit Report: Edgeless Contracts © 2024 Veridise Inc.

8 4 Vulnerability Report

4.1 Detailed Description of Issues

4.1.1 V-EDG-VUL-001: Fund recovery after strategy removal requires full shutdown

Severity High Commit e185095
Type Logic Error Status Fixed

File(s) src/StakingManager.sol

Location(s) _withdrawEth()
Confirmed Fix At N/A

A StakingManager supports multiple strategies for a single asset. For each asset, at most one
strategy is "active" at a time. When funds are staked, they are deposited into the active strategy.
Note that the StakingManager may have funds invested in inactive strategies. They are only
"inactive" because new funds are not currently being directed towards them.

When the StakingManager.owner wishes to withdraw funds from the protocol, they use the
withdraw() function, which calls _withdrawEth() (shown in the below code snippet).

1 function _withdrawEth(uint256 amount) internal {
2 IStakingStrategy strategy = getActiveStrategy(ETH_ADDRESS);
3 uint256 withdrawnAmount;
4 if (address(strategy) != address(0)) {
5 withdrawnAmount = strategy.withdraw(amount);
6 } else {
7 withdrawnAmount = amount > address(this).balance ? address(this).balance :

amount;
8 }
9 (bool success, bytes memory data) = staker.call{ value: withdrawnAmount }("");

10 if (!success) revert TransferFailed(data);
11 emit Withdraw(ETH_ADDRESS, amount);
12 }

Snippet 4.1: Definition of _withdrawEth()

Note that in the above function, if ETH_ADDRESS has an active strategy, then up to amount Eth is
withdrawn from the strategy. In particular, if a strategy is active, then none of the contracts Eth
balance will be touched. The only funds withdrawn will be from the active strategy. So, the
second branch is only taken if address(0) is added as a strategy and the active strategy is set to
address(0).

However, once address(0) is added as a strategy, it cannot be removed, since removeStrategy()

calls strategy.withdraw(). Further, getAssetTotal() will always revert, since it calls strategy.

underlyingAssetAmount(). So, once address(0) is made the active strategy, core functionalities
of the contract will stop operating.

Impact Whenever a strategy is removed, its invested funds are withdrawn to the StakingManager
contract. Since stake() only stakes the funds sent to the stake() function, these withdrawn funds
cannot be reinvested. Further, as described above, they cannot be withdrawn without pausing
the contract. This means that, once a strategy is removed, funds invested into that strategy are

© 2024 Veridise Inc. Veridise Audit Report: Edgeless Contracts

4.1 Detailed Description of Issues 9

locked until address(0) is added as a strategy, preventing the contract from operating for a
particular asset.

In addition, StakingManager implements receive, so any user can send funds directly to the
contract. If a user does so, mistakenly believing their funds will be staked, those funds will be
locked until the contract is paused.

Recommendation Only permit allowed strategies to send Eth using the receive() function.

Provide a mechanism for the StakingManager.owner to withdraw funds from the contract balance
directly.

Developer Response removeStrategy now no longer withdraws from the strategy before
removing it. Instead, the owner may call a new function, withdrawToStaker, before removing
the strategy which withdraws a specified amount from the strategy and sends it to the staker.

Veridise Response It is now possible to remove a strategy without withdrawing funds from
it, which could cause funds to be misplaced (as the owner will need to call ownerWithdraw to
retrieve funds from a removed strategy). This could be an issue if, for example, someone stakes
just after an owner removes funds from the active strategy, but before they remove the strategy
or deactivate it.

Additionally, the issue with receive remains unaddressed.

Developer Response A new function, withdrawAndRemoveStrategy, has been created to handle
the case when the owner wants to withdraw funds before removing a strategy.

The receive function now checks that msg.sender is a strategy in strategies[ETH_ADDRESS].

Veridise Audit Report: Edgeless Contracts © 2024 Veridise Inc.

10 4 Vulnerability Report

4.1.2 V-EDG-VUL-002: unstEth value not tracked

Severity High Commit e185095
Type Logic Error Status Fixed

File(s) src/strategies/EthStrategy.sol

Location(s) underlyingAssetAmount()
Confirmed Fix At N/A

The EthStrategy contract keeps funds in one of two places:

▶ As part of the contract balance.
▶ Staked into LIDO.

When computing the underlying asset amount, only the stEth and Eth balances are consulted.

1 function underlyingAssetAmount() external view returns (uint256) {
2 return address(this).balance + LIDO.balanceOf(address(this));
3 }

Snippet 4.2: Definition of underlyingAssetAmount().

However, the owner of the EthStrategy may initiate a withdrawal from LIDO. Once a withdrawal
has been initiated, the LIDO.balance of the contract will decrease. Until the withdrawal has been
finalized and claimed, the contract will not receive the corresponding Eth. For more information
on the LIDO withdrawal process, see their withdrawal documentation.

Impact Several possibilities may arise:

▶ While funds are in the withdrawal queue, the EdgelessDeposit contract’s wrappedEth token
will have a larger totalSupply() than stakingManager.getAssetTotal(stakingManager.

ETH_ADDRESS()). This will prevent usage of mintEthBasedOnStakedAmount() and lead to
possible errors for protocols built on top of this system.

▶ StakingManager.getAssetTotal() will have a dramatic drop when large withdrawals are
initiated. This may affect users of the protocol and cause confusion or panic, leading them
to withdraw funds.

▶ The EthStrategy.underlyingAssetAmount() may return 0 even when large amounts of
funds are locked in the account. Programs or managers using this function to determine
when to remove a strategy from the StakingManager may accidentally remove a strategy
when lots of funds are still stored therein. See also V-EDG-VUL-007.

Recommendation Record the amount of amountOfStEth recorded in each successful withdrawal
request, and add that total to the result of underlyingAssetAmount().

Developer Response The developer has implemented the recommended fix by tracking an
ethUnderWithdrawal variable.

© 2024 Veridise Inc. Veridise Audit Report: Edgeless Contracts

https://docs.lido.fi/contracts/withdrawal-queue-erc721#claimwithdrawals
https://docs.lido.fi/contracts/withdrawal-queue-erc721#request
https://docs.lido.fi/contracts/withdrawal-queue-erc721#request

4.1 Detailed Description of Issues 11

4.1.3 V-EDG-VUL-003: Wrong amount emitted on withdraw()

Severity Medium Commit e185095
Type Missing/Incorrect Events Status Fixed

File(s) src/StakingManager.sol

Location(s) _withdrawEth()
Confirmed Fix At N/A

The StakingManager’s withdraw() function allows the staker-address to withdraw Eth from the
StakingManager contract. If the requested amount to withdraw is less than what the contract has
available, a smaller amount is withdrawn. The _withdrawEth() function implements this logic,
shown in the below code snippet.

1 function _withdrawEth(uint256 amount) internal {
2 IStakingStrategy strategy = getActiveStrategy(ETH_ADDRESS);
3 uint256 withdrawnAmount;
4 if (address(strategy) != address(0)) {
5 withdrawnAmount = strategy.withdraw(amount);
6 } else {
7 withdrawnAmount = amount > address(this).balance ? address(this).balance :

amount;
8 }
9 (bool success, bytes memory data) = staker.call{ value: withdrawnAmount }("");

10 if (!success) revert TransferFailed(data);
11 emit Withdraw(ETH_ADDRESS, amount);
12 }

Snippet 4.3: Definition of StakingManager._withdrawEth()

Note that the emit Withdraw(ETH_ADDRESS, amount) statement uses amount instead of withdrawnAmount
. Since withdrawnAmount may be less than amount, even to the point of being zero, this event may
mislead off-chain applications.

Impact Off-chain applications may incorrectly record withdrawn amounts. For example,
EthStrategy.withdraw(amount) may withdraw less than amount Eth if the funds are locked into
Lido. In this (very likely) case, the Withdraw event would be emitted with an amount which is
much larger than withdrawnAmount.

Recommendation Use withdrawnAmount instead of amount when emitting Withdraw.

Developer Response The developer has implemented the recommended change.

Veridise Audit Report: Edgeless Contracts © 2024 Veridise Inc.

12 4 Vulnerability Report

4.1.4 V-EDG-VUL-004: Removing strategy may pause contract

Severity Medium Commit e185095
Type Logic Error Status Fixed

File(s) src/StakingManager.sol

Location(s) removeStrategy()
Confirmed Fix At N/A

The StakingManager contract tracks several strategies for each asset, stored in an array. Each
asset with at least one strategy has an active strategy, recorded via its index.

1 mapping(address => IStakingStrategy[]) public strategies;
2 mapping(address => uint256) public activeStrategyIndex;

Snippet 4.4: Fields used to track strategies and the active strategy.

When removing a strategy, the manager swaps the strategy to the end of its asset’s strategies

array, and then pops from the array. If that strategy was active, the strategy now at index 0 is
activated. The removeStrategy() function implements this logic, shown below.

1 function removeStrategy(address asset, uint256 index) external onlyOwner {
2 IStakingStrategy strategy = strategies[asset][index];
3 uint256 withdrawnAmount = strategy.withdraw(strategy.underlyingAssetAmount());
4 uint256 lastIndex = strategies[asset].length - 1;
5 strategies[asset][index] = strategies[asset][lastIndex];
6 strategies[asset].pop();
7 if (activeStrategyIndex[asset] == index) activeStrategyIndex[asset] = 0;
8 emit RemoveStrategy(asset, strategy, withdrawnAmount);
9 }

Snippet 4.5: Definition of removeStrategy()

Note, however, that if index != lastIndex, and lastIndex is the currently active strategy, then
the active strategy index will become invalidated. For example, consider the below scenario:

1. Three strategies are present for an asset.
2. The StakingManager sets the last strategy (index 2) to active.
3. The StakingManager removes the strategy at index 0.

Now, the strategy which was at index 2 has been swapped to index 0, but the activeStrategyIndex
was not updated.

We implemented the above scenario as a test using the forge setup.

1 function _addStrategy() internal {

2 vm.startPrank(owner);

3

4 address ethStakingStrategyImpl = address(new EthStrategy());

5 bytes memory ethStakingStrategyData = abi.encodeCall(EthStrategy.initialize, (

owner, address(stakingManager)));

6

7 IStakingStrategy newStrategy = IStakingStrategy(payable(address(new ERC1967Proxy(

ethStakingStrategyImpl, ethStakingStrategyData))));

© 2024 Veridise Inc. Veridise Audit Report: Edgeless Contracts

4.1 Detailed Description of Issues 13

8

9 stakingManager.addStrategy(stakingManager.ETH_ADDRESS(), newStrategy);

10 vm.stopPrank();

11 }

12

13 function test_removeStrategy() external {

14 _addStrategy();

15 _addStrategy();

16 address ETH_ADDRESS = stakingManager.ETH_ADDRESS();

17 // Staking manager now has 3 Eth strategies

18 for(uint i = 0; i < 3; ++i) {

19 require(address(stakingManager.strategies(ETH_ADDRESS, i)) != address(0));

20 }

21 vm.expectRevert(); // out-of-bounds revert on access to index 3

22 address(stakingManager.strategies(ETH_ADDRESS, 3)) == address(0);

23

24 // Use 3rd Eth Strategy

25 hoax(owner);

26 stakingManager.setActiveStrategy(ETH_ADDRESS, 2);

27 IStakingStrategy activeStrategy = stakingManager.getActiveStrategy(ETH_ADDRESS);

28

29 // Remove first eth strategy

30 hoax(owner);

31 stakingManager.removeStrategy(ETH_ADDRESS, 0);

32

33 // Active index is now invalid, even though the active strategy is still present

34 require(stakingManager.strategies(ETH_ADDRESS, 0) == activeStrategy);

35

36 // This fails! The returned active strategy is the 0-address

37 require(stakingManager.getActiveStrategy(ETH_ADDRESS) == activeStrategy);

38 }

Impact When removing strategies, the protocol may obtain an invalid active strategy index.
This will effectively pause the protocol until the owner sets the strategy to a valid one.

Recommendation Update the activeStrategyIndex when it is set to lastIndex. Further, we
would recommend requiring the owner to provide a default value, rather than automatically
defaulting to whichever strategy is at index 0.

Developer Response A new parameter has been added to removeStrategy, newActiveStrategyIndex
, which sets the new active strategy if activeStrategyIndex[asset] == index.

Veridise Response The case where activeStrategyIndex[assert] == lastIndex && index !=

lastIndex is still problematic, as activeStrategyIndex[assert] will not be updated and refer
to a now-invalid index.

Developer Response activeStrategyIndex[asset] is now unconditionally set to newActiveStrategyIndex

.

Veridise Audit Report: Edgeless Contracts © 2024 Veridise Inc.

14 4 Vulnerability Report

Veridise Response There is no range check on newActiveStrategyIndex, so it could still be
accidentally set to an invalid index by the owner. Additionally, since the new strategy index is
now always updated, it might be beneficial to modify the RemoveStrategy event to include the
newActiveStrategyIndex.

Developer Response We addressed the above comments.

© 2024 Veridise Inc. Veridise Audit Report: Edgeless Contracts

4.1 Detailed Description of Issues 15

4.1.5 V-EDG-VUL-005: Missing address zero-checks

Severity Low Commit e185095
Type Data Validation Status Acknowledged

File(s) See issue description
Location(s) See issue description

Confirmed Fix At N/A

Description The following functions take addresses as arguments, but do not validate that
the addresses are non-zero:

▶ src/StakingManager.sol

• addStrategy(): strategy is not validated.

▶ src/WrappedToken.sol

• constructor(): minter is not validated.

▶ src/strategies/EthStrategy.sol

• initialize(): _stakingManager is not validated.
• setStakingManager(): _stakingManager is not validated.

Note that StakingManager.setStaker does not perform zero-checks. However, this is currently
necessary to prevent locked funds. See V-EDG-VUL-001 for more details.

Impact As described in V-EDG-VUL-001, the owner may pass address(0) as an attempt to
recover funds. However, adding a zero-address strategy can cause core functionality of the
contract to stop functioning permanently.

If zero is passed for other addresses, core functions of the contract will revert in all cases.

Note that, with the provided deployment scripts, these addresses will be non-zero. However,
there is no on-chain guarantee of this fact, so changes in the deployment script could lead to
errors down the line.

Recommendation Require the addresses to be non-zero.

Developer Response The developer acknowledges that zero-checks are standard, but believes
they cause more complexity than the possible problems that they solve, which is why they are
omitted.

Veridise Audit Report: Edgeless Contracts © 2024 Veridise Inc.

16 4 Vulnerability Report

4.1.6 V-EDG-VUL-006: Centralization Risk

Severity Low Commit e185095
Type Access Control Status Acknowledged

File(s) See issue description
Location(s) See issue description

Confirmed Fix At N/A

Similar to many projects, Edgeless Lab’s smart contracts declare an administrator role that is
given special permissions. In particular, these administrators are given the following abilities:

▶ EthStrategy:

• The owner is the only user who can initiate or finalize Lido withdrawal requests.

▶ StakingManager:

• The owner can set the staker, add strategies, and decide the active strategy. This
determines where staked funds will be sent. Setting the staker to themselves allows
withdrawal of all funds to the owner.

▶ EdgelessDeposit

• The owner of this contract may mint wrappedEth tokens to whoever they choose, up
to but not exceeding a 1-1 ratio with the underlying staked assets.

Impact If a private key were stolen, a hacker would have access to sensitive functionality that
could compromise the project. For example, a malicious owner could change the StakingManager

.staker to themselves, and withdraw all staked funds from the protocol.

Further, note that only the owner can request or claim LIDO withdrawal requests. If the owner
stops operating or is compromised, those user funds may be permanently locked. The owner
may also decide not to perform withdrawals in order to keep the value of staked funds high.

Recommendation As these are all particularly sensitive operations, we would encourage the
developers to utilize a decentralized governance or multi-sig contract as opposed to a single
account, which introduces a single point of failure.

Developer Response The developer has acknowledged there is a potential issue here, but
accepts the risk as a limitation of the current system.

© 2024 Veridise Inc. Veridise Audit Report: Edgeless Contracts

4.1 Detailed Description of Issues 17

4.1.7 V-EDG-VUL-007: Strategy with staked funds can be removed

Severity Low Commit e185095
Type Data Validation Status Acknowledged

File(s) src/StakingManager.sol

Location(s) removeStrategy()
Confirmed Fix At N/A

The StakingManager manages several strategies for each asset. The owner can remove strategies,
during which the contract attempts to withdraw funds from the strategy.

1 function removeStrategy(address asset, uint256 index) external onlyOwner {
2 IStakingStrategy strategy = strategies[asset][index];
3 uint256 withdrawnAmount = strategy.withdraw(strategy.underlyingAssetAmount());
4 uint256 lastIndex = strategies[asset].length - 1;
5 strategies[asset][index] = strategies[asset][lastIndex];
6 strategies[asset].pop();
7 if (activeStrategyIndex[asset] == index) activeStrategyIndex[asset] = 0;
8 emit RemoveStrategy(asset, strategy, withdrawnAmount);
9 }

Snippet 4.6: Definition of removeStrategy().

However, strategy.withdraw() is not guaranteed to withdraw the requested amount. For
example, if strategy is an EthStrategy, it may have funds locked in LIDO which cannot be
withdrawn immediately. Note also that, as described in V-EDG-VUL-002, the return value of
underlyingAssetAmount() may be inaccurate.

Impact StakingManager.owners may accidentally or intentionally remove strategies with staked
funds still in them. This can lead to insolvency, make funds much more difficult to track, and
prevent withdrawals from the system.

Recommendation Resolve V-EDG-VUL-002, and require a strategy to have an underlying
asset amount of zero before removal.

Developer Response The developers will take an off-chain approach to tracking removed
strategies with remaining funds, as a future version of the project may have reasons to remove
such strategies.

Veridise Audit Report: Edgeless Contracts © 2024 Veridise Inc.

18 4 Vulnerability Report

4.1.8 V-EDG-VUL-008: Unused program constructs

Severity Warning Commit e185095
Type Maintainability Status Fixed

File(s) See issue description
Location(s) See issue description

Confirmed Fix At N/A

Description The following program constructs are unused:

▶ Dependencies:

• @eth-optimism/sdk is unused and not being maintained, so it should be removed.

▶ src/StakingManager.sol:

• address public depositor

• bool public autoStake: while this variable has a setter, no code in the project ever
reads from this field.

▶ src/EdgelessDeposit.sol

• address public l2Eth

• event SetL2Eth

• function upgrade(): this function is a no-op.

Impact These constructs may become out of sync with the rest of the project, leading to errors
if used in the future.

Recommendation Remove the unused program constructs.

Developer Response The unused program constructs have been removed.

© 2024 Veridise Inc. Veridise Audit Report: Edgeless Contracts

4.1 Detailed Description of Issues 19

4.1.9 V-EDG-VUL-009: Initializable best practices

Severity Warning Commit e185095
Type Data Validation Status Fixed

File(s) See issue description
Location(s) See issue description

Confirmed Fix At https://github.com/edgelessNetwork/contracts/pull/32

The following contracts are Initializable, but do not follow all of OpenZeppelin’s documented
upgradeability best practices.

▶ EdgelessDeposit

▶ EthStrategy

▶ StakingManager

Specifically,

▶ None of the above have a constructor() invoking _disableInitializers().
▶ None of the above invoke __Ownable2StepUpgradeable_init or __UUPSUpgradeable_init in

their initialize() functions.
▶ EdgelessDeposit uses __Ownable_init_unchained() instead of __Ownable_init().

Impact Allowing the implementation contract to be initialized may lead to potential scams if
a malicious party initializes the implementation contract.

Not invoking the parent initializer functions may lead to problems in the future if dependent
implementations are upgraded.

Recommendation Upgradeable contracts should

▶ Invoke _disableInitializers() in the constructor.
▶ Call parent initializers in the child initializer() contract.

Developer Response Initializer best practices have been implemented in the three listed
contracts.

Veridise Audit Report: Edgeless Contracts © 2024 Veridise Inc.

https://github.com/edgelessNetwork/contracts/pull/32
https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable
https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable

20 4 Vulnerability Report

4.1.10 V-EDG-VUL-010: Wrong amount emitted on stake

Severity Warning Commit e185095
Type Missing/Incorrect Events Status Fixed

File(s) src/StakingManager.sol

Location(s) stake()
Confirmed Fix At N/A

The StakingManager’s stake() function allows the staker-address to stake Eth into the active
Eth strategy. The stake() function is shown below.

1 function stake(address asset, uint256 amount) external payable onlyStaker {
2 _stakeEth(msg.value);
3 emit Stake(asset, amount);
4 }

Snippet 4.7: Definition of StakingManager.stake()

Note that the asset and amount are not used for actual staking, but are emitted via the Stake

event.

Impact Off-chain applications may incorrectly evaluate the amount staked. A buggy or
malicious staker could cause Stake(asset, amount) to be emitted for any asset and any amount

at the cost of only a few wei.

With the current deployment script, this is prevented by setting the EdgelessDeposit contract as
the staker for the StakingManager.

Recommendation Since stake() only supports staking Eth, either require that asset is
ETH_ADDRESS or remove the argument.

Similarly, either require that amount is equal to msg.value, or remove the argument.

Developer Response stake now requires that assert == ETH_ADDRESS, and _stakeEth is now
called with amount instead of msg.value.

Veridise Response If amount < msg.value, only amount will be staked. Furthermore, if amount
> msg.value, the balance of the staking contract itself will be reduced. This currently does

not cause a problem since EdgelessDeposit.depositEth (the only caller of stake) ensures that
amount == msg.value, but we still recommend removing the amount argument and directly
using msg.value, as future code updates to EdgelessDeposit may cause amount != msg.value

and cause bugs in the protocol.

Developer Response We removed the amount parameter and only rely on msg.value.

© 2024 Veridise Inc. Veridise Audit Report: Edgeless Contracts

4.1 Detailed Description of Issues 21

4.1.11 V-EDG-VUL-011: No range check on active strategy

Severity Warning Commit e185095
Type Data Validation Status Fixed

File(s) src/StakingManager.sol

Location(s) setActiveStrategy()
Confirmed Fix At N/A

The StakingManager tracks which strategy is active for a given asset by recording the index of
that strategy within the strategies array.

When setting a new strategy to be active, no range check is performed

1 function setActiveStrategy(address asset, uint256 index) external onlyOwner {
2 activeStrategyIndex[asset] = index;
3 emit SetActiveStrategy(asset, index);
4 }

Snippet 4.8: Definition of setActiveStrategy().

Impact Several key functions (such as stake() and withdraw()) will revert if the strategy index
is out of bounds, effectively pausing the contract.

An owner may intentionally or accidentally pause the contract from operating by setting the
active strategy to an invalid index.

Recommendation Require the index to be a valid index for the activeStrategyIndex[asset]

array.

Developer Response A range check has been added to setActiveStrategy.

Veridise Audit Report: Edgeless Contracts © 2024 Veridise Inc.

22 4 Vulnerability Report

4.1.12 V-EDG-VUL-012: Strategies may be duplicates

Severity Warning Commit e185095
Type Data Validation Status Fixed

File(s) src/StakingManager.sol

Location(s) addStrategy()
Confirmed Fix At N/A

The addStrategy() function allows the StakingManager.owner to add a new strategy for an
asset.

1 function addStrategy(address asset, IStakingStrategy strategy) external onlyOwner {
2 strategies[asset].push(strategy);
3 emit AddStrategy(asset, strategy);
4 }

Snippet 4.9: Definition of addStrategy().

However, there is nothing preventing the owner from adding the same strategy more than
once.

Impact An owner may accidentally or intentionally add duplicate strategies.

This may be done intentionally to inflate the result of getAssetTotal(). Adding the same strategy
twice would double-count all of the assets within that strategy. This could allow an owner to use
EdgelessDeposit.mintEthBasedOnStakedAmount() to mint more wrapped Eth than the amount
of underlying Eth.

Note that a malicious owner may already add bogus strategies which return false values from
getAssetTotal(), this simply supplies a more subtle way for them to do so which may be more
difficult for protocol users to track.

If accidental, this may make removing strategies more difficult, as the owner must remove each
instance of the duplicate strategy.

Recommendation Track which strategies have been added, and do not allow them to be added
to the StakingManager more than once.

Developer Response addStrategy has been modified to check that the requested strategy has
not already been added for a given asset.

Veridise Response The current implementation still allows for duplicate strategies to be across
different assets. Since the interface of a strategy currently only allows it to support one asset,
duplication could still occur in the future.

We recommend tracking a strategy’s presence in the contract using a mapping to allow for this
check.

© 2024 Veridise Inc. Veridise Audit Report: Edgeless Contracts

4.1 Detailed Description of Issues 23

Developer Response We applied the recommendation.

Veridise Audit Report: Edgeless Contracts © 2024 Veridise Inc.

24 4 Vulnerability Report

4.1.13 V-EDG-VUL-013: Unusable strategies may be added

Severity Warning Commit e185095
Type Usability Issue Status Fixed

File(s) src/StakingManager.sol

Location(s) addStrategy()
Confirmed Fix At N/A

The addStrategy() function allows the StakingManager.owner to add new strategies for various
assets.

1 function addStrategy(address asset, IStakingStrategy strategy) external onlyOwner {
2 strategies[asset].push(strategy);
3 emit AddStrategy(asset, strategy);
4 }

Snippet 4.10: Definition of addStrategy().

However, the stake() and withdraw() functions only allow deposits/withdrawals for the
ETH_ADDRESS asset.

Impact Users may be confused by enabled strategies which cannot be interacted with. An
owner may easily misconfigure the contract, or add strategies ahead of an upgrade to attempt
to hide their presence.

Recommendation Either require that asset is ETH_ADDRESS, or remove the asset argument.

Developer Response addStrategy now requires ETH_ADDRESS == asset.

© 2024 Veridise Inc. Veridise Audit Report: Edgeless Contracts

4.1 Detailed Description of Issues 25

4.1.14 V-EDG-VUL-014: Staking manager withdrawal amount unchecked

Severity Warning Commit e185095
Type Data Validation Status Fixed

File(s) src/EdgelessDeposit.sol

Location(s) withdrawEth()
Confirmed Fix At N/A

As described in V-EDG-VUL-003, the StakingManager.withdraw() function may withdraw less
than the requested amount. However, the EdgelessDeposit.withdrawEth() function does not
check how much the StakingManager actually withdraws.

1 function withdrawEth(address to, uint256 amount) external {
2 wrappedEth.burn(msg.sender, amount);
3 stakingManager.withdraw(amount);
4 (bool success, bytes memory data) = to.call{ value: amount }("");
5 if (!success) revert TransferFailed(data);
6 emit WithdrawEth(msg.sender, to, amount, amount);
7 }

Snippet 4.11: Definition of EdgelessDeposit.withdrawEth().

Impact If future changes allow Eth to accumulate to the EdgelessDeposit’s balance, this may
allow external actors to withdraw funds from the EdgelessDeposit contract instead of the
stakingManager.

Recommendation Add a return value to StakingManager.withdraw(), and check that the
returned value is equal to amount.

Developer Response The recommended return values and checks have been added.

Veridise Audit Report: Edgeless Contracts © 2024 Veridise Inc.

26 4 Vulnerability Report

4.1.15 V-EDG-VUL-015: Incorrect Lido interface function

Severity Warning Commit e185095
Type Data Validation Status Fixed

File(s) src/interfaces/ILido.sol

Location(s) submit()
Confirmed Fix At N/A

The Lido interface defines the submit function with the following signature:

1 function submit(address referralUser) external payable;

Snippet 4.12: Snippet from ILido.sol

However, the official Lido contract defines the function with a return value, which is the number
of stEth shares generated:

1 /**
2 * @notice Send funds to the pool with optional _referral parameter
3 * @dev This function is alternative way to submit funds. Supports optional referral

address.
4 * @return Amount of StETH shares generated
5 */
6 function submit(address _referral) external payable returns (uint256)

Snippet 4.13: Snippet from Lido.sol

Impact While this doesn’t affect the ability for the function to be called (as this definition
generates the same function selector), this definition is (1) inconsistent with the official deployed
contract and (2) prevents contracts from using the return value for error messages and/or other
data validation.

Recommendation We recommend adding the return value to the definition and handling
it appropriately where called. Additionally, we recommend adding documentation to this
interface that shows where the definition originates from.

Developer Response Both recommendations have been implemented.

© 2024 Veridise Inc. Veridise Audit Report: Edgeless Contracts

https://github.com/lidofinance/lido-dao/blob/5fcedc6e9a9f3ec154e69cff47c2b9e25503a78a/contracts/0.4.24/Lido.sol#L465

4.1 Detailed Description of Issues 27

4.1.16 V-EDG-VUL-016: Issues from previous audits

Severity Warning Commit e185095
Type Maintainability Status Acknowledged

File(s) See issue description
Location(s) See issue description

Confirmed Fix At N/A

Some issues from prior audits remain unresolved and without a response, including

1. Emitting extra events.
2. Unnecessarily high time complexity in hint computations.
3. Treating stEth as equal to Eth.

Impact Not having a clear explanation of why an issue was acknowledge/ignored may lead
to concern about the protocol from users or make important protocol assumptions unclear.

For example, the Veridise audit team’s understanding is that Edgeless treats stEth as equal to
Eth because they are only exchanged through LIDO staking/unstaking, which (except in the
case of a mass slashing event) processes withdrawals at a 1:1 ratio. If the EthStrategy were to
instead trade the stEth on exchanges, it would need to properly account for the possibility of a
depeg by querying an oracle.

We do strongly recommend the protocol developers monitor the LIDO share rate and bunker
mode status to ensure solvency.

Recommendation Respond to or resolve each issue from prior reports.

Developer Response

1. We use the new events for our own internal tracking.
2. We don’t believe the gas savings in the first listed issue are worth the required development

changes.
3. We are aware of the potential for a depeg. Depegging is not an issue, since we would be

redeeming directly for the underlying and LIDO will always allow this unless there is
mass slashing, in which case we will pause and redeem pro rata.

Veridise Audit Report: Edgeless Contracts © 2024 Veridise Inc.

https://hackmd.io/@XFYy7hStRo6m_3WjonjfRA/lambda#Low---WrappedToken-Unnecessary-events-for-mint--burn
https://hackmd.io/@XFYy7hStRo6m_3WjonjfRA/lambda#Medium---EthStrategyclaimLidoWithdrawals-time-complexity
https://hackmd.io/@XFYy7hStRo6m_3WjonjfRA/vlad#6-Low-underlyingAssetAmount-treats-stETH-is-equal-to-ETH
https://docs.lido.fi/contracts/accounting-oracle#report-data
https://docs.lido.fi/contracts/withdrawal-queue-erc721#isbunkermodeactive
https://docs.lido.fi/contracts/withdrawal-queue-erc721#isbunkermodeactive

28 4 Vulnerability Report

4.1.17 V-EDG-VUL-017: Unchecked approve

Severity Info Commit e185095
Type Maintainability Status Fixed

File(s) src/strategies/EthStrategy.sol

Location(s) requestLidoWithdrawal()
Confirmed Fix At N/A

The requestLidoWithdrawal() function calls LIDO.approve(), but does not use the return value.

1 function requestLidoWithdrawal(uint256[] calldata amounts)
2 external
3 onlyOwner
4 returns (uint256[] memory requestIds)
5 {
6 uint256 total;
7 for (uint256 i; i < amounts.length; ++i) {
8 total += amounts[i];
9 }

10 LIDO.approve(address(LIDO_WITHDRAWAL_ERC721), total);
11 requestIds = LIDO_WITHDRAWAL_ERC721.requestWithdrawals(amounts, address(this));
12 emit RequestedLidoWithdrawals(requestIds, amounts);
13 }

Snippet 4.14: Definition of requestLidoWithdrawal()

Some ERC20 tokens return false on an approve instead of reverting, which is allowed in the
standard.

Impact While LIDO does revert on a failed approve (see e.g. this line from Lido’s implementa-
tion), this may lead to maintainability issues if other strategies are based on this code, or if this
strategy is used on a fork of Lido with different approval behavior.

Recommendation require() that LIDO.approve() returns true.

Developer Response The developer implemented the recommended fix.

© 2024 Veridise Inc. Veridise Audit Report: Edgeless Contracts

https://eips.ethereum.org/EIPS/eip-20#approve
https://eips.ethereum.org/EIPS/eip-20#approve
https://github.com/lidofinance/lido-dao/blob/5fcedc6e9a9f3ec154e69cff47c2b9e25503a78a/contracts/0.4.24/StETH.sol#L213-L214

4.1 Detailed Description of Issues 29

4.1.18 V-EDG-VUL-018: Variable could be immutable

Severity Info Commit e185095
Type Gas Optimization Status Fixed

File(s) src/WrappedToken.sol

Location(s) address public minter
Confirmed Fix At N/A

The minter field in WrappedToken is set once, and then never set again, but is not declared as
immutable.

Impact Declaring minter as immutable would decrease gas costs and increase code clarity.

Recommendation Make the minter field immutable.

Developer Response The developer has implemented the suggested change.

Veridise Audit Report: Edgeless Contracts © 2024 Veridise Inc.

30 4 Vulnerability Report

4.1.19 V-EDG-VUL-019: override keyword unused

Severity Info Commit e185095
Type Maintainability Status Fixed

File(s) src/strategies/EthStrategy.sol

Location(s) See issue description
Confirmed Fix At https://github.com/edgelessNetwork/contracts/pull/26/

In the EthStrategy contract, the override keyword is not used on functions which implement
IStakingStrategy methods.

Impact If a function is removed from an interface, contracts implementing that interface may
forget to remove the corresponding function.

This can lead to code bloat or unintended functionality reaching deployment.

Recommendation Add the override keyword to any functions which implement an interface
method.

Developer Response override has been added to applicable function signatures.

© 2024 Veridise Inc. Veridise Audit Report: Edgeless Contracts

https://github.com/edgelessNetwork/contracts/pull/26/

4.1 Detailed Description of Issues 31

4.1.20 V-EDG-VUL-020: Code duplication

Severity Info Commit e185095
Type Maintainability Status Fixed

File(s) src/strategies/EthStrategy.sol

Location(s) See issue description
Confirmed Fix At N/A

The EthStrategy contract provides two deposit() endpoints. The first is deposit(), which
only the stakingManager can call. The second is ownerDeposit(), which only the owner can call.
ownerDeposit() always stakes funds into LIDO, whereas deposit() only stakes funds into LIDO if
the autoStake flag is set to true. The function definitions are shown below.

1 function deposit(uint256 amount) external payable onlyStakingManager {
2 if (!autoStake) return;
3 if (amount > address(this).balance) revert InsufficientFunds();
4 LIDO.submit{ value: amount }(address(0));
5 emit EthStaked(amount);
6 }
7

8 function ownerDeposit(uint256 amount) external payable onlyOwner {
9 if (amount > address(this).balance) revert InsufficientFunds();

10 LIDO.submit{ value: amount }(address(0));
11 emit EthStaked(amount);
12 }

Snippet 4.15: Definitions of deposit (called by the stakingManager) and ownerDeposit (called by
the owner)

The above two functions share most of their implementation. Rather than being extracted into
an internal function, the code is duplicated.

A similar duplication occurs between functions withdraw() and ownerWithdraw().

Impact Changes made to the codebase may not be reflected in both instantiations of the
deposit/withdrawal logic.

Recommendation Create internal functions to abstract away the shared logic between:

▶ deposit() and ownerDeposit().
▶ withdraw() and ownerWithdraw().

Developer Response The developer has implemented the recommended code refactoring.

Veridise Audit Report: Edgeless Contracts © 2024 Veridise Inc.

32 4 Vulnerability Report

4.1.21 V-EDG-VUL-021: Make chain-specific values immutable

Severity Info Commit e185095
Type Maintainability Status Acknowledged

File(s) src/Constants.sol

Location(s) See issue description
Confirmed Fix At N/A

The addresses for LIDO and LIDO_WITHDRAWAL_ERC721 are hard-coded as constants.

1 ILido constant LIDO = ILido(0xae7ab96520DE3A18E5e111B5EaAb095312D7fE84);
2 IWithdrawalQueueERC721 constant LIDO_WITHDRAWAL_ERC721 =
3 IWithdrawalQueueERC721(0x889edC2eDab5f40e902b864aD4d7AdE8E412F9B1);

Snippet 4.16: Snippet from src/Constants.sol.

However, they could instead be supplied during deployment and set to an immutable field.

Impact When deploying contracts on multiple chains, it is easy to forget to update and
re-compile the code for each chain.

Recommendation Use immutable fields instead of hard-coded constants.

Developer Response The developer has acknowledged the comment, but does not need to
make any changes as there are currently no plans to deploy on other chains.

© 2024 Veridise Inc. Veridise Audit Report: Edgeless Contracts

4.1 Detailed Description of Issues 33

4.1.22 V-EDG-VUL-022: Typos and incorrect comments

Severity Info Commit e185095
Type Maintainability Status Fixed

File(s) See issue description
Location(s) See issue description

Confirmed Fix At N/A

Description In the following locations, the auditors identified minor typos and potentially
misleading comments:

▶ src/EdgelessDeposit.sol

• _mintWrappedEth(): The natspec comment for this function references a non-existent
field (autobridge) and bridging mechanism.

▶ src/StakingManager.sol

• StakingManager: The natspec comment for this contract references an unused field
(depositor).

Impact These minor errors may lead to future developer confusion.

Recommendation Fix the comments to match the current implementation.

Developer Response The developer has updated the comments accordingly.

Veridise Audit Report: Edgeless Contracts © 2024 Veridise Inc.

34 4 Vulnerability Report

4.1.23 V-EDG-VUL-023: Unused submit return value

Severity Info Commit e185095
Type Missing/Incorrect Events Status Fixed

File(s) src/strategies/EthStrategy.sol

Location(s) deposit(), ownerDeposit()
Confirmed Fix At N/A

The Lido submit function is invoked twice, once in deposit and once in ownerDeposit.

1 LIDO.submit{ value: amount }(address(0));

Snippet 4.17: Snippet from deposit().

As discussed in V-EDG-VUL-015, the submit function should return a value (the number of
StEth shares created). This value could be added to the EthStaked event to inform event listeners
of how many StEth shares were created from the given amount.

Impact The EthStaked event is currently not as informative as it could be.

Recommendation Use the return value from the submit function as part of the EthStaked

event to make it more informative.

Developer Response The sharedGenerated return value is now emitted in the EthStaked

event.

© 2024 Veridise Inc. Veridise Audit Report: Edgeless Contracts

4.1 Detailed Description of Issues 35

4.1.24 V-EDG-VUL-024: Compiler warning in ForceCompile.sol

Severity Info Commit e185095
Type Maintainability Status Fixed

File(s) src/ForceCompile.sol

Location(s) See issue description
Confirmed Fix At N/A

The ForceCompile.sol file generates compiler warnings since it missing a solidity version
declaration.

Recommendation Fix the compiler warning by adding the following lines to the beginning of
the file:

1 // SPDX-License-Identifier: UNLICENSED

2 pragma solidity >=0.8.23;

Developer Response The recommended changes have been added.

Veridise Audit Report: Edgeless Contracts © 2024 Veridise Inc.

Fuzz Testing 5
5.1 Methodology

Our goal was to fuzz test Edgeless Contracts to assess its correctness. We used OrCa as our
fuzzer and wrote invariants—logical formulas that should hold after every transaction. We then
encoded those invariants as assertions in [V].

To handle interactions with LIDO, the Veridise auditors wrote mock contracts implementing
the core logic of LIDO deposits/withdrawals.

5.2 Properties Fuzzed

Table 5.1 describes the invariants we fuzz-tested. The second column describes the invariant
informally in English, and the third shows the total amount of compute time spent fuzzing this
property. The last column indicates the number of bugs identified when fuzzing the invariant.

The Veridise auditors devoted a total of 10 compute-hours (600 minutes) to fuzzing this protocol,
identifying a total of 1 bug (V-EDG-VUL-002).

Table 5.1: Invariants Fuzzed.

Specification Invariant Minutes Fuzzed Bugs Found
V-EDG-SPEC-001 Balance of ewEth bounded by Eth and stEth 600 1
V-EDG-SPEC-002 Edgeless deposit has proper access control 600 0
V-EDG-SPEC-003 Only owner can stake to LIDO without autoStake 600 0
V-EDG-SPEC-004 Wrapped Eth has proper access control 600 0

Veridise Audit Report: Edgeless Contracts © 2024 Veridise Inc.

38 5 Fuzz Testing

5.3 Detailed Description of Fuzzed Specifications

5.3.1 V-EDG-SPEC-001: Balance of ewEth bounded by Eth and stEth

Minutes Fuzzed 600 Bugs Found 1

Scope This specification applies to any action which may change the Eth or stEth of protocol
contracts, or which may change the total supply of ewEth.

Natural Language The total number of wrapped Eth tokens distributed by the EdgelessDeposit
contract is bounded by the amount of Eth and stEth managed by the contract.

Formal

1 vars: EdgelessDeposit edgeless, ILido lido, IStakingStrategy strategy, WrappedToken

wrappedEth

2 inv: finished(

3 edgeless.*,

4 wrappedEth.totalSupply() <= lido.balanceOf(strategy) + balance(strategy)

5)

1 vars: ILido lido, IStakingStrategy strategy, WrappedToken wrappedEth

2 inv: finished(

3 lido.*,

4 wrappedEth.totalSupply() <= lido.balanceOf(strategy) + balance(strategy)

5)

1 vars: ILido lido, IStakingStrategy strategy, WrappedToken wrappedEth

2 inv: finished(

3 strategy.*,

4 wrappedEth.totalSupply() <= lido.balanceOf(strategy) + balance(strategy)

5)

Example Requesting a Lido withdrawal reduces the stEth balance without immediately
supplying Eth. This can cause the wrapped Eth token to have a larger total supply than the
combined Eth and stEth balances.

This issue can be resolved by also tracking the value of unstEth owned by the protocol.

1 test: finished(EdgelessDeposit_4.depositEth(__user1__), sender = __user2__ && value =

766878);

2 finished(strategy.requestLidoWithdrawal([0, 77]), sender = __user0__)

© 2024 Veridise Inc. Veridise Audit Report: Edgeless Contracts

5.3 Detailed Description of Fuzzed Specifications 39

5.3.2 V-EDG-SPEC-002: Edgeless deposit has proper access control

Minutes Fuzzed 600 Bugs Found 1

Scope This specification applies the EdgelessDeposit contract.

Natural Language Only the owner should be able to change the value of key parameters like
the stakingManager or wrappedEth. Only the owner should be able to upgrade.

Formal

1 vars: EdgelessDeposit edgeless

2 inv: finished(

3 edgeless.*,

4 sender = edgeless.owner()

5 ||

6 (

7 old(edgeless.stakingManager) = edgeless.stakingManager

8 &&

9 old(edgeless.wrappedEth) = edgeless.wrappedEth

10 &&

11 old(edgeless.l2Eth) = edgeless.l2Eth

12)

13)

1 vars: EdgelessDeposit edgeless

2 inv: reverted(

3 edgeless.upgradeToAndCall,

4 sender != edgeless.owner()

5)

Veridise Audit Report: Edgeless Contracts © 2024 Veridise Inc.

40 5 Fuzz Testing

5.3.3 V-EDG-SPEC-003: Only owner can stake to LIDO without autoStake

Minutes Fuzzed 600 Bugs Found 1

Scope This specification applies the EthStrategy contract.

Natural Language Only the owner should be able to change the amount of tokens staked into
LIDO, unless autoStake is enabled.

Formal

1 vars: EthStrategy strategy, ILido lido

2 inv: finished(

3 strategy.*,

4 strategy.autoStake()

5 ||

6 sender = strategy.owner()

7 ||

8 lido.balanceOf(strategy) = old(lido.balanceOf(strategy))

9)

© 2024 Veridise Inc. Veridise Audit Report: Edgeless Contracts

5.3 Detailed Description of Fuzzed Specifications 41

5.3.4 V-EDG-SPEC-004: Wrapped Eth has proper access control

Minutes Fuzzed 600 Bugs Found 1

Scope This specification applies the WrappedToken contract.

Natural Language Only the EdgelessDeposit contract should be able to mint or burn tokens.

Formal

1 vars: EdgelessDeposit edgeless, WrappedToken wrappedEth

2 inv: reverted(

3 wrappedEth.mint,

4 sender != edgeless

5)

1 vars: EdgelessDeposit edgeless, WrappedToken wrappedEth

2 inv: reverted(

3 wrappedEth.burn,

4 sender != edgeless

5)

Veridise Audit Report: Edgeless Contracts © 2024 Veridise Inc.

Glossary

flash loan A loan which must be repaid in the same transaction, typically offered at a much
more affordable rate than traditional loans . 5

front-running A vulnerability in which a malicious user takes advantage of information about
a transaction while it is in the mempool. 5

LIDO A liquid staking protocol. See https://lido.fi for more information . 1, 37

reentrancy A vulnerability in which a smart contract hands off control flow to an unknown
party while in an intermediate state, allowing the external party to take advantage of the
situation. 5

smart contract A self-executing contract with the terms directly written into code. Hosted on a
blockchain, it automatically enforces and executes the terms of an agreement between
buyer and seller. Smart contracts are transparent, tamper-proof, and eliminate the need
for intermediaries, making transactions more efficient and secure.. 1, 43

Solidity The standard high-level language used to develop smart contracts on the Ethereum
blockchain. See https://docs.soliditylang.org/en/v0.8.19/ to learn more. 5

Veridise Audit Report: Edgeless Contracts © 2024 Veridise Inc.

https://lido.fi
https://docs.soliditylang.org/en/v0.8.19/

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	V-EDG-VUL-001: Fund recovery after strategy removal requires full shutdown
	V-EDG-VUL-002: unstEth value not tracked
	V-EDG-VUL-003: Wrong amount emitted on withdraw()
	V-EDG-VUL-004: Removing strategy may pause contract
	V-EDG-VUL-005: Missing address zero-checks
	V-EDG-VUL-006: Centralization Risk
	V-EDG-VUL-007: Strategy with staked funds can be removed
	V-EDG-VUL-008: Unused program constructs
	V-EDG-VUL-009: Initializable best practices
	V-EDG-VUL-010: Wrong amount emitted on stake
	V-EDG-VUL-011: No range check on active strategy
	V-EDG-VUL-012: Strategies may be duplicates
	V-EDG-VUL-013: Unusable strategies may be added
	V-EDG-VUL-014: Staking manager withdrawal amount unchecked
	V-EDG-VUL-015: Incorrect Lido interface function
	V-EDG-VUL-016: Issues from previous audits
	V-EDG-VUL-017: Unchecked approve
	V-EDG-VUL-018: Variable could be immutable
	V-EDG-VUL-019: override keyword unused
	V-EDG-VUL-020: Code duplication
	V-EDG-VUL-021: Make chain-specific values immutable
	V-EDG-VUL-022: Typos and incorrect comments
	V-EDG-VUL-023: Unused submit return value
	V-EDG-VUL-024: Compiler warning in ForceCompile.sol
	Fuzz Testing
	Methodology

	Methodology
	Properties Fuzzed

	Properties Fuzzed
	Detailed Description of Fuzzed Specifications

	Detailed Description of Fuzzed Specifications
	V-EDG-SPEC-001: Balance of ewEth bounded by Eth and stEth
	V-EDG-SPEC-002: Edgeless deposit has proper access control
	V-EDG-SPEC-003: Only owner can stake to LIDO without autoStake
	V-EDG-SPEC-004: Wrapped Eth has proper access control
	Glossary

