Xferidise. Auditing Report

Hardening Blockchain Security with Formal Methods

FOR

3 GENESIS

Veridise Inc.
December 27, 2023

» Prepared For:

GenesisLRT
https://www.genesislrt.com/

» Prepared By:

Kostas Ferles

Andreea Buterchi

» Contact Us: contact@veridise.com
» Version History:

Dec. 27,2023 Initial Draft

© 2023 Veridise Inc. All Rights Reserved.

https://www.genesislrt.com/
contact@veridise.com

Contents

Contents iii
1 Executive Summary 1
2 Project Dashboard 3
3 Audit Goals and Scope 5
31 AuditGoals. e e 5
3.2 Audit Methodology & Scope o 5
3.3 Classification of Vulnerabilities 5
3.4 Detailed Descriptionof Issues 8
3.41 V-GENS-VUL-001: Reentrancy issue in distributeUnstakes 8
3.4.2 V-GENS-VUL-002: Index of historicalRatios is skipped 10
3.4.3 V-GENS-VUL-003: Field _minStakeAmountisneverset 11
3.44 V-GENS-VUL-004: No setter for EigenPodManager 12
3.4.5 V-GENS-VUL-005: Duplicate code snippet 13
3.4.6 V-GENS-VUL-006: _checkRatioRules relies on defaultinit 14
3.47 V-GENS-VUL-007: Hardcoded constant in RatioFeed 15
3.4.8 V-GENS-VUL-008: Missing modifiers 16
3.4.9 V-GENS-VUL-009: Max constants do not represent maximum values . . 17
3.410 V-GENS-VUL-010: Interaction before state update 18
3.411 V-GENS-VUL-011: Unused Imports 19
3412 V-GENS-VUL-012: Typos i i i 20
3.413 V-GENS-VUL-013: Missed opportunity for calling _getRestakerOrRevert 21
3.4.14 V-GENS-VUL-014: Field minUnstakeAmountisunused 22
4 Fuzz Testing 23
41 Methodology 23
42 PropertiesFuzzed o 23
4.3 Detailed Description of Fuzzed Specifications 24
431 V-GENS-SPEC-001: ERC20.01: transfer should revert if a user attempts to
send more funds thantheyhave 24
4.3.2 V-GENS-SPEC-002: ERC20.02: Funds should be successfully transferred
from sender to to as long as senderisnotto 25
4.3.3 V-GENS-SPEC-003: ERC20.03: approve makes appropriate state changes 26
4.3.4 V-GENS-SPEC-004: ERC20.03: transfer should not modify totalSupply,
allowances, or balances other than senderandto 27
4.3.5 V-GENS-SPEC-005: ERC20.04: transferFrom should enforce allowance
anduserbalance e 28
4.3.6 V-GENS-SPEC-006: ERC20.06: transferFrom should not modify totalSup-
ply, other allowances, or balances 29
4.3.7 V-GENS-SPEC-007: ERC20.13: burn will revert if a user attempts to burn
more than they own or more than their allowance 30
Veridise Audit Report: GenesisLRT © 2023 Veridise Inc.

4.3.8 V-GENS-SPEC-008: ERC20.14: burn will reduce the total supply and the
balance of from by the indicated amount
4.3.9 V-GENS-SPEC-009: ERC20.16: mint will increase totalSupply and a user’s
balance by the indicated amount
4.3.10 V-GENS-SPEC-010: StakingPool: Reentrancy issue in distributeUnstakes
4.3.11 V-GENS-SPEC-011: cToken: pause/ unpause can only be called by gover-
NANCE . o . v v vt e

& Executive Summary

From Dec. 20, 2023 to Dec. 22, 2023, GenesisLRT engaged Veridise to review the security of their
Liquid Restaking project. The review covered the project’s main contracts that implement the
liquid restaking logic. Veridise conducted the assessment over 6 person-days, with 2 engineers
reviewing code over 3 days from commits dd17853 - 29d5f51. The auditing strategy involved a
tool-assisted analysis of the source code performed by Veridise engineers as well as extensive
manual auditing.

Code assessment. The Liquid Restaking developers provided the source code of the Liquid
Restaking contracts for review. To facilitate the Veridise auditors’ understanding of the code, the
Liquid Restaking developers provided some short documentation in the form of a README
file and also met with our auditors to give a brief walk-through of the codebase.

The source code contained a test suite, which the Veridise auditors used to understand the
expected usage of the protocol and also understand how the protocol is expected to be
deployed.

During the audit, the GenesisLRT developers made several functional changes to the code.
This is because they fixed some orthogonal issues while they were fixing the issues discovered
by Veridise auditors and they also implemented a new minor feature. Due to this, Veridise
auditors reviewed the additional functionality in these commits as requested by GenesisLRT.
The Veridise auditors only focused their review only on the parts of the contracts mentioned by
the client during the additional review.

Summary of issues detected. The audit uncovered 14 issues, 0 of which are assessed to be
of high or critical severity by the Veridise auditors. The highest severity issue discovered by
the Veridise auditors is a medium reentrancy issue that can complicate the way of pending
unstake requests are distributed. The Veridise auditors also identified several low-severity
issues, including a contract field that was never set as well as a number of minor issues. The
Liquid Restaking developers fixed all but two issues because of reasons that are explained later
in this report.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

Veridise Audit Report: GenesisLRT © 2023 Veridise Inc.

%5 Project Dashboard

Table 2.1: Application Summary.

Platform

Liquid Restaking dd17853 - 29d551 Solidity Ethereum

Table 2.2: Engagement Summary.

Method Consultants Engaged Level of Effort

Dec. 20 - Dec. 22,2023 Manual & Tools 6 person-days

Table 2.3: Vulnerability Summary.

Critical-Severity Issues 0 0

High-Severity Issues 0 0
Medium-Severity Issues 1 1
Low-Severity Issues 2 1
Warning-Severity Issues 7 6
Informational-Severity Issues 4 4
TOTAL 14 12

Table 2.4: Category Breakdown.

Maintainability 7
Logic Error 3
Usability Issue 2
Reentrancy 1
Gas Optimization 1

Veridise Audit Report: GenesisLRT © 2023 Veridise Inc.

& Audit Goals and Scope

3.1 Audit Goals

The engagement was scoped to provide a security assessment of Liquid Restaking’s smart
contracts. In our audit, we sought to answer the following questions:

» Do the contracts implement the restaking logic correctly?
» Is the project’s ERC20 secure and properly implemented?
» Are user funds secure?

» Are there any usability issues?

» Are there any known vulnerabilities (e.g., reentrancies)?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a combination of
human experts and automated program analysis & testing tools. In particular, we conducted
our audit with the aid of the following techniques:

» Static analysis. To identify potential common vulnerabilities, we leveraged our custom
smart contract analysis tool Vanguard. These type of tools are designed to find instances
of common smart contract vulnerabilities, such as reentrancy and uninitialized variables.

» Fuzzing/Property-based Testing. We also leverage fuzz testing to determine if the protocol
may deviate from the expected behavior. To do this, we formalize the desired behavior of
parts of the protocol as [V] specifications and then use our fuzzing framework OrCa to
determine if a violation of the specification can be found.

Scope. The scope of this audit is limited to the projects/liquid-restaking/contracts (ex-
cluding the libraries sub-folder) folder of the source code provided by the Liquid Restaking
developers, which contains the smart contract implementation of the Liquid Restaking.

Methodology. Veridise auditors reviewed the reports of previous audits for Liquid Restaking,
inspected the provided tests, and read the Liquid Restaking documentation. They then began a
manual audit of the code assisted by both static analyzers and automated testing.

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

In this case, we judge the likelihood of a vulnerability as follows in Table 3.2:

In addition, we judge the impact of a vulnerability as follows in Table 3.3:

Veridise Audit Report: GenesisLRT © 2023 Veridise Inc.

3 Audit Goals and Scope

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking

Not Likely SR W RE M LW Medium
Likely [0 WAEg | Low. | Medium [N High W
Very Likely | oo Medium [g IR

Table 3.2: Likelihood Breakdown

Not Likely | A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)
Likely | - OR -

Requires a small set of users to perform an action

Very Likely | Can be easily performed by almost anyone

Table 3.3: Impact Breakdown

Somewhat Bad | Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad | -OR-

Affects a very small number of people and requires aid to fix

Affects a large number of people and requires aid to fix

Very Bad | -OR -

Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking | Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2023 Veridise Inc. Veridise Audit Report: GenesisLRT

3.3 Classification of Vulnerabilities

Table 3.4: Summary of Discovered Vulnerabilities.

V-GENS-VUL-001 Reentrancy issue in distributeUnstakes Medium Fixed
V-GENS-VUL-002 Index of historicalRatios is skipped Low Intended Behavior
V-GENS-VUL-003 Field _minStakeAmount is never set Low Fixed
V-GENS-VUL-004 No setter for EigenPodManager Warning Fixed
V-GENS-VUL-005 Duplicate code snippet Warning Fixed
V-GENS-VUL-006 _checkRatioRules relies on default init Warning Fixed
V-GENS-VUL-007 Hardcoded constant in RatioFeed Warning Fixed
V-GENS-VUL-008 Missing modifiers Warning Fixed
V-GENS-VUL-009 Max constants do not represent maximum values Warning Fixed
V-GENS-VUL-010 Interaction before state update Warning Acknowledged
V-GENS-VUL-011 Unused Imports Info Fixed
V-GENS-VUL-012 Typos Info Fixed
V-GENS-VUL-013 Missed opportunity for calling _getRestakerOrRe.. Info Fixed
V-GENS-VUL-014 Field _minUnstakeAmount is unused Info Fixed

Veridise Audit Report: GenesisLRT © 2023 Veridise Inc.

3 Audit Goals and Scope

3.4 Detailed Description of Issues

3.4.1 V-GENS-VUL-001: Reentrancy issue in distributeUnstakes

SIaelyl Medium dd17853
§84:L Reentrancy Fixed

File(s) RestakingPool.sol
Location(s) Function distributeUnstakes
Confirmed Fix At 2163855

Thereis a possible DoS attack due to reentrancy that would target the checki < _pendingUnstakes
.length in the following loop. More details below:

© 00 N O Ul B~ W N R

e el e e e N e e e
© O N o U A WN RO

» There is a reentry point in function distributeUnstakes, via the call to _sendValue, on line

248.

» Eventhough distributeUnstakes is nonReentrant, the same doesn’t hold for unstake whose

state modifying set intersects that of distributeUnstakes.

» So a malicious actor could stake via a smart contract with a fallback function that calls

unstake, which, if executed successfully, will increase the length of array _pendingUnstakes.

» The problem lies on line 258 that sets the j-th element of array unstakes whose length is

determined by the length of _pendingUnstakes at the beginning of the transaction (hence
its value could become stale). So, if the attack contract successfully unstakes through the
fallback function, line 258 could lead to an out of bounds exception because the array’s
length will be larger.

» For this attack to become successful, the attacker will need to append sufficient amount of

entries in _pendingUnstakes to ensure an out of bound index on line 258. So, the attacker
will be bounded by the amount of shares they own.

Unstake[] memory unstakes = new Unstake[](
_pendingUnstakes.length - _pendingGap // Setting array length
)i
while (
i < _pendingUnstakes.length && // Loop check

poolBalance > 0 &&
gasleft() > _distributeGasLimit

) {
bool success = _sendValue(// Reentry point
unstake_.recipient,
unstake_.amount,
true
)i
unstakes[j] = unstake_; // Possible out-of-bound index
++j;
}

Figure 3.1: Snippet from distributeUnstakes

© 2023 Veridise Inc. Veridise Audit Report: GenesisLRT

3.4 Detailed Description of Issues

Impact This might complicate the process of distributing the pending unstake requests.
However, even in the presence of such malicious contract, it should be eventually feasible to

process all pending requests because malicious actors would be bounded by the amount of
shares they own.

Recommendation There are two possible solutions to this issue:

1. Mark function unstake as nonReentrant

2. Save _pendingUnstakes.length to a temporary variable at the beginning of the function
and use that variable to perform the check in the loop condition.

Developer Response The issue was fixed by commit 2163855.

Veridise Audit Report: GenesisLRT © 2023 Veridise Inc.

10

3 Audit Goals and Scope

3.4.2 V-GENS-VUL-002: Index of historicalRatios is skipped

Low ad178s3

Logic Error Intended Behavior
RatioFeed.sol

Function updateRatio

N/A

Function updateRatio seems to be skipping an index when appending the new ratio to the

hisRatio.historicalRatios array.Inthe first snippetbelow, the updated indexis ((latestOffset

+ 1) % 8) + 1, which effectively adds two to latest0ffset. Even though the second addition
is intended to skip the first position of the array that stores latest0ffset itself, the first addition
seems unnecessary.

hisRatio.historicalRatios[((latestOffset + 1) % 8) + 1] = uint64(
newRation
);

Figure 3.2: Snippet from updateRatio

For example, consider the following calculation from averagePercentageRate that retrieves the
oldestRatio. Let’s assume we only have one day of historical ratios (i.e., latestOffset is 1), then
oldestRatio will equal to hisRatio.historicalRatios[1]. But, as mentioned above, this slot is
skipped by updateRation.

uint256 oldestRatio = hisRatio.historicalRatios|[
((latestOffset - day) % 8) + 1
1;

Figure 3.3: Snippet from averagePercentageRate

Impact The results returned by averagePercentageRate will be inaccurate.

Recommendation If the above is not the intended behavior (which is not clear from the
documentation), updateRatio should update (latestOffset % 8) + 1 instead of the current
index.

Developer Response The developers chose to ignore this recommendation as it was their
intention.

After discussing with the developers, it is still unclear what is the intended behavior of function
averagePercentageRate. However, this is a read-only function and the exposed risk is minimal
to negligible (since all contracts are upgradeable).

© 2023 Veridise Inc. Veridise Audit Report: GenesisLRT

3.4 Detailed Description of Issues

3.4.3 V-GENS-VUL-003: Field minStakeAmount is never set

il Low dd17853
#8428 Logic Error Fixed

File(s) RestakingPool.sol
Location(s) RestakingPool
Confirmed Fix At 2163855

Field _minStakeAmount, despite being used in several locations, it is never being set.

Impact Effectively, this means that the minimum stake amount will always be determined by
the current ETH/genETH ratio.

Recommendation Provide a setter function for _minStakeAmount.

Developer Response The issue was fixed by commit 2163855.

Veridise Audit Report: GenesisLRT © 2023 Veridise Inc.

11

12

3 Audit Goals and Scope

3.4.4 V-GENS-VUL-004: No setter for EigenPodManager

Warning aa17853
Usability Issue Fixed
ProtocolConfig.sol
contract ProtocolConfig
2163855

Contract ProtocolConfig does not provide a way for setting the EigenPodManager field.

Impact This might introduce usability issues if retrieving the manager from this context
becomes necessary.

Recommendation We recommend adding a setter for EigenPodManager.

Developer Response Field EigenPodManager was removed from the contract by commit
2163855.

© 2023 Veridise Inc. Veridise Audit Report: GenesisLRT

3.4 Detailed Description of Issues

3.4.5 V-GENS-VUL-005: Duplicate code snippet

Warning aa178s3
Maintainabilty Fixed
File(s) restaker/RestakerDeployer.sol

Functions deployRestaker and getRestaker

Confirmed Fix At 2163855

Expression abi.encodePacked (BEACON_PROXY_BYTECODE, abi.encode(beacon, "") is used in two
places within restaker/RestakerDeployer.sol.

Impact In future iterations of the protocol, there is the risk of one location being updated but
not the other.

Recommendation We recommend creating a global constant in the contract.

Developer Response The issue was fixed by commit 2163855.

Veridise Audit Report: GenesisLRT © 2023 Veridise Inc.

13

14 3 Audit Goals and Scope

3.4.6 V-GENS-VUL-006: checkRatioRules relies on default init

SI37S sty Warning dd17853
83408 Maintainability Fixed

File(s) RatioFeed.sol
Location(s) Function _checkRatioRules
Confirmed Fix At 2163855

Function _checkRatioRules relies on the default initialization of return variables valid and
reason (see snippet below).

1| function _checkRatioRules(

2 uint256 lastUpdated,

3 uint256 newRatio,

4 uint256 oldRatio

5|) internal view returns (bool valid, string memory reason) {

6 if (oldRatio == 0) {

7 return (valid = true, reason); // reason is default init.

8 }

9

10 if (block.timestamp - lastUpdated < 12 hours) {

11 return (valid, reason = "ratio was updated less than 12 hours ago"); // valid
is default init

12 }

13

14

Figure 3.4: Snippet from _checkRatioRules

Impact It is complicated to reason about correctness with the current version of the function.

Recommendation We recommend removing both return variables and simply return a
tuple of constants in each branch. For instance, the first return statement can be simplified to
return (true, "");

Developer Response The developers now return an enum from the function that does not
exhibit this behavior.

© 2023 Veridise Inc. Veridise Audit Report: GenesisLRT

3.4 Detailed Description of Issues

3.4.7 V-GENS-VUL-007: Hardcoded constant in RatioFeed

Warning aa17853
Maintainability Fixed
RatioFeed.sol
Function repairRatio
2163855

Function repairRatio uses a hardcoded constant to check whether the new ration exceeds a
threshold.

if (newRatio > 1el8 || newRatio == 0) {
revert RatioNotUpdated("not in range");

-

Figure 3.5: Snippet from repairRatio

Impact As the protocol involves such hardcoded constants might introduce maintainability
issues.

Recommendation Consider introducing a MAX_RATIO constant.

Developer Response The issue was fixed by commit 2163855.

Veridise Audit Report: GenesisLRT © 2023 Veridise Inc.

15

16

3 Audit Goals and Scope

3.4.8 V-GENS-VUL-008: Missing modifiers

Warning ad17853
Logic Error Fixed
File(s) RestakingPool.sol

Location(s) withdrawNonBeaconChainETHBalanceWei, recoverTokens

Confirmed Fix At 2163855

Given the context, functions withdrawNonBeaconChainETHBalanceWei and recoverTokens are
intended to be executed only by the contract’s operator. However, these two functions are not
marked with the onlyOperator modifier.

Impact Anyone would be able to withdraw non-beacon ETH or recover tokens. Even though
everything will go to the pod’s owner, it would be advisable to limit access to this function.

Recommendation Mark both functions with onlyOperator.

Developer Response The issue was fixed by commit 2163855.

© 2023 Veridise Inc. Veridise Audit Report: GenesisLRT

3.4 Detailed Description of Issues

3.4.9 V-GENS-VUL-009: Max constants do not represent maximum values

Warning aa178s3
Usability Issue Fixed
File(s) RatioFeed.sol RestakingPool.sol

Location(s) _setDistributeGasLimit, _setRatiolhreshold

Confirmed Fix At 2163855

Due to the implementation of functions _setDistributeGasLimit and _setRatioThreshold
(see snippets below), constants MAX_THRESHOLD (in RatioFeed.sol) and MAX_GAS_LIMIT (in
RestakingPool.sol) do not actually reflect the maximum allowed value. In both cases, the

maximum allowed is one less than the value of the constant.

1| function _setDistributeGasLimit (uint32 newValue) internal {
2 if (newValue >= MAX_GAS_LIMIT || newValue == 0) {
3 revert RatioNotUpdated("not in range");

Figure 3.6: Snippet from _setDistributeGasLimit

1| function _setRatioThreshold(uint256 value) internal {
2 if (value >= MAX_THRESHOLD || value == 0) {
3 revert RatioThresholdNotInRange();

Figure 3.7: Snippet from _setRatioThreshold

Impact This can be misleading to users of the contracts.

Recommendation Replace operators >= with > in both of the snippets above.

Developer Response The issue was fixed by commit 2163855.

Veridise Audit Report: GenesisLRT © 2023 Veridise Inc.

17

18 3 Audit Goals and Scope

3.4.10 V-GENS-VUL-010: Interaction before state update

Warning aa17853
Maintainability Acknowledged
RestakingPool.sol
Function unstake

N/A

Function unstake calls token.burn before performing several state updates. When possible, it is
recommended to perform any external interactions as the last part of the function.

token.burn(from, shares);

_addIntoQueue(to, amount);

_totalUnstaked += amount;
emit Unstaked(from, to, amount, shares);

o U A W N

Impact Currently, the ERC20 token used by the project does not contain any re-entry points.
However, if that changes in the future, this will increase the security risks.

Recommendation Move the call to burn at the end of the function.

Developer Response Due to future needs of the protocol, the developers chose to ignore this
recommendation.

The Veridise team agrees that is safe to ignore this recommendation since the protocol has
complete control of the used token.

© 2023 Veridise Inc. Veridise Audit Report: GenesisLRT

3.4 Detailed Description of Issues

3.4.11 V-GENS-VUL-011: Unused Imports

Info 753
Maintainability Fixed
Multiple Files
Multiple Locations
2163855

The following files import an unnecessary file.

> restaker/Restaker.sol: unused import ReentrancyGuardUpgradeable.sol

» cToken.sol: unused import PausableUpgradeable.sol

» RestakingPool.sol: unused import IRestakerDeployer.sol

> restaker/RestakerFacet.sol: unused import ReentrancyGuardUpgradeable.sol

Recommendation We recommend removing the unused imports.

Developer Response The issue was fixed by commit 2163855.

Veridise Audit Report: GenesisLRT © 2023 Veridise Inc.

20 3 Audit Goals and Scope

3.4.12 V-GENS-VUL-012: Typos

Info dd17853
Maintainability Fixed
Multiple Files
Several locations
2163855

Consider fixing the following typos:

» File ProtocolConfig.sol line 19: OnlyGovernancAllowed -> OnlyGovernanceAllowed
» File ProtocolConfig.sol line 145: setRestakedDeployer -> setRestakerDeployer

Developer Response The issue was fixed by commit 2163855.

© 2023 Veridise Inc. Veridise Audit Report: GenesisLRT

3.4 Detailed Description of Issues 21

3.4.13 V-GENS-VUL-013: Missed opportunity for calling _getRestakerOrRevert

Info dd17853
Maintainability Fixed
RestakingPool.sol
batchDeposit
2163855

Function batchDeposit canreplace the following snippet with a call to function _getRestakerOrRevert

address restaker = _restakers[_getProviderHash(provider)];
if (restaker == address(0)) {
revert PoolRestakerNotExists();

}

Figure 3.8: Snippet from batchDeposit

Impact This can lead to maintainability issues down the road.

Recommendation We recommend using existing functions, like _getRestakerOrRevert, when-
ever possible.

Developer Response The issue was fixed by commit 2163855.

Veridise Audit Report: GenesisLRT © 2023 Veridise Inc.

22 3 Audit Goals and Scope

3.4.14 V-GENS-VUL-014: Field minUnstakeAmount is unused

Severity [NV dd17853
g8 8 Gas Optimization Fixed

File(s) RestakingPool.sol
Location(s) RestakingPool
Confirmed Fix At 2163855

Field _minUnstakeAmount in the RestakingPool contract is never used.

Impact This can lead to extra gas costs and maintainability issues.

Recommendation Consider removing the field if it is not needed.

Developer Response The developers added a setter function for this field.

© 2023 Veridise Inc. Veridise Audit Report: GenesisLRT

& Fuzz Testing

4.1 Methodology

Our goal was to fuzz test Liquid Restaking to assess its functional correctness (i.e, whether
the implementation deviates from the intended behavior). We used Hardhat to setup the
environment and write the deployment script. The Hardhat test suite provided by the Liquid
Restaking developers helped us in setting up the fuzzing process. Based on the deployed
artifacts, we performed fuzzing campaigns using OrCa in order to find violations for the
specifications detailed below.

4.2 Properties Fuzzed

Table 4.1 describes the invariants we fuzz-tested. The first column states which component the
invariant is associated with. The second describes the invariant informally in English, and the
third shows the total amount of compute time spent fuzzing this property. The last column
notes whether we found a bug when fuzzing the invariant (X indicates no bug was found and
v means fuzzing this invariant revealed a bug).

The Veridise auditors devoted a total of 20 compute-hours to fuzzing this protocol, identifying
a total of 0 bugs.

Table 4.1: Invariants Fuzzed.

Specification Minutes Fuzzed | Bugs Found

V-GENS-SPEC-001 ERC20.01: transfer should revert if a user atte... 300 0
V-GENS-SPEC-002 ERC20.02: Funds should be successfully transfer 300 0
V-GENS-SPEC-003 ERC20.03: approve makes appropriate state char 300 0
V-GENS-SPEC-004 ERC20: static totalSupply 300 0
V-GENS-SPEC-005 ERC20: allowance/balances 300 0
V-GENS-SPEC-006 ERC20: no extra modfications 300 0
V-GENS-SPEC-007 ERC20: burnFrom burns correct amount 300 0
V-GENS-SPEC-008 ERC20: burnFrom reduces total supply 300 0
V-GENS-SPEC-009 ERC20: mint increases totalSupply/balance 300 0
V-GENS-SPEC-010 ~ StakingPool: Reentrancy issue in distributeUnst. 300 0
V-GENS-SPEC-011 cToken: pause/ unpause access modifiers 300 0

Veridise Audit Report: GenesisLRT © 2023 Veridise Inc.

24 4 Fuzz Testing

4.3 Detailed Description of Fuzzed Specifications

4.3.1 V-GENS-SPEC-001: ERC20.01: transfer should revert if a user attempts to send
more funds than they have

Specification
Scope cToken.sol

Natural Language transfer should revert if a user attempts to send more funds than they
have.

1|{vars: cToken ct
2|inv: reverted(ct.transfer(to, amt), amt > ct.balanceOf (sender))

© 2023 Veridise Inc. Veridise Audit Report: GenesisLRT

4.3 Detailed Description of Fuzzed Specifications

4.3.2 V-GENS-SPEC-002: ERC20.02: Funds should be successfully transferred from
sender to to as long as sender is not to

Specification
Scope cToken.sol

Natural Language Funds should be successfully transferred from sender to to as long as
sender to.

vars: cToken ct
inv: finished(ct.transfer(to, amt),
to != sender |=>
ct.balanceOf(sender) = old(ct.balanceOf(sender)) - amt &&
ct.balanceOf(to) = old(ct.balance0Of(to)) + amt

Veridise Audit Report: GenesisLRT © 2023 Veridise Inc.

25

26

4 Fuzz Testing

4.3.3 V-GENS-SPEC-003: ERC20.03: approve makes appropriate state changes

Specification
Scope cToken.sol

Natural Language approve makes appropriate state changes.

approve should never finish in a state where the allowance of the spender is not equal to the
given amount. totalSupply, other allowances and balances should not be modified.

vars: cToken ct, address o0l, address 02, address o3
inv: finished(ct.approve(spender, amt),
02 != sender && ol != spender |=>

ct.allowance(sender, spender) = amt &&
ct.allowance(sender, o0l) = old(ct.allowance(sender, o0l)) &&
ct.allowance(o02, 03) = old(ct.allowance(02, 03)) &&
ct.balance0f(03) = old(ct.balance0f(03)) &&
ct.totalSupply() = old(ct.totalSupply())

© 2023 Veridise Inc. Veridise Audit Report: GenesisLRT

4.3 Detailed Description of Fuzzed Specifications

4.3.4 V-GENS-SPEC-004: ERC20.03: transfer should not modify totalSupply,

allowances, or balances other than sender and to
Minutes Fuzzed e Bugs Found U
Specification

Scope cToken.sol

Natural Language transfer should not modify totalSupply, allowances, or balances other

than sender and to.

vars: cToken ct, address ol, address 02, address 03
inv: finished(ct.transfer(to, amt),
0l != sender && ol != to |=>
ct.totalSupply() = old(ct.totalSupply()) &&
ct.balanceOf(0l) = old(ct.balance0f(o0l)) &&
ct.allowance(o2, 03) = old(ct.allowance(02, 03))

Veridise Audit Report: GenesisLRT

© 2023 Veridise Inc.

27

28 4 Fuzz Testing

4.3.5 V-GENS-SPEC-005: ERC20.04: transferFrom should enforce allowance and
user balance

Specification
Scope cToken.sol

Natural Language transferFrom should enforce allowance and user balance.

transferFrom should revert when the amount requested is greater than what the spender owns
or beyond the recipient’s allowance.

vars: cToken ct
inv: reverted(ct.transferFrom(from, to, amt),
amt > ct.balanceOf(from) || (from != sender &% amt > ct.allowance(from, sender))

)

A W N R

© 2023 Veridise Inc. Veridise Audit Report: GenesisLRT

4.3 Detailed Description of Fuzzed Specifications

4.3.6 V-GENS-SPEC-006: ERC20.06: transferFrom should not modify totalSupply,

other allowances, or balances
Minutes Fuzzed e Bugs Found U
Specification

Scope cToken.sol

Natural Language transferFrom should not modify totalSupply, other allowances, or bal-

ances.

vars: cToken ct, address o0l, address 02, address 03, address 04
inv: finished(ct.transferFrom(from, to, amt),

0l !'= from & ol != to && 02 != sender && 03 != from |=>
ct.balanceOf(0l) = old(ct.balanceOf(o0l)) &&
ct.allowance(from, 02) = old(ct.allowance(from, 02)) &&
ct.allowance(o3, 04) = old(ct.allowance(o03, o04)) &&
ct.totalSupply() = old(ct.totalSupply())

Veridise Audit Report: GenesisLRT

© 2023 Veridise Inc.

29

30 4 Fuzz Testing

4.3.7 V-GENS-SPEC-007: ERC20.13: burn will revert if a user attempts to burn more
than they own or more than their allowance

Specification
Scope cToken.sol

Natural Language burn will revert if a user attempts to burn more than they own or more
than their allowance.

1|{vars: cToken ct

2|inv: reverted(ct.burn(from, amt),

3 amt > ct.balanceOf(from) || (from != sender &% amt > ct.allowance(from, sender))
41)

© 2023 Veridise Inc. Veridise Audit Report: GenesisLRT

4.3 Detailed Description of Fuzzed Specifications

4.3.8 V-GENS-SPEC-008: ERC20.14: burn will reduce the total supply and the
balance of from by the indicated amount

Specification
Scope cToken.sol

Natural Language burn will reduce the total supply and the balance of from by the indicated
amount.

vars: cToken ct
inv: finished(ct.burn(from, amt),
ct.balanceOf(from) = old(ct.balanceOf(from)) - amt &&
ct.totalSupply() = old(ct.totalSupply()) - amt &&
((from != sender || old(ct.allowance(from, sender)) != MAX_UINT256) ==>
ct.allowance(from, sender) = old(ct.allowance(from, sender)) - amt)

Veridise Audit Report: GenesisLRT © 2023 Veridise Inc.

31

32 4 Fuzz Testing

4.3.9 V-GENS-SPEC-009: ERC20.16: mint will increase totalSupply and a user’s
balance by the indicated amount

Specification
Scope cToken.sol

Natural Language mint will increase totalSupply and a user’s balance by the indicated
amount.

1|vars: cToken ct

2|inv: finished(ct.mint(acc, amt),

3 ct.balanceOf(acc) = old(ct.balanceOf(acc)) + amt &&
4 ct.totalSupply() = old(ct.totalSupply()) + amt

5])

© 2023 Veridise Inc. Veridise Audit Report: GenesisLRT

4.3 Detailed Description of Fuzzed Specifications

4.3.10 V-GENS-SPEC-010: StakingPool: Reentrancy issue in distributeUnstakes

Specification
Scope RestakingPool.sol

Natural Language A complete description of this potential reentrancy issue can be found
here.

Note: we added to RestakingPool.sol a new method called getLengthPendingUnstakes to be
able to express the spec below.

Given that the attacker can exploit the reentrancy vulnerability by altering the length of
_pendingUnstakes, the following specsays thatitis never the case that the length of _pendingUnstakes
grows after a call to distributeUnstake.

1|vars: RestakingPool rp
2| spec: []!finished(rp.distributeUnstakes, old(rp.getLengthPendingUnstakes()) <= rp.
getLengthPendingUnstakes())

Veridise Audit Report: GenesisLRT © 2023 Veridise Inc.

33

https://www.notion.so/Reentrancy-issue-in-distributeUnstakes-fb8b549790d644cda6bd8093bc581a4c?pvs=21

34

4 Fuzz Testing

4.3.11 V-GENS-SPEC-011: cToken: pause/ unpause can only be called by governance

Specification
Scope cToken.sol

Natural Language pause/ unpause will revert if a user other than governance attempts to call
them.

1
2

vars: cToken ct, ProtocolConfig pc
spec: []!finished(ct.pause, sender != pc.getGovernance())

1
2

vars: cToken ct, ProtocolConfig pc
spec: []!finished(ct.unpause, sender != pc.getGovernance())

© 2023 Veridise Inc. Veridise Audit Report: GenesisLRT

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Detailed Description of Issues

	Detailed Description of Issues
	V-GENS-VUL-001: Reentrancy issue in distributeUnstakes
	V-GENS-VUL-002: Index of historicalRatios is skipped
	V-GENS-VUL-003: Field _minStakeAmount is never set
	V-GENS-VUL-004: No setter for EigenPodManager
	V-GENS-VUL-005: Duplicate code snippet
	V-GENS-VUL-006: _checkRatioRules relies on default init
	V-GENS-VUL-007: Hardcoded constant in RatioFeed
	V-GENS-VUL-008: Missing modifiers
	V-GENS-VUL-009: Max constants do not represent maximum values
	V-GENS-VUL-010: Interaction before state update
	V-GENS-VUL-011: Unused Imports
	V-GENS-VUL-012: Typos
	V-GENS-VUL-013: Missed opportunity for calling _getRestakerOrRevert
	V-GENS-VUL-014: Field _minUnstakeAmount is unused
	Fuzz Testing
	Methodology

	Methodology
	Properties Fuzzed

	Properties Fuzzed
	Detailed Description of Fuzzed Specifications

	Detailed Description of Fuzzed Specifications
	V-GENS-SPEC-001: ERC20.01: transfer should revert if a user attempts to send more funds than they have
	V-GENS-SPEC-002: ERC20.02: Funds should be successfully transferred from sender to to as long as sender is not to
	V-GENS-SPEC-003: ERC20.03: approve makes appropriate state changes
	V-GENS-SPEC-004: ERC20.03: transfer should not modify totalSupply, allowances, or balances other than sender and to
	V-GENS-SPEC-005: ERC20.04: transferFrom should enforce allowance and user balance
	V-GENS-SPEC-006: ERC20.06: transferFrom should not modify totalSupply, other allowances, or balances
	V-GENS-SPEC-007: ERC20.13: burn will revert if a user attempts to burn more than they own or more than their allowance
	V-GENS-SPEC-008: ERC20.14: burn will reduce the total supply and the balance of from by the indicated amount
	V-GENS-SPEC-009: ERC20.16: mint will increase totalSupply and a user’s balance by the indicated amount
	V-GENS-SPEC-010: StakingPool: Reentrancy issue in distributeUnstakes
	V-GENS-SPEC-011: cToken: pause/ unpause can only be called by governance

