
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

ETH Leverage Vault

Veridise Inc.
December 3, 2023

▶ Prepared For:

TIE Finance
https://www.tie-finance.io/

▶ Prepared By:

Jon Stephens
Alberto Gonzalez

▶ Contact Us: contact@veridise.com

▶ Version History:

Nov. 7, 2023 V1

© 2023 Veridise Inc. All Rights Reserved.

https://www.tie-finance.io/
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 5

4 Vulnerability Report 7
4.1 Detailed Description of Issues . 8

4.1.1 V-TLA-VUL-001: Vault deposits through curve swaps can get DoSed . . 8
4.1.2 V-TLA-VUL-002: Incorrect computation of shares to mint 9
4.1.3 V-TLA-VUL-003: User may be Credited with Left-Over Funds 11
4.1.4 V-TLA-VUL-004: TransferHelper can hide transfer problems 12
4.1.5 V-TLA-VUL-005: Use Payable and TransferFrom rather than Transfer then

Call . 14
4.1.6 V-TLA-VUL-006: Funds Risk AAVE Liquidation 15
4.1.7 V-TLA-VUL-007: Withdraw Read Only Reentrancy 16
4.1.8 V-TLA-VUL-008: Collect the fee before changing the fee rate 17
4.1.9 V-TLA-VUL-009: Missing slippage protection for users 18
4.1.10 V-TLA-VUL-010: Missing slippage protection in the withdraw function of

the ETHStrategy contract . 19
4.1.11 V-TLA-VUL-011: Potential Invalid use of tx.origin 20
4.1.12 V-TLA-VUL-012: Use Token Decimals Instead of Hardcoding 21
4.1.13 V-TLA-VUL-013: Inconsistent Deposit Logic 22
4.1.14 V-TLA-VUL-014: Validate Function Arguments 23
4.1.15 V-TLA-VUL-015: Validate Withdraw Receiver 24
4.1.16 V-TLA-VUL-016: Centralization Risk . 25
4.1.17 V-TLA-VUL-017: Unused Whitelist Contract 26
4.1.18 V-TLA-VUL-018: Unused Contract Variable 27
4.1.19 V-TLA-VUL-019: Unused Internal Function 28
4.1.20 V-TLA-VUL-020: Use WETH deposit instead of fallback 29
4.1.21 V-TLA-VUL-021: Unused contract variables in ETHStrategy 30
4.1.22 V-TLA-VUL-022: Unused Inherits . 31
4.1.23 V-TLA-VUL-023: Incorrect price returned due to lack of decimals repre-

sentation . 32

Veridise Audit Report: ETH Leverage Vault © 2023 Veridise Inc.

Executive Summary 1
From Nov. 1, 2023 to Nov. 6, 2023, TIE Finance engaged Veridise to review the security of
their ETH Leverage Vault. The review covered the Solidity code associated with the vault
contract and the investment logic. Veridise conducted the assessment over 8 person-days, with
2 engineers reviewing code over 4 days on commit d2d7f10. The auditing strategy involved a
tool-assisted analysis of the source code performed by Veridise engineers as well as extensive
manual auditing.

Code assessment. The ETH Leverage Vault developers provided the source code of the project
for review. To facilitate the Veridise auditors’ understanding of the code, the developers provided
high-level documentation of the project and an Ethereum address where they deployed the
current version of their code for testing purposes. The source code contained some in-line
documentation to describe the intended behavior of the protocol.

The Veridise auditors made use of the test deployment provided by the developers to augment
their understanding of the source code. While this deployment was very helpful in demonstrating
some of the logic as well as the intended initialization of the contract, the Veridise auditors did
note that not all major user-flows were tested here. At the time of the audit, for example, the
only transactions sent to this address were deposits and no funds were withdrawn.

Summary of issues detected. The audit uncovered 23 issues, 3 of which are assessed to be
of high or critical severity by the Veridise auditors. Specifically, V-TLA-VUL-001 identified a
potential Denial of Service attack that could prevent funds from being deposited or withdrawn,
V-TLA-VUL-002 identified inconsistent minting logic that gave users too many shares, and
V-TLA-VUL-003 identified the potential for users to be credited with funds they did not deposit.
The Veridise auditors also identified several medium-severity issues, including V-TLA-VUL-007
which identifies a read-only reentrancy that allows share values to be incorrect, V-TLA-VUL-004
which identifies potential issues when transferring tokens and V-TLA-VUL-008 which could
charge users too many fees. In addition, the Veridise auditors identified several lower-severity
issues.

Recommendations. After auditing the protocol, the auditors had a few suggestions to improve
the ETH Leverage Vault. As mentioned previously, the project was deployed on mainnet with
the developers and tested by interacting with that contract. However, it seemed that they only
tested the deposit logic of this contract and not the withdraw logic. We would advise that
the developers test all major user-flows and also consider making use of an off-chain testing
framework like hardhat, truffle or foundry. By doing so, they could model scenarios that might
occur in the future such as high AAVE interest rates.

In addition, the Veridise auditors would recommend that the developers closely track the flow
of funds throughout the protocol. Currently, several locations make use of a contract’s entire
ETH or token balance, which could have unintended consequences as discussed in some of the

Veridise Audit Report: ETH Leverage Vault © 2023 Veridise Inc.

2 1 Executive Summary

issues in this report. To do so, the developers should make use of payable functions for ETH
and approvals along with transferFrom for ERC20 tokens so that they can track explicitly how
many funds are available and expected.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

© 2023 Veridise Inc. Veridise Audit Report: ETH Leverage Vault

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
ETH Leverage Vault d2d7f10 Solidity Ethereum

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
Nov. 1 - Nov. 6, 2023 Manual & Tools 2 8 person-days

Table 2.3: Vulnerability Summary.

Name Number Resolved
Critical-Severity Issues 1 1
High-Severity Issues 2 2
Medium-Severity Issues 7 7
Low-Severity Issues 6 6
Warning-Severity Issues 7 7
Informational-Severity Issues 0 0
TOTAL 23 23

Table 2.4: Category Breakdown.

Name Number
Logic Error 6
Dead Code 6
Data Validation 3
Maintainability 2
Liquidation Risk 1
Reentrancy 1
Phishing 1
Centralization 1
Locked Funds 1
Usability Issue 1

Veridise Audit Report: ETH Leverage Vault © 2023 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of ETH Leverage Vault’s smart
contracts. In our audit, we sought to answer the following questions:

▶ Can funds be locked in a contract?
▶ Are users appropriately compensated when depositing funds?
▶ Can users steal funds from the protocol?
▶ Will shares be appropriately converted to assets on a withdraw?
▶ Are appropriate protections in place to prevent a liquidation on AAVE?
▶ Will the protocol report the correct share value?
▶ Are users appropriately protected from slippage?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a combination of
human experts and automated program analysis & testing tools. In particular, we conducted
our audit with the aid of the following techniques:

▶ Static analysis. To identify potential common vulnerabilities, we leveraged our custom
smart contract analysis tool Vanguard. These tools are designed to find instances of
common smart contract vulnerabilities, such as reentrancy and uninitialized variables.

Scope. The scope of this audit is limited to the contracts folder of the source code provided by
the ETH Leverage Vault developers, which contains the vault, investment strategy and contracts
to interact with Balancer, Curve and AAVE.

Methodology. The Veridise auditors inspected the high-level documentation provided by the
developers and inspected the on-chain test deployment of the protocol located at the following
address: 0x3D2c816018BA19b436EE3c2AEf11214fC9Dbb38B. They then began a manual audit of the
code assisted by static analyzers.

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

In this case, we judge the likelihood of a vulnerability as follows in Table 3.2:

In addition, we judge the impact of a vulnerability as follows in Table 3.3:

Veridise Audit Report: ETH Leverage Vault © 2023 Veridise Inc.

6 3 Audit Goals and Scope

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

Table 3.2: Likelihood Breakdown

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

Table 3.3: Impact Breakdown

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2023 Veridise Inc. Veridise Audit Report: ETH Leverage Vault

Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowledged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-TLA-VUL-001 Vault deposits through curve swaps can get DoSed Critical Fixed
V-TLA-VUL-002 Incorrect computation of shares to mint High Fixed
V-TLA-VUL-003 User may be Credited with Left-Over Funds High Fixed
V-TLA-VUL-004 TransferHelper can hide transfer problems Medium Fixed
V-TLA-VUL-005 Use Payable and TransferFrom rather than Transf. . . Medium Fixed
V-TLA-VUL-006 Funds Risk AAVE Liquidation Medium Intended Behavior
V-TLA-VUL-007 Withdraw Read Only Reentrancy Medium Fixed
V-TLA-VUL-008 Collect the fee before changing the fee rate Medium Fixed
V-TLA-VUL-009 Missing slippage protection for users Medium Fixed
V-TLA-VUL-010 Missing slippage protection in the withdraw fun. . . Medium Fixed
V-TLA-VUL-011 Potential Invalid use of tx.origin Low Fixed
V-TLA-VUL-012 Use Token Decimals Instead of Hardcoding Low Fixed
V-TLA-VUL-013 Inconsistent Deposit Logic Low Invalid
V-TLA-VUL-014 Validate Function Arguments Low Fixed
V-TLA-VUL-015 Validate Withdraw Receiver Low Fixed
V-TLA-VUL-016 Centralization Risk Low Acknowledged
V-TLA-VUL-017 Unused Whitelist Contract Warning Fixed
V-TLA-VUL-018 Unused Contract Variable Warning Fixed
V-TLA-VUL-019 Unused Internal Function Warning Fixed
V-TLA-VUL-020 Use WETH deposit instead of fallback Warning Fixed
V-TLA-VUL-021 Unused contract variables in ETHStrategy Warning Fixed
V-TLA-VUL-022 Unused Inherits Warning Fixed
V-TLA-VUL-023 Incorrect price returned due to lack of decimal. . . Warning Fixed

Veridise Audit Report: ETH Leverage Vault © 2023 Veridise Inc.

8 4 Vulnerability Report

4.1 Detailed Description of Issues

4.1.1 V-TLA-VUL-001: Vault deposits through curve swaps can get DoSed

Severity Critical Commit d2d7f10
Type Logic Error Status Fixed

File(s) Exchange.sol and ExchangePolygon.sol

Location(s) swapStETH()
Confirmed Fix At

The swapSteth function contains logic to swap ether for stETH in a CurvePool, the logic looks
like:

1 else {
2 require(curveOut>=minAmount,"ETH_STETH_SLIPPAGE");
3 ICurve(curvePool).exchange{value: address(this).balance}(
4 0,
5 1,
6 amount,
7 minAmount
8);
9 }

Snippet 4.1: Logic to swap ether for stETH in the swapSteth function from the Exchange contract.

As we can see, the logic sends to the pool all its ether balance, while passing amount as an
actual parameter for the dx argument. The issue is that is possible for address(this).balance to
become greater than amount. This can happen, for example by a malicious user sending 1 wei to
the exchange contract.

The Curve Pool exchange logic has the following lines:

1 if _coin == 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE:
2 assert msg.value == dx

Snippet 4.2: Code snippet from the exchange function in the Curve eth-stETH pool contract.

Reference:https://etherscan.io/address/0xc5424b857f758e906013f3555dad202e4bdb4567#
code

LoC: 430

Impact By sending 1 wei to the exchange contract, an attacker can brick the swap functionality
of the contract.

The same issue is present in the ExchangePolygon contract.

Reference:https://polygonscan.com/address/0x5bca7ddf1bcccb2ee8e46c56bfc9d3cdc77262bc#
code

Recommendation Instead of sending address(this).balance ether, send amount.

© 2023 Veridise Inc. Veridise Audit Report: ETH Leverage Vault

https://etherscan.io/address/0xc5424b857f758e906013f3555dad202e4bdb4567#code
https://etherscan.io/address/0xc5424b857f758e906013f3555dad202e4bdb4567#code
https://polygonscan.com/address/0x5bca7ddf1bcccb2ee8e46c56bfc9d3cdc77262bc#code
https://polygonscan.com/address/0x5bca7ddf1bcccb2ee8e46c56bfc9d3cdc77262bc#code

4.1 Detailed Description of Issues 9

4.1.2 V-TLA-VUL-002: Incorrect computation of shares to mint

Severity High Commit d2d7f10
Type Logic Error Status Fixed

File(s) Vault.sol

Location(s) deposit()
Confirmed Fix At

The shares to mint are computed as follows:

1 shares = totalSupply() == 0 || totalDeposit == 0
2 ? assets.mulDiv(
3 10 ** decimals(),
4 10 ** asset.decimals(),
5 Math.Rounding.Down
6)
7 : newDeposit.mulDiv(
8 totalSupply(),
9 totalDeposit,

10 Math.Rounding.Down
11);

Snippet 4.3: Computation of shares in the deposit function from the Vault contract.

We are interested on the else branch. Here, the shares are computed using the current totalSupply
() and totalDeposit. The value of the totalDeposit variable is obtained as follows:

1 // Total Assets amount until now
2 uint256 totalDeposit = IController(controller).totalAssets();
3

4 // Calls Deposit function on controller
5 uint256 newDeposit = IController(controller).deposit(assets);

Snippet 4.4: Code snippet from the deposit function in the Vault contract.

totalDeposit is obtained before processing the user’s deposit, that means that the corresponding
assets for the fees were deducted from totalAssets.

Returning to the shares computation, we can see the inconsistency that totalSupply() takes into
consideration the shares minted to the treasury when collecting the fees, whereas totalDeposit
considers this share not minted yet.

Impact Since totalSupply() is greater than it should be in relation to totalDeposit, then the
logic will mint more shares to the user than it should. Lets see a numeric example:

▶ TotalShares = 99

▶ TotalAssets = 99 + 1(reward)

▶ fee = 50%

When a user calls deposit, depositing 10 of assets:

▶ newDeposit = 100 - 1 * 0.5 = 99.5

Veridise Audit Report: ETH Leverage Vault © 2023 Veridise Inc.

10 4 Vulnerability Report

The protocol will collect the fee of 0.5 a mint a share for it. The amount of shares minted are:

▶ shareFee = (0.5 * 99) / (100 - 0.5) = 0.4974 shares

When the user shares are computed, they are with the following values:

▶ userShares = (10 assets * 99.4974 shares) / 99.5 assets = 10 shares

The user deposited 10 assets and received 10 shares which is wrong, the 10 shares are worth:

▶ totalAssets = 110 assets

▶ totalShares = 109.4974 shares

▶ assetsWorth = 10 shares * 110 assets / 109.4974 shares = 10.047 assets

The 10 shares are worth 10.047 assets, which is 4.7% more of what they should be worth (10
assets).

Recommendation Compute the shares to mint using the totalSupply before minting the share
fee for the treasury.

© 2023 Veridise Inc. Veridise Audit Report: ETH Leverage Vault

4.1 Detailed Description of Issues 11

4.1.3 V-TLA-VUL-003: User may be Credited with Left-Over Funds

Severity High Commit d2d7f10
Type Logic Error Status Fixed

File(s) ETHStrategy.sol

Location(s) loanFallback, _deposit, withdraw, raiseLTV, reduceLTV
Confirmed Fix At

Instead of calculating or returning the expected number of funds, the protocol commonly uses
its entire token balance, as shown in the example below. This approach can lead to funds being
misappropriated, as the contract’s starting balance is not taken into account when calculating a
user’s credit. Consequently, if the contract has a non-zero balance at the start, it will be credited
to the next user who utilizes the protocol. Such a non-zero starting balance could occur if a
previous transaction did not make use of all available funds or if funds are accidentally sent to
the contract.

1 function withdraw(
2 uint256 _amount
3) external override onlyController collectFee returns (uint256) {
4 ...
5

6 uint256 toSend = address(this).balance;
7 TransferHelper.safeTransferETH(controller, toSend);
8

9 return toSend;
10 }

Snippet 4.5: Location in withdraw where the contract’s entire balance is transferred

Additionally, several contracts declare a receive function that allows any user to transfer native
tokens to the contract, allowing users to be credited for others’ mistakes.

Impact If funds are left-over in the ETHStrategy contract, they could allow a user to be
improperly credited for those funds. Additionally, due to both this pattern and the one described
in V-TLA-VUL-005, it can be difficult to follow the flow of funds through the protocol.

Recommendation Explicitly track the expected amount of funds that a user should receive
rather than relying on token balances. In addition, since it is known where most contracts
should receive funds, restrict the addresses that may invoke receive (or if payable functions are
used as suggested by V-TLA-VUL-005 remove receive altogether)

Veridise Audit Report: ETH Leverage Vault © 2023 Veridise Inc.

12 4 Vulnerability Report

4.1.4 V-TLA-VUL-004: TransferHelper can hide transfer problems

Severity Medium Commit d2d7f10
Type Logic Error Status Fixed

File(s) TransferHelper.sol

Location(s)safeApprove, safeTransfer, safeTransferToken, safeTransferFrom, safeTransferETH
Confirmed Fix At

The AAVE strategy uses the TransferHelper library to transfer ERC20 and ETH tokens between
addresses similar to OpenZeppelin’s SafeERC20 library. While it is intended to safely send
tokens between users, several features that may hide problems when sending funds.

The first potential issue, is that if token is the null address, safeTransfer will instead send native
tokens. Since the protocol commonly interacts with a mixture of native and ERC20 tokens,
however, a configuration error could result in the incorrect token being sent to a destination.

1 function safeTransfer(
2 address token,
3 address to,
4 uint256 value
5) internal {
6 if (address(token) == address(0)) {
7 safeTransferETH(to, value);
8 } else {
9 safeTransferToken(address(token), to, value);

10 }
11 }

Snippet 4.6: The safeTransfer function which sends native tokens if the token is the null
address.

The second potential issue is that the library assumes that token refers to a contract. As shown
below, the safeTransferToken (along with safeApprove and safeTransferFrom) use a low-level
call to invoke the desired function. In cases where token refers to an EOA rather than a contract,
though, low-level calls return with success = true and no calldata. This result will be accepted
by the following require, and so the caller will continue as if was successful.

1 function safeTransferToken(
2 address token,
3 address to,
4 uint256 value
5) internal {
6 // bytes4(keccak256(bytes(’transfer(address,uint256)’)));
7 (bool success, bytes memory data) = token.call(abi.encodeWithSelector(0xa9059cbb,

to, value));
8 require(success && (data.length == 0 || abi.decode(data, (bool))), "

TransferHelper: TRANSFER_FAILED");
9 }

Snippet 4.7: The definition of the safeTransferToken function.

© 2023 Veridise Inc. Veridise Audit Report: ETH Leverage Vault

4.1 Detailed Description of Issues 13

Impact As discussed above, in some cases this can result in the wrong token being sent to a
destination and in other cases it can cause the protocol to believe tokens were transferred even
though they weren’t.

Recommendation Ideally use OpenZeppelin’s Address and SafeERC20 libraries which already
have the appropriate validation. Otherwise, since in all cases the protocol knows if it should
transfer ETH or ERC20 tokens, remove the null address case in safeTransfer so that ETH and
ERC20 transfers are explicit. Additionally require that token is a contract (i.e. has a non-zero
code size) in safeTransferToken, safeTransferFrom and safeApprove.

Veridise Audit Report: ETH Leverage Vault © 2023 Veridise Inc.

14 4 Vulnerability Report

4.1.5 V-TLA-VUL-005: Use Payable and TransferFrom rather than Transfer then Call

Severity Medium Commit d2d7f10
Type Maintainability Status Fixed

File(s) Vault.sol, Controller.sol, ETHStrategy.sol, Exchange.sol,
ExchangePolygon.sol

Location(s) N/A
Confirmed Fix At

Throughout the protocol, the developers commonly transfer funds to a contract’s address, then
invoke a function that will process those funds. Using this pattern, shown below, rather than
making use of payable functions and ERC20.transferFrom is more error prone as one either must
perform additional validation to ensure the correct number of funds is present or must make
use of the contract’s entire token balance, both of which is done by the protocol.

1 function _deposit(uint256 _amount) internal returns (uint256 depositAmt) {
2 // Transfer asset to substrategy
3 TransferHelper.safeTransferETH(subStrategy,_amount);
4

5 // Calls deposit function on SubStrategy
6 depositAmt = ISubStrategy(subStrategy).deposit(_amount);
7 }

Snippet 4.8: Definition of _deposit which uses the transfer then call strategy

Impact This pattern can cause users to be credited too few or too many funds (similar to
V-TLA-VUL-003).

Recommendation Make user of payable and transferFrom rather than transfer-then-call to
ensure funds are properly tracked.

© 2023 Veridise Inc. Veridise Audit Report: ETH Leverage Vault

4.1 Detailed Description of Issues 15

4.1.6 V-TLA-VUL-006: Funds Risk AAVE Liquidation

Severity Medium Commit d2d7f10
Type Liquidation Risk Status Intended Behavior

File(s) ETHStrategy.sol

Location(s) N/A
Confirmed Fix At

When users invest their funds with the AAVE investment strategy, the strategy will supplement
the funds with a variable rate ETH loan from AAVE, swap all the ETH for stETH (or wstETH)
and finally provide the stETH to AAVE as collateral. This will therefore generate yields of (stETH
Yield) + (AAVE Supply Interest) - (WETH Loan Interest) as long as (WETH Loan Interest)

is less than (stETH Yield) + (AAVE Supply Interest). Since the interest rate increases with the
utilization, however, the WETH Loan the strategy could lose money and the value of the WETH
loan could exceed the value of the collateral, leading to liquidation. Currently the only thing
done to protect against this eventuality is allow the owner to rebalance the loan back to the
target non-zero LTV since funds will remain in AAVE between user deposits and withdraws. In
cases where the interest rate is high, however, this will stall the liquidation but in these cases it
would be useful to reduce the loan value to zero.

Impact If the AAVE loan is liquidated, the stETH collateral will be lost. Since all funds
borrowed from AAVE are re-invested back into AAVE as stETH, this would effectively cause all
funds to be lost.

Recommendation Consider including a mechanism to reduce the AAVE loan to zero so that
high borrow interest rates can be avoided. Also, the current mechanism requires that the admin
monitor the borrow interest rates. Consider allowing users to do so as well if the interest rate
exceeds some threshold or if the health factor drops below some threshold.

Developer Response Our plan to avoid liquidation on AAVE is as follows:

1. Monitor the vault’s liquidation risk to avoid borrowing too many funds. Additionally, we
will keep a safety buffer to reduce the liquidation risk.

2. If there is an extended period of high borrowing interest rates that exceeds the interest
received from stETH, we will adjust the MLR to repay a portion of the loan. In cases
where the rate is extremely high, we will adjust this value so that our loan is very small.

Veridise Audit Report: ETH Leverage Vault © 2023 Veridise Inc.

16 4 Vulnerability Report

4.1.7 V-TLA-VUL-007: Withdraw Read Only Reentrancy

Severity Medium Commit d2d7f10
Type Reentrancy Status Fixed

File(s) Vault.sol

Location(s) withdraw
Confirmed Fix At

Upon a withdraw, the protocol will remove a user’s funds from AAVE, transfer them to the
user and then burn the user’s tokens. A low level call is used to transfer these funds to the user,
though, which will allow them to perform arbitrary actions before their tokens are burnt. While
the ethVault contract does have reentrancy guards on available state-modifying entry-points,
users may still re-enter through view functions.

1 function _withdraw(
2 uint256 assets,
3 uint256 shares,
4 address receiver
5) internal {
6 require(shares != 0, "SHARES_TOO_LOW");
7 // Calls Withdraw function on controller
8 (uint256 withdrawn, uint256 fee) = IController(controller).withdraw(
9 assets,

10 receiver
11);
12 require(withdrawn > 0, "INVALID_WITHDRAWN_SHARES");
13

14 // Burn shares amount
15 _burn(msg.sender, shares);
16

17 ...
18 }

Snippet 4.9: Definition of the _withdraw function which transfers control to receiver before
burning

Impact If a user were to call assetsPerShare, convertToShares or convertToAssets, the reported
value would not accurately reflect the state of the protocol because the assets were reduced
while the shares have not been. Therefore, if a pricing oracle for the secondary market used
these values, it would allow someone to buy shares at a discount.

Recommendation Burn the shares before withdrawing the funds so that the transfer occurs at
the end of the withdraw request.

© 2023 Veridise Inc. Veridise Audit Report: ETH Leverage Vault

4.1 Detailed Description of Issues 17

4.1.8 V-TLA-VUL-008: Collect the fee before changing the fee rate

Severity Medium Commit d2d7f10
Type Logic Error Status Fixed

File(s) ETHStrategy.sol

Location(s) setFeeRate()
Confirmed Fix At

The ETHStrategy contract collects fees periodically via the modifier collectFee, which internally
computes the fee to take for the treasury using the function _calculateFee.

The fee is computed as follows:

1 uint256 stFee = (currentAssets-lastTotal) * feeRate / magnifier;

Snippet 4.10: Computation of the fee in the _calculateFee function from the ETHStrategy

contract.

Impact In the current code, the logic on the setFeeRate function will change the value of
feeRate without collecting the pending fees. This will cause the contract to either get more or
less fees of what it should.

Recommendation Collect the pending fees before changing the feeRate variable.

Veridise Audit Report: ETH Leverage Vault © 2023 Veridise Inc.

18 4 Vulnerability Report

4.1.9 V-TLA-VUL-009: Missing slippage protection for users

Severity Medium Commit d2d7f10
Type Data Validation Status Fixed

File(s) Vault.sol

Location(s) deposit() withdraw() redeem()
Confirmed Fix At

The deposit, withdraw and redeem functions in the Vault contract lack some high-level slippage
protection for users. Slippage protection allows users to specify the minimum amount of shares
to receive when depositing assets. Or to specify the minimum amount of assets to receive
when redeeming some shares.

Impact Users transactions might get confirmed in the network in a different contract state that
might not be desired for them. For example, shares may have become more expensive when
depositing, or shares may have become cheaper when withdrawing.

Recommendation Allow users to specify the minimum amount of shares they expect to get
minted or the minimum amount of assets they expect to receive when burning some shares.

© 2023 Veridise Inc. Veridise Audit Report: ETH Leverage Vault

4.1 Detailed Description of Issues 19

4.1.10 V-TLA-VUL-010: Missing slippage protection in the withdraw function of the
ETHStrategy contract

Severity Medium Commit d2d7f10
Type Data Validation Status Fixed

File(s) ETHStrategy.sol

Location(s) withdraw
Confirmed Fix At

The ETHStrategy contract has two state variables depositSlippage and withdrawSlippage. The
depositSlippage variable is used in the _deposit function as follows:

1 uint256 minOutput = (_amount * (magnifier - depositSlippage)) / magnifier;
2 require(deposited >= minOutput, "DEPOSIT_SLIPPAGE_TOO_BIG");

Snippet 4.11: Usage of depositSlippage for the computation of minOutput in the _deposit

function from the ETHStrategy contract.

It is used to compute the minimum amount of assets that must be deposited, otherwise the
code reverts.

The issue is that the withdrawSlippage variable is never used in the withdraw function or in
another part of the code.

Impact The withdraw function in the ETHStrategy contract lacks slippage protection which
might lead to loss of funds.

Recommendation Apply slippage protection on the withdraw function of the ETHStrategy

contract.

Veridise Audit Report: ETH Leverage Vault © 2023 Veridise Inc.

20 4 Vulnerability Report

4.1.11 V-TLA-VUL-011: Potential Invalid use of tx.origin

Severity Low Commit d2d7f10
Type Phishing Status Fixed

File(s) Whitelist.sol

Location(s) isWhitelisted
Confirmed Fix At

The protocol declares a Whitelist contract which allows users to query if an address is whitelisted
using the isWhitelisted function shown below. This function uses tx.origin to determine if an
address is an EOA by comparing it to the passed in address.

1 function isWhitelisted(address _addr) public view returns (bool) {
2 // if addr is EOA return true
3 if(tx.origin == _addr){
4 return true;
5 }
6 return whitelist[_addr];
7 }

Snippet 4.12: Definition of the isWhitelisted function.

Impact Depending on how this function is used (since Whitelist currently isn’t used by the
protocol), the use of tx.origin could allow phishing attacks.

Recommendation Only use isWhitelisted with msg.sender or remove the Whitelist contract
since it is unused.

© 2023 Veridise Inc. Veridise Audit Report: ETH Leverage Vault

4.1 Detailed Description of Issues 21

4.1.12 V-TLA-VUL-012: Use Token Decimals Instead of Hardcoding

Severity Low Commit d2d7f10
Type Maintainability Status Fixed

File(s) aavePoolV2.sol, aavePoolV3.sol

Location(s)convertEthTo, convertToEth, getCollateralTo, getDebtTo, getCollateralAndDebtTo
Confirmed Fix At

The aavePoolV2 and aavePoolV3 contracts provide functionality to convert the strategy’s collateral
and debt values to other currencies. When doing so, the desired token’s address is provided
along with the desired number of decimals as shown below. If the _decimals argument does not
match the token’s actual decimals value, the conversion will be incorrect.

1 function getCollateralTo(address _user,address _token,uint256 _decimals) public view
returns (uint256) {

2 (uint256 c, , , , ,) = IAave(aave).getUserAccountData(_user);
3 uint256 price = IAaveOracle(aaveOracle).getAssetPrice(_token);
4 return c*_decimals/price;
5 }

Snippet 4.13: The definition of the getCollateralTo function which takes in _token’s decimals
as _decimals

Impact If the specified _decimals value is incorrect, then the function could report an incorrect
value. As these functions are used to calculate how many funds to pay users, this could therefore
result in users being under- or over-paid.

Recommendation Since _token is known, use the token.decimals function rather than hard-
coding the decimals value.

Veridise Audit Report: ETH Leverage Vault © 2023 Veridise Inc.

22 4 Vulnerability Report

4.1.13 V-TLA-VUL-013: Inconsistent Deposit Logic

Severity Low Commit d2d7f10
Type Logic Error Status Invalid

File(s) Vault.sol

Location(s) deposit
Confirmed Fix At

When a user deposits funds, the vault will calculate the associated number of shares that the
user is owed. When calculating the first deposit (or rather when the total supply or number of
deposits is 0), the share calculation uses assets whereas in all other cases it uses newDeposit.
Notably, when totalDeposit == 0, then newDeposit == assets - fees.

1 function deposit(address receiver)
2 public payable virtual override nonReentrant unPaused
3 returns (uint256 shares)
4 {
5 ...
6 uint256 newDeposit = IController(controller).deposit(assets);
7

8 require(newDeposit > 0, "INVALID_DEPOSIT_SHARES");
9

10 // Calculate share amount to be mint
11 shares = totalSupply() == 0 || totalDeposit == 0
12 ? assets.mulDiv(
13 10 ** decimals(),
14 10 ** asset.decimals(),
15 Math.Rounding.Down
16)
17 : newDeposit.mulDiv(
18 totalSupply(),
19 totalDeposit,
20 Math.Rounding.Down
21);
22 ...
23 }

Snippet 4.14: Location in the deposit function which calculates user shares

Impact When totalSupply == 0 or totalDeposit == 0, the depositor will not be charged for
fees.

Recommendation Change assets in the first branch of the ternary operator to newDeposit.

© 2023 Veridise Inc. Veridise Audit Report: ETH Leverage Vault

4.1 Detailed Description of Issues 23

4.1.14 V-TLA-VUL-014: Validate Function Arguments

Severity Low Commit d2d7f10
Type Dead Code Status Fixed

File(s) ExchangePolygon.sol, Exchange.sol

Location(s) swapStETH, swapETH
Confirmed Fix At

The ETHLeverExchangePolygon contract attempts to maintain the same ABI as the ETHLeverExchange
contract. To match functions in EthLeverExchange, the ETHLeverExchangePolygon contract takes
token as an argument but never uses it as it assumes token is stETH. Similarly, ETHLeverExchange
uses the token argument but assumes that it is either stETH or wstETH.

1 function swapETH(address token,uint256 amount,uint256 minAmount) external override
onlyLeverSS {

2 require(
3 IERC20(stETH).balanceOf(address(this)) >= amount,
4 "INSUFFICIENT_STETH"
5);
6

7 // Approve STETH to curve
8 IERC20(stETH).approve(curvePool, 0);
9 IERC20(stETH).approve(curvePool, amount);

10 ICurve(curvePool).exchange(0, 1, amount, minAmount,true);
11

12 uint256 ethBal = address(this).balance;
13

14 // Transfer STETH to LeveraSS
15 TransferHelper.safeTransferETH(leverSS, ethBal);
16 }

Snippet 4.15: Definition of the swapETH function which doesn’t use the token argument

Impact The function may not behave as expected if a users specifies a token other than stETH.
Similarly in EthLeverExchange, these functions may not behave as intended if token is not stETH
or wstETH.

Recommendation Validate that token is stETH in ETHLeverExchangePolygon and that token is
stETH or wstETH in ETHLeverExchange.

Veridise Audit Report: ETH Leverage Vault © 2023 Veridise Inc.

24 4 Vulnerability Report

4.1.15 V-TLA-VUL-015: Validate Withdraw Receiver

Severity Low Commit d2d7f10
Type Data Validation Status Fixed

File(s) Vault.sol

Location(s) withdraw, redeem
Confirmed Fix At

When a user withdraws their funds from the AAVE investment strategy, they must specify a
recipient that will receive those funds. There is no validation performed on this value which
could allow users to accidentally lock their funds by sending them to the null address.

1 function withdraw(uint256 assets, address receiver)
2 public virtual nonReentrant unPaused returns (uint256 shares)
3 {
4 require(assets != 0, "ZERO_ASSETS");
5 require(assets <= maxWithdraw, "EXCEED_ONE_TIME_MAX_WITHDRAW");
6 // Calculate share amount to be burnt
7 shares =
8 (totalSupply() * assets) /
9 IController(controller).totalAssets();

10

11 require(shares > 0, "INVALID_WITHDRAW_SHARES");
12 require(balanceOf(msg.sender) >= shares, "EXCEED_TOTAL_DEPOSIT");
13

14 _withdraw(assets, shares, receiver);
15 }

Snippet 4.16: Definition of the withdraw function

Impact Funds could be locked if the user specifies the null address.

Recommendation Either strictly disallow receiver to be address(0) or in this case change the
receiver to be msg.sender.

© 2023 Veridise Inc. Veridise Audit Report: ETH Leverage Vault

4.1 Detailed Description of Issues 25

4.1.16 V-TLA-VUL-016: Centralization Risk

Severity Low Commit d2d7f10
Type Centralization Status Acknowledged

File(s) Vault.sol, Controller.sol, ETHStrategy.sol, Whitelist.sol

Location(s) N/A
Confirmed Fix At

The AAVE investment strategy specifies an owner address which is given special privileges
in the ethVault, ethController, Whitelist, and EthStrategy contracts. In particular the owner
can change contract addresses, value thresholds, charged fees, whitelisted addresses, collect
fees, and manipulate AAVE loans. As these are all particularly sensitive operations, we would
encourage the developers to utilize a decentralized governance or multi-sig contract as an EOA
introduces a single point of failure.

Impact If a private key were stolen, a hacker would have access to sensitive functionality that
could compromise the project. For example, a malicious owner could set contract addresses to
ones owned by the malicious actor to steal funds.

Recommendation Utilize a decentralized governance or multi-sig contract as the owner.

Developer Response We will use a multi-sig for the time being and build a DAO for community
use as the project becomes more mature.

Veridise Audit Report: ETH Leverage Vault © 2023 Veridise Inc.

26 4 Vulnerability Report

4.1.17 V-TLA-VUL-017: Unused Whitelist Contract

Severity Warning Commit d2d7f10
Type Dead Code Status Fixed

File(s) Whitelist.sol

Location(s) N/A
Confirmed Fix At

The protocol declares a Whitelist contract which allows an owner to add addresses to a whitelist
and query whether an address is in a whitelist. None of the contracts in the protocol make use
of the Whitelist contract, though.

Impact If it is intended for the protocol to only interact with whitelisted contracts, it currently
will not do so because this contract is unused.

Recommendation Either remove the Whitelist contract or make use of it in the protocol.

© 2023 Veridise Inc. Veridise Audit Report: ETH Leverage Vault

4.1 Detailed Description of Issues 27

4.1.18 V-TLA-VUL-018: Unused Contract Variable

Severity Warning Commit d2d7f10
Type Dead Code Status Fixed

File(s) Controller.sol

Location(s) N/A
Confirmed Fix At

The ethController contract declares the contract variable asset as shown below. This variable
is not set or used anywhere in the contract since the asset used by the controller is ETH.

1 contract ethController is IController, Ownable, ReentrancyGuard {
2 ...
3

4 // Asset for deposit
5 ERC20 public asset;
6

7 ...
8 }

Snippet 4.17: The variable declaration of the unused variable in ethController

Recommendation Remove the unused variable.

Veridise Audit Report: ETH Leverage Vault © 2023 Veridise Inc.

28 4 Vulnerability Report

4.1.19 V-TLA-VUL-019: Unused Internal Function

Severity Warning Commit d2d7f10
Type Dead Code Status Fixed

File(s) Controller.sol

Location(s) getBalance
Confirmed Fix At

The ethController contract declares the internal function getBalance, shown below, but never
uses it.

1 function getBalance(
2 address _asset,
3 address _account
4) internal view returns (uint256) {
5 if (address(_asset) == address(0) || address(_asset) == weth)
6 return address(_account).balance;
7 else return IERC20(_asset).balanceOf(_account);
8 }

Snippet 4.18: The definition of getBalance which is never used

Recommendation Remove the unused function.

© 2023 Veridise Inc. Veridise Audit Report: ETH Leverage Vault

4.1 Detailed Description of Issues 29

4.1.20 V-TLA-VUL-020: Use WETH deposit instead of fallback

Severity Warning Commit d2d7f10
Type Locked Funds Status Fixed

File(s) ETHStrategy.sol

Location(s) loanFallback
Confirmed Fix At

Rather than directly using native tokens, AAVE supports ETH by using the wrapped Ethereum
(WETH) token. Since the AAVE investment strategy makes use of ETH directly, rather than
WETH, it occasionally wraps ETH, by directly transferring the ETH to WETH. This method of
wrapping is more error-prone than using the deposit function though.

1 function loanFallback(
2 uint256 loanAmt,
3 uint256 feeAmt,
4 bytes calldata userData
5) external override onlyReceiver {
6 ...
7

8 if (curState == SrategyState.Deposit) {
9 ...

10 } else if (curState == SrategyState.Withdraw) {
11 ...
12

13 // Deposit WETH
14 TransferHelper.safeTransferETH(weth, (loanAmt + feeAmt));
15

16 ...
17 }
18

19 ...
20 }

Snippet 4.19: Location in loanFallback where the weth fallback is used rather than deposit

Impact If the contract is misconfigured, funds could accidentally be transferred to an undesired
address.

Recommendation Use weth.deposit to wrap tokens.

Veridise Audit Report: ETH Leverage Vault © 2023 Veridise Inc.

30 4 Vulnerability Report

4.1.21 V-TLA-VUL-021: Unused contract variables in ETHStrategy

Severity Warning Commit d2d7f10
Type Dead Code Status Fixed

File(s) ETHStrategy.sol

Location(s) N/A
Confirmed Fix At

The ETHStrategy contract declares the contract variables harvestGap and latestHarvest as shown
below. The variable latestHarvest is not set or used anywhere in the contract; the variable
harvestGap is not used anywhere in the contract.

1 contract ETHStrategy is Ownable, ISubStrategy, IETHLeverage {
2 ...
3

4 // Harvest Gap
5 uint256 public override harvestGap;
6

7 // Latest Harvest
8 uint256 public override latestHarvest;
9

10 ...
11 }

Snippet 4.20: The variable declaration of the unused variables in ETHStrategy.

Recommendation Remove the unused variables.

© 2023 Veridise Inc. Veridise Audit Report: ETH Leverage Vault

4.1 Detailed Description of Issues 31

4.1.22 V-TLA-VUL-022: Unused Inherits

Severity Warning Commit d2d7f10
Type Dead Code Status Fixed

File(s) Controller.sol, Exchange.sol, ExchangePolygon.sol

Location(s) N/A
Confirmed Fix At

The ethController, ETHLeverExchange and ETHLeverExchangePolygon contracts all inherit from
OpenZeppelin utility contracts but never use them. Specifically, ethController inherits from
ReentrancyGuardwhile ETHLeverExchange and ETHLeverExchangePolygonboth inherit from Ownable

but none of the contracts use the defined functionality.

Recommendation Remove unused inherits.

Veridise Audit Report: ETH Leverage Vault © 2023 Veridise Inc.

32 4 Vulnerability Report

4.1.23 V-TLA-VUL-023: Incorrect price returned due to lack of decimals
representation

Severity Warning Commit d2d7f10
Type Usability Issue Status Fixed

File(s) Vault.sol

Location(s) assetsPerShare()
Confirmed Fix At

The assetPerShare function of the Vault contract looks like:

1 function assetsPerShare() public view returns (uint256) {
2 return IController(controller).totalAssets() / totalSupply();
3 }

Snippet 4.21: assetsPerShare function from the Vault contract.

It just a division of totalAssets and totalSupply of shares without decimal precision.

Impact This may cause third party integrations problems due to the loss of precision. For
example:

totalAssets = 150e18

totaSupply = 100e18

The function will return an assetsPerShare of 1.

Recommendation Use a decimal precision escalation.

© 2023 Veridise Inc. Veridise Audit Report: ETH Leverage Vault

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	V-TLA-VUL-001: Vault deposits through curve swaps can get DoSed
	V-TLA-VUL-002: Incorrect computation of shares to mint
	V-TLA-VUL-003: User may be Credited with Left-Over Funds
	V-TLA-VUL-004: TransferHelper can hide transfer problems
	V-TLA-VUL-005: Use Payable and TransferFrom rather than Transfer then Call
	V-TLA-VUL-006: Funds Risk AAVE Liquidation
	V-TLA-VUL-007: Withdraw Read Only Reentrancy
	V-TLA-VUL-008: Collect the fee before changing the fee rate
	V-TLA-VUL-009: Missing slippage protection for users
	V-TLA-VUL-010: Missing slippage protection in the withdraw function of the ETHStrategy contract
	V-TLA-VUL-011: Potential Invalid use of tx.origin
	V-TLA-VUL-012: Use Token Decimals Instead of Hardcoding
	V-TLA-VUL-013: Inconsistent Deposit Logic
	V-TLA-VUL-014: Validate Function Arguments
	V-TLA-VUL-015: Validate Withdraw Receiver
	V-TLA-VUL-016: Centralization Risk
	V-TLA-VUL-017: Unused Whitelist Contract
	V-TLA-VUL-018: Unused Contract Variable
	V-TLA-VUL-019: Unused Internal Function
	V-TLA-VUL-020: Use WETH deposit instead of fallback
	V-TLA-VUL-021: Unused contract variables in ETHStrategy
	V-TLA-VUL-022: Unused Inherits
	V-TLA-VUL-023: Incorrect price returned due to lack of decimals representation

