Xferidise. Auditing Report

Hardening Blockchain Security with Formal Methods

FOR

Tomo V2

7

Veridise Inc.
November 17, 2023

» Prepared For:

FansTech

» Prepared By:

Timothy Hoffman
Bryan Tan

» Contact Us: contact@veridise.com
» Version History:
Now. 17, 2023 Vi1

© 2023 Veridise Inc. All Rights Reserved.

contact@veridise.com

Contents

Contents 1ii
1 Executive Summary 1
2 Project Dashboard 3
3 Audit Goals and Scope 5
31 AuditGoals. e 5
3.2 Audit Methodology & Scope o 5
3.3 Classification of Vulnerabilities 5
4 Vulnerability Report 7
41 Detailed DescriptionofIssues 8
411 V-TOMO2-VUL-001: Subject owner can drain protocol funds by selling
preserved keys L Lo o 8
412 V-TOMO2-VUL-002: Centralizationrisks 1
413 V-TOMO2-VUL-003: Total fee percentages can exceed 100% 12
414 V-TOMO2-VUL-004: Customized fee percentages not validated 14
415 V-TOMO2-VUL-005: Potential curve initialization DoS in buyStandardKey 15
41.6 V-TOMO2-VUL-006: Behavior of initializeSubject is inconsistent with
documentation Lo o 16
417 V-TOMO2-VUL-007: initializeSubject methods do not add preserved keys
tosupply 17
418 V-TOMO2-VUL-008: Replay attack risk in buyKey, buyStandardKey() . . 19
419 V-TOMO2-VUL-009: Missing zero address checks 21
4110 V-TOMO2-VUL-010: Inconsistent buy/sell price query for standard curves 23
4111 V-TOMO2-VUL-011: Use of magic constant instead of BPS_MAX 25
4112 V-TOMO2-VUL-012: Inconsistent checks of referralRatio 26
4113 V-TOMO2-VUL-013: Potentially unimplemented functionality 28
4114 V-TOMO2-VUL-014: processTransfer() can be pure/view 30

Veridise Audit Report: Tomo V2 © 2023 Veridise Inc.

& Executive Summary

From Now. 8, 2023 to Nov. 15, 2023, FansTech engaged Veridise to review the security of a smart
contract implementation of their Tomo V2 protocol. Veridise conducted the assessment over 2
person-weeks, with 2 engineers reviewing code over 1 week from commits fbef746 - 61e9b22.
The auditing strategy involved a tool-assisted analysis of the source code performed by Veridise
engineers as well as extensive manual auditing.

Project summary. The Tomo V2 protocol involves a system that allows users to create virtual
asset stores called subjects, where each subject has a fungible virtual asset called a key. Each
subject supports three operations: buy, transfer, and sell. A buy operation allows a user to pay
native currency to create a given amount of key, a transfer allows a user to give their keys to
another user, and a sell operation allows a user to destroy their key to obtain native currency.
Buy operations additionally require the user to supply a cryptographic signature (signed by a
backend service developed by Tomo) that authenticates the user to the protocol. The price of a
key is determined by a curve module chosen by the subject owner, a Tomo V2 smart contract
that calculates the price as a function of the current "supply" of keys available. The protocol
is configured by a governance address that is allowed to perform privileged actions such as
pausing the protocol and imposing percentage fees to be given to the protocol and/or the
subject owners.

Code assessment. The Tomo V2 developers provided the source code of the Tomo V2 contracts
for review. The source code appears to be original code written by the developers. It contains
some documentation in the form of READMEs and documentation comments on functions and
storage variables. No additional documentation was provided to the Veridise auditors for the
audit. Although the auditors attempted to understand the intended behavior of the code from
the source code, they were unable to accurately assess the intended behavior in several places
in the code.

The source code contained a test suite, which the Veridise auditors noted provides partial test
coverage of the behaviors of the protocol.

During the audit, the Tomo V2 developers made several functional changes to the code. This is
because the code had not been finalized at the time of the audit start date.

Summary of issues detected. The audit uncovered 14 issues, 1 of which is assessed to be of
high or critical severity by the Veridise auditors. Specifically, subject owners can steal funds from
the protocol by selling their free "preserved" keys for a profit (V-TOMO2-VUL-001). The Veridise
auditors also identified 9 low-severity issues, including a lack of validation on fee percentages
(V-TOMO2-VUL-003, V-TOMO2-VUL-004) and a replay attack risk (V-TOMO2-VUL-008), as
well as 3 warnings and 1 informational-severity issue. The Tomo V2 developers resolved all of
the reported issues.

Veridise Audit Report: Tomo V2 © 2023 Veridise Inc.

1 Executive Summary

Recommendations. After auditing the protocol, the auditors had a few suggestions to improve
the Tomo V2.

Due to the lack of documentation, the auditors had a hard time understanding the intended
functionality of the protocol (e.g., see V-TOMO2-VUL-005). To avoid bugs such as V-TOMO2-
VUL-001 and V-TOMO2-VUL-009, we recommend documenting any assumptions, caveats, and
failure cases thoroughly and increasing test coverage to cover these cases.

Also, we strongly recommend that the developers reduce code duplication and refactor common
functionality into reusable functions. This can help avoid bugs such as V-TOMO2-VUL-013.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

© 2023 Veridise Inc. Veridise Audit Report: Tomo V2

2

& Project Dashboard

Table 2.1: Application Summary.

Platform

Tomo V2 fbef746 - 61e9b22 Solidity Ethereum

Table 2.2: Engagement Summary.

Method Consultants Engaged Level of Effort

Nov. 8 - Nov. 15,2023 Manual & Tools 2 person-weeks

Table 2.3: Vulnerability Summary.

Critical-Severity Issues 0 0

High-Severity Issues 1 1
Medium-Severity Issues 0 0
Low-Severity Issues 9 9
Warning-Severity Issues 3 3
Informational-Severity Issues 1 1
TOTAL 14 14

Table 2.4: Category Breakdown.

Logic Error 4
Data Validation
Maintainability
Theft
Authorization
Denial of Service
Replay Attack

— _ Rk W

Veridise Audit Report: Tomo V2 © 2023 Veridise Inc.

& Audit Goals and Scope

3.1 Audit Goals

The engagement was scoped to provide a security assessment of Tomo V2’s smart contracts. In
our audit, we sought to answer questions such as:

» Is the signature scheme used by buyKey and buyStandardKey susceptible to replay attacks?
» Do the curve modules correctly implement price calculations?

» Are all configuration values validated correctly?

» Are the special cases for the standard curve module handled correctly?

» Are the special cases for the const curve module handled correctly?

» Are the correct access control policies applied to buy, transfer, and sell key operations?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a combination of
human experts and automated program analysis & testing tools. In particular, we conducted
our audit with the aid of the following techniques:

» Static analysis. To identify potential common vulnerabilities, we leveraged our custom
smart contract analysis tool Vanguard, as well as the open-source tool Slither. These
tools are designed to find instances of common smart contract vulnerabilities, such as
reentrancy and uninitialized variables.

» Fuzzing/Property-based Testing. We also leverage fuzz testing to determine if the protocol
may deviate from the expected behavior. To do this, we formalize the desired behavior of
the protocol as [V] specifications and then use our fuzzing framework OrCa to determine
if a violation of the specification can be found.

Scope. The scope of this audit is limited to the contracts folder of the source code provided by
the Tomo V2 developers, which contains the smart contract implementation of the Tomo V2.

Methodology. The Veridise auditors first inspected the provided test suite. Then they conducted a
manual code review of the source code, assisted by both static analyzers and automated testing.
During the audit, the Veridise auditors met with the Tomo V2 developers to ask questions about
the code.

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Veridise Audit Report: Tomo V2 © 2023 Veridise Inc.

3 Audit Goals and Scope

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking

Not Likely | NI MOSSRE M I Low i Medium
Likely [0 Wasming | Low. | Medium [0 High 0
Very Likely [oBoWe] Medium [g IR

In this case, we judge the likelihood of a vulnerability as follows in Table 3.2:

Table 3.2: Likelihood Breakdown

Not Likely | A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)
Likely | - OR -

Requires a small set of users to perform an action

Very Likely | Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows in Table 3.3:

Table 3.3: Impact Breakdown

Somewhat Bad | Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad | -OR-

Affects a very small number of people and requires aid to fix

Affects a large number of people and requires aid to fix

Very Bad | -OR -

Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking | Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2023 Veridise Inc. Veridise Audit Report: Tomo V2

%5 Vulnerability Report

In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowledged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

V-TOMO2-VUL-001 Subject owner can drain protocol funds by selli... ~ High Fixed
V-TOMO2-VUL-002 Centralization risks Low Acknowledged
V-TOMO2-VUL-003 Total fee percentages can exceed 100% Low Fixed
V-TOMO2-VUL-004 Customized fee percentages not validated Low Fixed
V-TOMO2-VUL-005 Potential curve initialization DoS in buyStanda. . . Low Acknowledged
V-TOMO2-VUL-006 Behavior of initializeSubject is inconsistent w. . . Low Fixed
V-TOMO2-VUL-007 initializeSubject methods do not add preserved ... Low Acknowledged
V-TOMO2-VUL-008 Replay attack risk in buyKey, buyStandardKey() Low Fixed
V-TOMO2-VUL-009 Missing zero address checks Low Fixed
V-TOMO2-VUL-010 Inconsistent buy/sell price query for standard ... Low Fixed
V-TOMO2-VUL-011 Use of magic constant instead of BPS_MAX Warning Fixed
V-TOMO2-VUL-012 Inconsistent checks of referralRatio Warning Fixed
V-TOMO2-VUL-013 Potentially unimplemented functionality Warning Fixed
V-TOMO2-VUL-014 processTransfer() can be pure/view Info Fixed

Veridise Audit Report: Tomo V2 © 2023 Veridise Inc.

W 0 N O U R W N

e =~
N B o

4 Vulnerability Report

4.1 Detailed Description of Issues

4.1.1 V-TOMO2-VUL-001: Subject owner can drain protocol funds by selling
preserved keys

i High 61e9b22
B84 Ll Theft Fixed

File(s) StandardCurveModule.sol
Location(s) _getPrice()
Confirmed Fix At 9el7ade

Subject owners can steal money from the protocol by selling preserved keys.

When a subject is initialized with the standard curve, via TomoV2.buyStandardKey (), a fixed
number of "preserved" keys is added to the supply for that subject. The subject owner can
later sell the preserved keys via TomoV2.sellKey(). In this process, the StandardCurveModule.
_getPrice(supply, amount) function is called to compute the total change in value of keys as
the total supply changes from supply to supply + amount.

For the standard curve, a documentation comment on StandardCurveModule indicates that the
standard curve has the following marginal price function (as a function of supply):

The key price is according to bonding curve,

key price = if x <= _preserved then 0 else x"2 / 43370

(s) 0 if s < preserved
S) =
P s2/43370 if s > preserved

Thatis, preserved keys should have a value of zero. However, the implementation of StandardCurveModule
._getPrice() does not properly force the value of the preserved keys to be 0, which allows the
subject owner to sell the preserved keys and obtain a net profit.

function _getPrice(
uint256 supply,
uint256 amount
) public view returns (uint256) {
uint256 start = supply;
if (supply < _preserved) start = _preserved;
uint256 suml = start * (start + 1) x (2 % start + 1);
uint256 sum2 = (start + amount) x
(start + 1 + amount) =
(2 * (start + amount) + 1);
return ((sum2 - suml) x 1 ether) / (43370 * 6);

-

Snippet 4.1: Definition of StandardCurveModule._getPrice()

© 2023 Veridise Inc. Veridise Audit Report: Tomo V2

4.1 Detailed Description of Issues

Attack Scenario One simple attack scenario occurs as follows:

1. An attacker obtains a cryptographic signature from Tomo’s backend that allows them to
invoke buyStandardKey (), with the subject set to an account that they control, which we
will call Account.

2. Account invokes buyStandardKey () with Account as the subject and an amount of 1 (the
smallest possible amount to purchase). This will initialize a standard curve module for
Account, granting Account three preserved keys for free.

3. Account invokes sellkey () to sell all four keys, each of which has a nonzero value.

4. The attacker has a net profit from selling four keys, while the protocol has a net loss (from
the sale of three keys that were not paid for).

Impact Because the subject owner is able to obtain a net profit from selling keys while the
protocol suffers a net loss, attackers may attempt to drain funds from the protocol by repeatedly
initializing standard curves for distinct subject addresses and then selling keys using the attack

scenario described above. Ultimately, the protocol may become insolvent as a result of such
theft.

» The likelihood of the attack occurring will increase as the value of the native currency
increases and the gas fees decrease. However, attackers that purely wish to harm the
protocol without caring for their personal profits may still perform the attack even if they
will lose money.

» The attack requires an attacker to obtain legitimate signatures for buyStandardKey (), whose
signature scheme requires the subject to be specified. The attack can be mitigated with
appropriate rate limiting or access controls by the Tomo backend server.

Recommendation Some ways to mitigate this issue include:

» Change the specification so that preserved keys have value, but require callers of
buyStandardKey() to also pay the price of the preserved keys if the standard curve
module is automatically initialized. Note that while this will still allow subject owners to
sell their preserved keys for a profit (at the expense of all users owning the subject’s keys),
it will prevent the protocol from becoming insolvent.

» Fix the implementation so that the total price of the preserved keys is 0, e.g. clamp the
interval on which the price change is computed so that the lower bound is at least 3.

» Impose strict rate limiting and access control policies on the Tomo backend server when
creating signatures for buyStandardKey ().

Developer Response The developers changed the implementation of _getPrice() to the
following;:

function _getPrice(
uint256 supply,
uint256 amount,
bool isSell

) private view returns (uint256) {
uint256 start = supply;
uint256 end = start + amount;

Veridise Audit Report: Tomo V2 © 2023 Veridise Inc.

10

10
11
12
13
14
15
16
17
18
19
20
21
22

4 Vulnerability Report

if (supply <= _preserved) {
if (isSell) {
start = _preserved;
} else {
start = _preserved;
end = start + amount;
}
}
if (start >= end) return 0;
uint256 suml = start * (start + 1) * (2 * start + 1);
uint256 sum2 = end * (end + 1) * (2 x end + 1);
return ((sum2 - suml) x 1 ether) / (43370 * 6);
}

The auditors noted that while this version will ensure that preserved keys will be valued at 0
when sold, buying keys while the supply is below preserved will have a non-zero price. Thus,
users that buy preserved keys and then sell them will have a net loss. The developers stated
that is in line with the intended behavior of selling preserved keys.

Second, the developers noted that there is also a caveat that when the supply is below
_preserved, price change will be calculated starting from _preserved rather than the current
supply, regardless of the amount of keys purchased. They stated that this does not have a
noticeable impact on the protocol.

© 2023 Veridise Inc. Veridise Audit Report: Tomo V2

4.1 Detailed Description of Issues

4.1.2 V-TOMO2-VUL-002: Centralization risks

Low 61e9b22
Authorization Acknowledged
N/A

N/A

N/A

Similar to many projects, the TomoV2 contract has an owner/governance that is given special
privileges. As an example, the governance can change the curve module whitelist, the protocol
fee recipients, the fee percentages, and change the Tomo signer. As these are all particularly
sensitive operations, we would encourage the developers to utilize a decentralized governance
or multi-sig contract, as a single externally-owned account is a single point of failure.

Impact If a private key were stolen, a hacker would have access to sensitive functionality that
could compromise the protocol. For example, a malicious governance could, in one step, set the
protocol fee to a very high value and cause users to either pay a large sum to sell or abandon at
a loss.

Recommendation Utilize a decentralized governance or multi-sig contract as the owner of the
contract and the fee recipient, and consider adding additional restrictions to functions accessible
by governance such as limiting the maximum fee percentages.

Developer Response The developers acknowledged the issue and indicated that they "will
transfer to a governance smart contract” in the future.

Veridise Audit Report: Tomo V2 © 2023 Veridise Inc.

11

12

4 Vulnerability Report

4.1.3 V-TOMO2-VUL-003: Total fee percentages can exceed 100%

Low foef746
Data Validation Fixed
TomoV2.sol
setCurveFeePercent()
73450

The setCurveFeePercent() is used to set the default protocol fee (protocolFeePercent) and
subject fee (subjectFeePercent) percentages for a given curve module. The two values are
validated to each be less than BPS_MAX (100%). However, in sellKey(), it appears that it is
assumed that protocolFeePercent + subjectFeePercent <= BPS_MAX.

function setCurveFeePercent(
address curveModuleAddress,
uint256 newProtocolFeePercent,
uint256 newSubjectFeePercent
) external override onlyGov {
if (!_curveModuleWhitelisted[curveModuleAddress])
revert Errors.CurveModuleNotWhitelisted();
if (newProtocolFeePercent > BPS_MAX || newSubjectFeePercent > BPS_MAX)
revert Errors.FeePercentTooHigh();
ICurveModule(curveModuleAddress) .setFeePercent(
newProtocolFeePercent,
newSubjectFeePercent
);

-

Snippet 4.2: Definition of setCurveFeePercent

Impact If the governance sets the total fee percentage to be larger than 100%, then sellkey
will revert due to subtraction overflow.

uint256 protocolFee = (price * protocolFeePercent) / BPS_MAX;
payable(_protocolFeeAddress) .transfer(protocolFee);

uint256 subjectFee = (price * subjectFeePercent) / BPS_MAX;
payable(vars.keySubject).transfer(subjectFee);

uint256 sellValue = price - protocolFee - subjectFee;

Snippet 4.3: Relevant lines in sellKey () where subtraction overflow may cause a revert.

Recommendation In setCurveFeePercent(), change the condition from

1|newProtocolFeePercent > BPS_MAX || newSubjectFeePercent > BPS_MAX

to

1|newProtocolFeePercent + newSubjectFeePercent > BPS_MAX

© 2023 Veridise Inc. Veridise Audit Report: Tomo V2

4.1 Detailed Description of Issues 13

Developer Response Developers added checks in setCurveFeePercent () to revert if the sum
of the fees is not exactly 100% for the ConstCurveModule or if the sum is greater than 10% for any
other curve module.

Veridise Audit Report: Tomo V2 © 2023 Veridise Inc.

14

W 0 N O U R W N

e e =
A W N R O

4 Vulnerability Report

4.1.4 V-TOMO2-VUL-004: Customized fee percentages not validated

Low foef746
Data Validation Fixed
TomoV2.sol
setCustomizedFeePercent()
7032257

Similar to V-TOMO2-VUL-003, the setCustomizedFeePercent () method also allows the sum of
the protocol and subject fees to exceed 100%. However, setCustomizedFeePercent() does not
perform any validation on the fee percentage values.

function setCustomizedFeePercent (
address curveModuleAddress,
address subjectAddress,
uint256 newProtocolFeePercent,
uint256 newSubjectFeePercent
) external override onlyGov {
if (!_curveModulewWhitelisted[curveModuleAddress])
revert Errors.CurveModuleNotWhitelisted();
ICurveModule(curveModuleAddress) .setCustomizedFeePercent (
subjectAddress,
newProtocolFeePercent,
newSubjectFeePercent
);

-

Snippet 4.4: Definition of setCustomizedFeePercent()

Impact Same impact as V-TOMO2-VUL-003.

Recommendation Add acheck thatcauses the transaction to revert when newProtocolFeePercent
+ newSubjectFeePercent > BPS_MAX.

Developer Response Developers added checks in setCustomizedFeePercent () to revert if the
sum of the fees is not exactly 100% for the ConstCurveModule or if the sum is greater than 10%
for any other curve module.

© 2023 Veridise Inc. Veridise Audit Report: Tomo V2

O© 00 N O U1 A W N =

HoR R e
w N R

4.1 Detailed Description of Issues

4.1.5 V-TOMO2-VUL-005: Potential curve initialization DoS in buyStandardKey

Low foef746

Denial of Service Acknowledged
TomoV2.sol
buyStandardKey()

N/A

The buyStandardKey () method is similar to the buyKey() method that is used to purchase a

given amount of keys on a given subject, but with the difference that buyStandardKey () will
also automatically initialize the subject’s curve module to the StandardCurveModule if no curve
module already exist for the subject.

if (_keySubjectInfo[vars.keySubject].curveModule == address(0)) {
uint256 preserved = ICurveModule (STANDARD_CURVE_ADDRESS)

.initializeCurveModule(

vars.keySubject,
abi.encode() //useless just suit for interface

);

_keySubjectInfo[vars.keySubject]

.curveModule = STANDARD_CURVE_ADDRESS;
_keySubjectInfo[vars.keySubject].supply += preserved;
_keySubjectInfo[vars.keySubject].balanceOf[

vars.keySubject
1 += preserved;

-

Snippet 4.5: Relevant code in buyStandardKey () that performs the automatic initialization.

This behavior may cause a denial-of-service problem for the subject: a user may be able to call
buyStandardKey () to force the module to be initialized as a standard curve module, even if the
subject actually intends to initialize the curve module as a different curve module type.

Impact Users may be able to initialize a subject’s curve module without the subject’s authoriza-
tion. Specifically, a subject may not be able to initialize their curve module to their own desired
type. Note that buyStandardKey () requires the sender to provide a valid signature signed by
Tomo’s backend over the key subject and the sender, so the impact of this denial-of-service
problem depends on the behavior of Tomo’s backend.

Recommendation Clarify the assumptions about how buyStandardKey () is called and add
appropriate mitigations (such as requiring the subject’s authorization) for this denial-of-service
problem.

Developer Response The developers noted that the current behavior is intended:

Yeah. This is our design, At the beginning, there is only a standard curve, other
curve will not open. Anyone can buy other people’s key without authorization
using standard curves. Later, when we open other curves, the standard curve will
be disabled, and anyone need initialize their subject, than others can but.

Veridise Audit Report: Tomo V2 © 2023 Veridise Inc.

15

16 4 Vulnerability Report

4.1.6 V-TOMO2-VUL-006: Behavior of initializeSubject is inconsistent with

documentation
Severity @¥g%Y fbef746
8428 Logic Error Fixed
File(s) TomoV2.sol
Location(s) initializeSubject()
Confirmed Fix At 9c4c499

The documentation comment on initializeSubject() states that:

initial subject when user want to jump into tomo, user can modify initialized subject
many times until supply > 0, if someone buy your key. can not modify anymore

However, the auditors were unable to find any logic in initializeSubject() corresponding to
this behavior. Based on the current implementation of initializeSubject():

» initializeSubject() may only be called once by the sender, as the method requires
_keySubjectInfo[msg.sender].curveModule to be initially set to the zero address and will
set the value to a nonzero address.

» There is no code in initializeSubject() that writes or reads any supply value.

Impact The implementation of initializeSubject() may not be consistent with the behavior
intended by the developers.

Recommendation Clarify the intended behavior of initializeSubject() and update the
documentation comment and/or initializeSubject().

Developer Response The developers noted that the documentation comment is incorrect, and
that the current behavior is intended.

© 2023 Veridise Inc. Veridise Audit Report: Tomo V2

O 00 N O U A W N =

e el
W N B ©

W 00 N O U R W N

R el
A W N R O

4.1 Detailed Description of Issues

4.1.7 V-TOMO2-VUL-007: initializeSubject methods do not add preserved keys to
supply

Low
L

foef7i6

ogic Error Acknowledged
TomoV2.sol
initializeSubject(), initializeSubjectByGov()
N/A

The ICurveModule.initializeCurveModule() method may return an unsigned integer represent-

ing the number of keys that should be initially granted to some user, such as the owner of the
subject that the curve module is being initialized on. In buyStandardKey (), when a standard

curve module is automatically initialized for the subject, these "preserved" keys are granted to

the subject.

if (_keySubjectInfo[vars.keySubject].curveModule == address(0)) {

-

uint256 preserved = ICurveModule (STANDARD_CURVE_ADDRESS)
.initializeCurveModule(
vars.keySubject,
abi.encode() //useless just suit for interface

);

_keySubjectInfo[vars.keySubject]

.curveModule = STANDARD_CURVE_ADDRESS;
_keySubjectInfo[vars.keySubject].supply += preserved;
_keySubjectInfo[vars.keySubject].balanceOf[

vars.keySubject
] += preserved;

Snippet 4.6: Relevant lines in buyStandardKey().

However, there isno code in initializeSubject() and initializeSubjectByGov () that will grant
the "preserved" keys to the subject.

function initializeSubject(

DataTypes.InitialSubjectData calldata vars

) external override whenInitializeSubjectEnabled {

-

if (!_curveModuleWhitelisted[vars.curveModulel])
revert Errors.CurveModuleNotWhitelisted();

if (_keySubjectInfo[msg.sender].curveModule != address(0))
revert Errors.SubjectAlreadyInitialized();

_keySubjectInfo[msg.sender].curveModule = vars.curveModule;
ICurveModule(vars.curveModule).initializeCurveModule(
msg.sender,
vars.curveModuleInitData
);

Snippet 4.7: Implementation of initializeSubject(). The initializeSubjectByGov () method

is similar.

Veridise Audit Report: Tomo V2 © 2023 Veridise Inc.

17

18

4 Vulnerability Report

Impact Such "preserved" keys will not be recorded in the balance of the subject when curve
module is initialized by initializeSubject() and initializeSubjectByGov (), nor will supply
be updated in the TomoV2 contract.

Currently, the only curve module that returns a non-zero "preserved" keys value is the
StandardCurveModule. Since the StandardCurveModule will still record the key amount in its
own storage, all prices calculated by the StandardCurveModule will be higher than they should
be for the actual amount of keys in circulation. For example, if a subject manually calls
initializeSubject(), then they will start out with a balance of zero and would have to pay a
non-zero amount of currency in order to acquire some keys.

Recommendation InsertcodeintoinitializeSubject() and initializeSubjectByGov() toadd
the preserved keys to the supply and the balance of the subject. To prevent future inconsistencies,
the common initialization code could be moved into a helper function that can be called by
buyStandardKey(), initializeSubject(), and initializeSubjectByGov ().

Developer Response The developersnotethatinitializeSubjectand initializeSubjectByGov
() are not meant to be used with the StandardCurveModule:

StandardCurveModule address is not in whitelist curve module. it’s built-in in variable
STANDARD_CURVE_ADDRESS, so initializeSubject and initializeSubjectByGov cannot
initial standard curve if we open Const/Linear/Quadratic curve(at same time we
will disable buyStandardKey, so all subject need be initialized first)

© 2023 Veridise Inc. Veridise Audit Report: Tomo V2

© 0 N O U W N

e e e e =
o U A W N R O

4.1 Detailed Description of Issues

4.1.8 V-TOMO2-VUL-008: Replay attack risk in buyKey, buyStandardKey()

Severity EFgY fbet746
#8418 Replay Attack Fixed

File(s) TomoV2.sol
Location(s) buyKey(), buyStandardKey()
Confirmed Fix At 191792

The buyKey () and buyStandardKey () can be called by a user in order to purchase a given amount
of keys from a specific subject. These two methods require the user to also provide a valid
ECDSA signature over a tuple (BUY_TYPEHASH, subject, sender, amount), where:

» BUY_TYPEHASH is a keccak256 hash identifying this as a buy key operation.

> subject is the subject corresponding to the keys being purchased.

» sender is the address making the key purchase, which buykey/buyStandardKey enforce to
be equal to the msg.sender.

» amount is the amount of keys to purchase.

» The signer is an externally-owned account controlled by Tomo.

This signature scheme does not include sufficient data to guard against replay attacks.

unchecked {
_validateRecoveredAddress(
_calculateDigest(
keccak256 (
abi.encode(
BUY_TYPEHASH,
vars.keySubject,
msg.sender,
vars.amount
)
)
),
_tomoSignAddress,
vars.sig
);
}

Snippet 4.8: Relevant code in buyKey (). A similar code snippet is in buyStandardKey ()

Impact Once a user obtains a signature corresponding to a call to buyKey/buyStandardKey ()
is obtained, the user will be able to call buyKey/buyStandardKey () with the same subject and
amount as many times as they’d like in the future.

Recommendation Include mitigations against replay attacks, such as an expiry time or
nonce.

Developer Response The developers stated that this is intended behavior. The signing
mechanism is only used to authenticate users so-as to prevent bot accounts from spamming key
purchases.

Veridise Audit Report: Tomo V2 © 2023 Veridise Inc.

19

20 4 Vulnerability Report

To avoid a signature obtained for buyKey () being reused for buyStandardKey () (and vice versa),
the developers changed the type hash for buyStandardkey ().

© 2023 Veridise Inc. Veridise Audit Report: Tomo V2

4.1 Detailed Description of Issues

4.1.9 V-TOMO2-VUL-009: Missing zero address checks

Severity E¥gY 61e9b22
g8l Data Validation Fixed

File(s) TomoV2.sol
Location(s) See description
Confirmed Fix At 582£334

There are several functions that accept an address parameter but do not validate that the address
is nonzero. In most cases, an address with value 0 indicates invalid or uninitialized data, so
such parameters should be validated.

» The TomoV2._setProtocolFeeAddress () method allows _protocolFeeAddress tobe assigned
the value 0. This address is used as the destination of a transfer within the sellKey and
_buyKey functions.

1| function _setProtocolFeeAddress(address newProtocolFeeAddress) internal {
2 address preProtocolFeeAddress = _protocolFeeAddress;

3 _protocolFeeAddress = newProtocolFeeAddress;

4

Snippet 4.9: Relevant lines in _setProtocolFeeAddress ()

» The Tomov2._setTomoSignAddress () method allows _tomoSignAddress to be assigned the
zero address. This address is used within the buyKey () and buyStandardKey () functions
when validating the provided signature _validateRecoveredAddress(_, _tomoSignAddress
) and will always result in a SignatureInvalid revert within that function if the zero
address is provided.

function _setTomoSignAddress(address newTomoSignAddress) internal {
address preTomoSignAddress = _tomoSignAddress;
_tomoSignAddress = newTomoSignAddress;

A W N

Snippet 4.10: Relevant lines in _setTomoSignAddress ().

» The TomoV2.setCustomizedFeePercent function allows subjectAddress == 0 to be passed
to ICurveModule.setCustomizedFeePercent(), but there doesn’t seem to be a legitimate
reason to allow that value. This likely indicates a bug.

» The TomoV2._setGovernance() method allows _governance to be assigned the value 6.

Impact

» When _setProtocolFeeAddress() sets _protocolFeeAddress to 0, later transfers within the
sellKey and _buyKey functions actually burn the protocol fees, which is likely undesirable.

» When _setTomoSignAddress () sets_tomoSignAddress to0,all callsto_validateRecoveredAddress

will revert, which means all calls to buyKey and buyStandardKey will revert, regardless of

the subject. Only the governance address can make such a change (e.g., as a result of a
mistake), but it will cause a denial-of-service issue for all users attempting to buy keys
through those two methods.

Veridise Audit Report: Tomo V2 © 2023 Veridise Inc.

21

22

O© 00 N O U A W N =

11
12
13
14

4 Vulnerability Report

function setCustomizedFeePercent (
address curveModuleAddress,
address subjectAddress,
uint256 newProtocolFeePercent,
uint256 newSubjectFeePercent
) external override onlyGov {
if (!_curveModuleWhitelisted[curveModuleAddress])
revert Errors.CurveModuleNotWhitelisted();
ICurveModule(curveModuleAddress) .setCustomizedFeePercent(
subjectAddress,
newProtocolFeePercent,
newSubjectFeePercent

)i

Snippet 4.11: Relevant lines in setCustomizedFeePercent ().

function _setGovernance(address newGovernance) internal {
address prevGovernance = _governance;
_governance = newGovernance;

Snippet 4.12: Relevant lines in _setProtocolFeeAddress ()

» Ifthe governance accidentally calls setCustomizedFeePercent () witha zero subjectAddress
, the call will succeed even if it likely that the governance is making a mistake.

» If the governance calls setGovernance() with the zero address, that change is permanent.
All functions marked with the onlyGov modifiers (including this one) will always revert.
It is not clear whether a lack of a zero address check here is intended behavior (e.g.,
developers relinquishing control over the protocol to increase decentralization) or whether
this is a bug (e.g., governance is controlled by a DAO).

Recommendation For each location indicated above, insert code to revert if the provided
address parameter is the zero address.

Developer Response The developers added zero address checks in all of the above locations.

© 2023 Veridise Inc. Veridise Audit Report: Tomo V2

O 00 N O U A W N =

N NN B B P B B P B B B B
N B © © 00 N O U1 A W N - ©

4.1 Detailed Description of Issues

4.1.10 V-TOMO2-VUL-010: Inconsistent buy/sell price query for standard curves

Severity QFg’y 61e9b22
#h4Ll Logic Error Fixed

File(s) TomoV2.sol
Location(s) getSellPrice() and getBuyPrice()
Confirmed Fix At cfece2e

The TomoV2 contract provides functions to query the current buy and sell prices for subject
keys. In most cases, these functions call the corresponding curve module functions for the
given subject key. Both functions have a special case for when the curve module has not been
initialized for the given subject. The getSellPrice() function returns 6 when the curve module
has not been initialized, but the getBuyPrice() function queries the STANDARD_CURVE_ADDRESS in
this case.

function getBuyPrice(
address subject,
uint256 amount
) external view returns (uint256) {
address curve = _keySubjectInfo[subject].curveModule == address(0)
? STANDARD_CURVE_ADDRESS
: _keySubjectInfo[subject].curveModule;

return ICurveModule(curve).getBuyPrice(subject, amount);

-

function getSellPrice(
address subject,
uint256 amount
) external view returns (uint256) {

if (_keySubjectInfo[subject].curveModule == address(0)) return 0O;
return
ICurveModule(_keySubjectInfo[subject].curveModule).getSellPrice(
subject,
amount
);
}

Snippet 4.13: Relevant functions from TomoV2.so0l

Furthermore, getBuyPrice() will return the wrong price for uninitialized standard curve mod-
ules. When a standard curve module is initialized in buyStandardKey (), the StandardCurveModule
will set the supply to the number of preserved keys. However, getBuyPrice() will not perform
any automatic initialization, so the supply will remain as zero when it is queried.

Impact

» The inconsistent behavior between getBuyPrice() and getSellPrice() can be confusing
to users.

» On uninitialized curve modules, getBuyPrice() will return a lower price than would be
required in buyStandardKey ().

Veridise Audit Report: Tomo V2 © 2023 Veridise Inc.

23

24

4 Vulnerability Report

function getBuyPrice(
address subject,
uint256 amount
) external view override returns (uint256) {
return
_getPrice(
_dataStandardCurveBySubjectAddress[subject].supply,
amount
);
}

Snippet 4.14: Definition of StandardCurveModule.getBuyPrice(). The supply will be zero for an
uninitialized standard curve module.

function initializeCurveModule(
address subjectAddress,
bytes calldata

) external override onlyTomoV2 returns (uint256) {
_dataStandardCurveBySubjectAddress[subjectAddress].supply = _preserved;
return _preserved;

}

Snippet 4.15: Definition of StandardCurveModule.initializeCurveModule()

Recommendation Any of these options would make the interface clear and consistent:

» Both functions default to STANDARD_CURVE_ADDRESS when the curve module is not initialized,
and logic is added to correctly handle the preserved keys.

» Both functions return @ when the curve module is not initialized. Instead, add separate
functions to query the standard curve module buy/sell price.

Developer Response The developers changed getSellPrice() to be similar to getBuyPrice
(). The getBuyPrice() problem has been fixed with the changes made by the developer for
V-TOMO2-VUL-001.

© 2023 Veridise Inc. Veridise Audit Report: Tomo V2

4.1 Detailed Description of Issues

4.1.11 V-TOMO2-VUL-011: Use of magic constant instead of BPS_MAX

Warning 61e9b22
Maintainability Fixed
See description

See description
Sact7cs

The TomoV2 file defines a constant BPS_MAX with value 10000 used to represent 100%. However,
there are multiple locations in the code that use a hardcoded 10000 literal instead of BPS_MAX.
1 | if (newReferralRatio > 10000) revert Errors.ReferralRatioTooHigh();

Snippet 4.16: Location in TomoV2.setReferralRatio()

1|if (referralRatio >= 10000) revert Errors.ReferralRatioTooHigh();

Snippet 4.17: Location in ConstCurveModule. initializeCurveModule(). The same issue occurs
in LinearCurveModule and QuadraticCurveModule.

Impact If the developers update BPS_MAX in the future (e.g., to increase the number of decimals),
they may forget to update all of the locations that use the 100% value.

Recommendation Replace all occurrences of 10000 with BPS_MAX, and then move the definition
of BPS_MAX to another file so that it can be included in all places that use BPS_MAX.

Developer Response The developers fixed the hardcoded BPS_MAX in TomoV2. However, they
did not fix the curve modules for the following reason:

All curve modules will not change or upgrade.

Veridise Audit Report: Tomo V2 © 2023 Veridise Inc.

26

© 00 N O U1 A W N

© 00 N O U A W N =

=
(o)

4 Vulnerability Report

4.1.12 V-TOMO2-VUL-012: Inconsistent checks of referralRatio

Syl Warning 61e9b22
§8J 8 Maintainability Fixed

File(s) TomoV2.sol
Location(s) setReferralRatio()
Confirmed Fix At cfece2e

The TomoV2.setReferralRatio() method can be used to change a subject’s curve module referral
reward percentage (called the "referral ratio"), which is required to be less than or equal to
100% (10000 in the code). All curve module implementations (except for StandardCurveModule)
may also allow the initial referral ratio to be set during initialization, but with the additional
requirement that the ratio is strictly less than 100%. These two behaviors are inconsistent.

function setReferralRatio(uint256 newReferralRatio) external override {
if (_keySubjectInfo[msg.sender].curveModule == address(0))
revert Errors.SubjectNotInitialized();
if (newReferralRatio > 10000) revert Errors.ReferralRatioTooHigh();
ICurveModule(_keySubjectInfo[msg.sender].curveModule).setReferralRatio(
msg.sender,
newReferralRatio
);
}

Snippet 4.18: Definition of TomoV2.setReferralRatio()

function initializeCurveModule(
address subjectAddress,
bytes calldata data
) external override onlyTomoV2 returns (uint256) {
(uint256 price, uint256 timePeriod, uint256 referralRatio) = abi.decode(
data,
(uint256, uint256, uint256)
);
if (referralRatio >= 10000) revert Errors.ReferralRatioTooHigh();

Snippet 4.19: Relevant code from ConstCurveModule.initializeCurveModule().
LinearCurveModule and QuadraticCurveModule have similar code snippets.

Impact This issue is indicative of a bug. Using TomoV2.setReferralRatio allows a higher
referral ratio to be set (e.g., 100% is allowed) than is allowed when initializing the curve modules
(e.g., 100% is not allowed). However, it is unlikely that a subject will set a referral ratio of 100%,
as all subject fees from a buy key operation will be sent to the referral address (if provided).

Recommendation Clarify the intended behavior of a referral ratio of exactly 100% and make
the check consistent in all locations.

© 2023 Veridise Inc. Veridise Audit Report: Tomo V2

4.1 Detailed Description of Issues 27

Developer Response The developers stated that the intended behavior is to allow a referral
ratio of 100%:

Referrer get benefit from the owner’s subject fee. so we assume subject owner can
give all subject fee to referrer.

Veridise Audit Report: Tomo V2 © 2023 Veridise Inc.

28

A W N =

4 Vulnerability Report

4.1.13 V-TOMO2-VUL-013: Potentially unimplemented functionality

Warning 61esb22
Logie Error Fixed
See description

See description
Sact7cs

Several files contain code that performs unnecessary storage writes, either because the location
written to is never read from or the write is guaranteed to make no change to existing data.

» The ConstCurveData struct defined in ConstCurveModule. sol has a field named timePeriod
that is written to storage in ConstCurveModule.initializeCurveModule(), but there is no
function that reads this field.

struct ConstCurveData {
uint256 price;
uint256 timePeriod;
uint256 supply;
uint256 referralRatio;

—

Snippet 4.20: Definition of ConstCurveData

» The _customizedFeePercent mapping defined in the StandardCurveModule contract is
written to by setCustomizedFeePercent (), but there is no location that reads this data.
Note that the other curve module contracts will store customized fee percent values to be
used in processBuy ().

contract StandardCurveModule is ModuleBase, ICurveModule {
mapping(address => StandardCurveData)
internal _dataStandardCurveBySubjectAddress;
mapping(address => CustomizedFeePercent) internal _customizedFeePercent;

Snippet 4.21: Relevant lines in StandardCurveModule

» Within the sellKey function of the TomoV2 contract, there is a delete statement for a
memory location wrapped inside a condition that checks if that location has value o.
However, the main effect of delete is to set the memory location to its default value, in
this case @ which means the code has no effect.

1|if (_keySubjectInfo[vars.keySubject].balanceOf[msg.sender] == 0)
2

delete _keySubjectInfo[vars.keySubject].balanceOf[msg.sender];

Snippet 4.22: Relevant lines in TomoV2.sellKey ()

Impact The presence of dead code may indicate a mistake in the implementation or unimple-

mented functionality that is important to the protocol. Another side effect is that unused writes
waste gas.

© 2023 Veridise Inc. Veridise Audit Report: Tomo V2

4.1 Detailed Description of Issues

Recommendation Ensure that unused writes and/or dead code do not exist because of a typo,
bug, or missing implementation. Otherwise, remove the unused writes and/or dead code.

Developer Response The developers added code to StandardCurveModule to handle cus-
tomized fee percentages, added a method to ConstCurveModule to retrieve the timePeriod field,
and removed the dead code in TomoV2.sellKey().

Veridise Audit Report: Tomo V2 © 2023 Veridise Inc.

29

30 4 Vulnerability Report

4.1.14 V-TOMO2-VUL-014: processTransfer() can be pure/view

Info foef746
Maintainability Fixed
ICurveModule.sol
processTransfer()
Saci7cs

The processTransfer() function is declared in the ICurveModule interface and defined within
each contract that implements this interface. Every implementation uses the pure keyword on
the function because they do not read or modify the contract state.

1|function processTransfer() external returns (bool);

Snippet 4.23: Declaration of processTransfer() in ICurveModule

Recommendation The declaration in ICurveModule can be marked with either the pure or view
keyword.

Developer Response The developers added the pure keyword to the declaration of processTransfer
() in ICurveModule.

© 2023 Veridise Inc. Veridise Audit Report: Tomo V2

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	V-TOMO2-VUL-001: Subject owner can drain protocol funds by selling preserved keys
	V-TOMO2-VUL-002: Centralization risks
	V-TOMO2-VUL-003: Total fee percentages can exceed 100%
	V-TOMO2-VUL-004: Customized fee percentages not validated
	V-TOMO2-VUL-005: Potential curve initialization DoS in buyStandardKey
	V-TOMO2-VUL-006: Behavior of initializeSubject is inconsistent with documentation
	V-TOMO2-VUL-007: initializeSubject methods do not add preserved keys to supply
	V-TOMO2-VUL-008: Replay attack risk in buyKey, buyStandardKey()
	V-TOMO2-VUL-009: Missing zero address checks
	V-TOMO2-VUL-010: Inconsistent buy/sell price query for standard curves
	V-TOMO2-VUL-011: Use of magic constant instead of BPS_MAX
	V-TOMO2-VUL-012: Inconsistent checks of referralRatio
	V-TOMO2-VUL-013: Potentially unimplemented functionality
	V-TOMO2-VUL-014: processTransfer() can be pure/view

