
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

StoneVault-V1

Veridise Inc.
December 28, 2023

▶ Prepared For:

StakeStone
https://stakestone.io/

▶ Prepared By:

Ajinkya Rajput
Jacob Van Geffen

▶ Contact Us: contact@veridise.com

▶ Version History:

Dec. 22, 2023 V1
Dec. 19, 2023 Initial Draft

© 2023 Veridise Inc. All Rights Reserved.

https://stakestone.io/
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 6

4 Vulnerability Report 7
4.1 Detailed Description of Issues . 8

4.1.1 V-STN-VUL-001: A malicious strategy can force invest all ETH in itself . 8
4.1.2 V-STN-VUL-002: Round based withdrawal logic can be bypassed 11
4.1.3 V-STN-VUL-003: withdrawFeeRate not initialised in constructor 14
4.1.4 V-STN-VUL-004: _ratios can be all zero 15
4.1.5 V-STN-VUL-005: Addresses should not be hardcoded 17
4.1.6 V-STN-VUL-006: Separate functionality for instantWithdraw() 19
4.1.7 V-STN-VUL-007: Better revert messages 21
4.1.8 V-STN-VUL-008: Duplicate Code . 22
4.1.9 V-STN-VUL-009: Type address used instead of interfaces 23
4.1.10 V-STN-VUL-010: Use consistent solidity version 24
4.1.11 V-STN-VUL-011: Use in-fix addition instead of uint256 add function . . 25
4.1.12 V-STN-VUL-012: Same constants defined in multiple contracts 27
4.1.13 V-STN-VUL-013: Explicit return recommended 28
4.1.14 V-STN-VUL-014: Unnecessary ternary statement 29

Veridise Audit Report: StoneVault-V1 © 2023 Veridise Inc.

Executive Summary 1
From Dec. 8, 2023 to Dec. 15, 2023, StakeStone engaged Veridise to review the security of their
StoneVault-V1. The review covered smart contracts that facilitate deposits and transfers for the
Stone token, bridging between Stone and ETH, executing various investment strategies, and
governance over proposals of new such strategies. Veridise conducted the assessment over 16
person-days, with 2 engineers reviewing code over 8 days on commit 0x8a49bb0. The auditing
strategy involved a tool-assisted analysis of the source code performed by Veridise engineers as
well as extensive manual auditing.

Code assessment. The StoneVault-V1 developers provided the source code of the StoneVault-V1
contracts for review. The source code contains original logic for round-based withdrawals and
a governance scheme based on the "Optimizing Portfolio and Allocation Proposal" (OPAP)
mechanism.

To facilitate the Veridise auditors’ understanding of the code, the StoneVault-V1 develop-
ers provided documentation for their protocol located at https://docs.stakestone.io/

stakestone/.

The source code contained a test suite, which the Veridise auditors noted adequately tested the
functional correctness of the StoneVault-V1 contract.

Summary of issues detected. The audit uncovered 14 issues, 1 of which is assessed to be of
high or critical severity by the Veridise auditors. Specifically, issue (V-STN-VUL-001) introduces
a reentrancy vulnerability which allows malicious strategies to steal ETH from the protocol.
The Veridise auditors also identified several medium-severity issues, including one issue that
enables users to bypass round-based withdraw logic (V-STN-VUL-002) and another stemming
from missing initialization logic (V-STN-VUL-003), as well as 7 warnings and 2 informational
findings. The StoneVault-V1 developers have acknowledged all issues.

Recommendations. After auditing the protocol, the auditors had a few suggestions to improve
StoneVault-V1. First, we recommend adding detailed messages to require statements in order to
more easily communicate causes of errors to callers into StoneVault-V1. Additionally, to ensure
that the StoneVault-V1 code base remains maintainable, we recommend implementing modular
functions and implementing common code in internal functions. Finally, we recommend
additional in-line documentation with comments describing the intended behavior of functions
across the code base. Several issues in Section 4 provide more detail on these recommendations.
We believe that these changes will improve both the readability and maintainability of the
StoneVault-V1 code base, leading to quicker development processes and fewer bugs in the
future.

Veridise Audit Report: StoneVault-V1 © 2023 Veridise Inc.

https://docs.stakestone.io/stakestone/overview/opap
https://docs.stakestone.io/stakestone/
https://docs.stakestone.io/stakestone/

2 1 Executive Summary

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

© 2023 Veridise Inc. Veridise Audit Report: StoneVault-V1

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
StoneVault-V1 0x8a49bb0 Solidity Ethereum

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
Dec. 8 - Dec. 15, 2023 Manual & Tools 2 16 person-days

Table 2.3: Vulnerability Summary.

Name Number Resolved
Critical-Severity Issues 0 0
High-Severity Issues 1 1
Medium-Severity Issues 2 2
Low-Severity Issues 2 2
Warning-Severity Issues 7 7
Informational-Severity Issues 2 2
TOTAL 14 14

Table 2.4: Category Breakdown.

Name Number
Maintainability 7
Usability Issue 3
Logic Error 2
Reentrancy 1
Data Validation 1

Veridise Audit Report: StoneVault-V1 © 2023 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of StoneVault-V1’s smart contracts.
In our audit, we sought to answer questions such as:

▶ Can an attacker steal ETH from the protocol?
▶ Does the protocol distribute the rewards to users correctly?
▶ Does the protocol collect appropriate amount of fees?
▶ Does the protocol interact correctly with the strategies?
▶ How do the downstream strategies affect the security of the protocol?
▶ Is the interaction between the vault and other components correct?
▶ Is the implementation of voting correct?
▶ Is the interaction between L1 and L2 correct?
▶ Is the implementation of pricing of Stone correct?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a combination of
human experts and automated program analysis & testing tools. In particular, we conducted
our audit with the aid of the following techniques:

▶ Static analysis. To identify potential common vulnerabilities, we leveraged our custom
smart contract analysis tool Vanguard. These tools are designed to find instances of
common smart contract vulnerabilities, such as reentrancy and uninitialized variables.

Scope. The scope of this audit is limited to the contracts folder of the source code provided by
the StoneVault-V1 developers, which contains the smart contract implementation of StoneVault-
V1.

During the audit, the Veridise auditors referred to the excluded files but assumed that they
have been implemented correctly. Following files were excluded from the audit.

▶ contracts/strategies/*
▶ contracts/mock/*
▶ All files incontracts/mining/ except DepositBridge.sol

Methodology. Veridise auditors inspected the provided tests, and read the StoneVault-V1 docu-
mentation. They then began a manual audit of the code assisted by static analyzers. During the
audit, the Veridise auditors regularly met with the StoneVault-V1 developers to ask questions
about the code.

Veridise Audit Report: StoneVault-V1 © 2023 Veridise Inc.

6 3 Audit Goals and Scope

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

In this case, we judge the likelihood of a vulnerability as follows in Table 3.2:

Table 3.2: Likelihood Breakdown

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows in Table 3.3:

Table 3.3: Impact Breakdown

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2023 Veridise Inc. Veridise Audit Report: StoneVault-V1

Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowledged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-STN-VUL-001 A malicious strategy can force invest all ETH i. . . High Fixed
V-STN-VUL-002 Round based withdrawal logic can be bypassed Medium Intended Behavior
V-STN-VUL-003 withdrawFeeRate not initialised in constructor Medium Intended Behavior
V-STN-VUL-004 _ratios can be all zero Low Intended Behavior
V-STN-VUL-005 Addresses should not be hardcoded Low Fixed
V-STN-VUL-006 Separate functionality for instantWithdraw() Warning Acknowledged
V-STN-VUL-007 Better revert messages Warning Acknowledged
V-STN-VUL-008 Duplicate Code Warning Acknowledged
V-STN-VUL-009 Type address used instead of interfaces Warning Acknowledged
V-STN-VUL-010 Use consistent solidity version Warning Intended Behavior
V-STN-VUL-011 Use in-fix addition instead of uint256 add func. . . Warning Acknowledged
V-STN-VUL-012 Same constants defined in multiple contracts Warning Acknowledged
V-STN-VUL-013 Explicit return recommended Info Acknowledged
V-STN-VUL-014 Unnecessary ternary statement Info Acknowledged

Veridise Audit Report: StoneVault-V1 © 2023 Veridise Inc.

8 4 Vulnerability Report

4.1 Detailed Description of Issues

4.1.1 V-STN-VUL-001: A malicious strategy can force invest all ETH in itself

Severity High Commit 8a49bb0
Type Reentrancy Status Fixed

File(s) StrategyController.sol

Location(s) onlyRebaseStrategies()
Confirmed Fix At 6834828

The StoneVault contract receives deposits from the users and invests them in various strategies
via StrategyController. There can be multiple strategies active at the same time and the whole
available pool of user deposits is diversified across various strategies according to the ratios.

These ratios can change overtime and the funds are redistributed across the strategies.
This process is called rebasing in the protocol. Rebasing can be performed by calling either
rebaseStrategies() or onlyRebaseStrategies() functions in StrategyController. The function
rebaseStrategies() is protected by onlyVault() modifier therefore can only be called by
StoneVault.

However, onlyRebaseStrategies() is not protected.

1 function onlyRebaseStrategies() external {
2 _rebase(0, 0);
3 }

Snippet 4.1: onlyRebaseStrategies() in StrategyController.sol

onlyRebaseStrategies() calls an internal function _rebase() with zero as arguments.

1 function _rebase(uint256 _in, uint256 _out) internal {

2 require(_in == 0 || _out == 0, "only deposit or withdraw");

3

4 if (_in != 0) {

5 AssetsVault(assetsVault).withdraw(address(this), _in);

6 }

7 uint256 total = getAllStrategyValidValue();

8 if (total < _out) {

9 total = 0;

10 } else {

11 total = total + _in - _out;

12 }

13

14 uint256 length = strategies.length();

15 StrategyDiff[] memory diffs = new StrategyDiff[](length);

16 uint256 head;

17 uint256 tail = length - 1;

18 for (uint i; i < length; i++) {

19 address strategy = strategies.at(i);

20 if (ratios[strategy] == 0) {

21 _clearStrategy(strategy, true);

© 2023 Veridise Inc. Veridise Audit Report: StoneVault-V1

4.1 Detailed Description of Issues 9

22 //@audit paying back to vault right away might not be good idea as the

amount might be needed in other strategy

23 continue;

24 }

25 uint256 newPosition = (total * ratios[strategy]) /

26 ONE_HUNDRED_PERCENT;

27 uint256 position = getStrategyValidValue(strategy);

28

29 if (newPosition < position) {

30 diffs[head] = StrategyDiff(

31 strategy,

32 false,

33 position - newPosition

34);

35 head++;

36 } else if (newPosition > position) {

37 diffs[tail] = StrategyDiff(

38 strategy,

39 true,

40 newPosition - position

41);

42 if (tail != 0) {

43 tail--;

44 }

45 }

46 }

47

48 length = diffs.length;

49 for (uint256 i; i < length; i++) {

50 StrategyDiff memory diff = diffs[i];

51

52 if (diff.amount == 0) {

53 continue;

54 }

55

56 if (diff.isDeposit) {

57 if (address(this).balance < diff.amount) {

58 diff.amount = address(this).balance;

59 }

60 _depositToStrategy(diff.strategy, diff.amount);

61 } else {

62 _withdrawFromStrategy(diff.strategy, diff.amount);

63 }

64 }

65

66 _repayToVault();

67 }

The _rebase() function performs following tasks in order

1. Calculate the amount of ETH to be deposited or withdrawn from each strategy and is
stored in StrategyDiff structure according to ratios

2. Withdraw ETH from all strategies that need withdrawal according to step 1
3. Deposit ETH into all the strategies that need deposits according to step 1

Veridise Audit Report: StoneVault-V1 © 2023 Veridise Inc.

10 4 Vulnerability Report

a) NOTE: While depositing if the StrategyController does not have enough ETH, the
controller does not revert and just deposits all available balance in the strategies and
zero in all other strategies. _rebase() then silently returns.

During the step 3 above, when a deposit is called, the strategy contract or the token contract that
have strategy interacts with may have a receive() hook. And as onlyrebaseStrategies() is not
protected, a malicious strategy call make a reentrant call to onlyRebaseStrategy(). Therefore,
the control flow ill return to Step 3 of rebase and will force the strategy to invest ETH again in
the strategy till all available ETH is invested.

The vault allows adding strategies if there is a Proposal for the strategy and it has received
enough votes. This makes malicious strategies to be an attack vector. Also, a malicious user can
have an upgradable strategy that is benign for time being and then becomes malicious after it
has earned trust of the user.

Impact A malicious strategy can force invest all funds of the StrategyController into itself.
The severity of attack increases if the attacker can identify any call that updates the ratios and
front run the subsequent transaction that performs a rebase.

Recommendation

1. Protect the onlyRebaseStrategies() with a nonRentrant() modifier.
2. Rebase in the same transaction whenever the ratios are updated.

Developer Response The developers acknowledged this issue.

© 2023 Veridise Inc. Veridise Audit Report: StoneVault-V1

4.1 Detailed Description of Issues 11

4.1.2 V-STN-VUL-002: Round based withdrawal logic can be bypassed

Severity Medium Commit 8a49bb0
Type Logic Error Status Intended Behavior

File(s) StoneVault.sol

Location(s) instantWithdraw()
Confirmed Fix At

The StoneVault is the contract where users deposit and redeem their stones to withdraw ETH.
An user can deposit ETH any time but withdrawals are handled in two step process which
depend on rounds. For withdrawals the user has to perform 2 steps

1. Initiate a withdrawal by calling requestWithdraw(). Along with other book keeping, this
records the roundID in which the withdrawal was requested.

2. Perform the actual withdrawal by calling instantWithdraw(). This function takes in two
arguments, _amount and _shares . It adds the _amount to number of ETH withdrawn if the
request was made in a roundID strictly less than current round.

instantWithdraw() also allows an user to redeem shares to get back ETH as shown in the
following snippet

Impact The round based withdrawal logic can be bypassed by calling instantWithdraw() with
non zero _shares argument.

Recommendation Remove the share redemption logic from instant withdraw.

Developer Response The instantWithdraw() and requestWithdraw() are two different patterns
performed on withdrawals. instantWithdraw() makes users convert their STONEs to Ethers
directly and in the meantime the STONEs user held is burned. requestWithdraw() will allow
user to make a request on withdrawals to save gas.

Veridise Audit Report: StoneVault-V1 © 2023 Veridise Inc.

12 4 Vulnerability Report

1 function requestWithdraw(uint256 _shares) external nonReentrant {
2 require(_shares != 0, "too small");
3 require(latestRoundID != 0, "should withdraw instantly");
4 Stone stoneToken = Stone(stone);
5 Minter stoneMinter = Minter(minter);
6

7 require(stoneToken.balanceOf(msg.sender) >= _shares, "exceed balance");
8

9 TransferHelper.safeTransferFrom(
10 stone,
11 msg.sender,
12 address(this),
13 _shares
14);
15

16 withdrawingSharesInRound = withdrawingSharesInRound + _shares;
17

18 UserReceipt storage receipt = userReceipts[msg.sender];
19

20 if (receipt.withdrawRound == latestRoundID) {
21 receipt.withdrawShares = receipt.withdrawShares + _shares;
22 } else if (receipt.withdrawRound == 0) {
23 receipt.withdrawShares = _shares;
24 receipt.withdrawRound = latestRoundID;
25 } else {
26 // Withdraw previous round share first
27 uint256 withdrawAmount = VaultMath.sharesToAsset(
28 receipt.withdrawShares,
29 roundPricePerShare[receipt.withdrawRound]
30);
31

32 stoneMinter.burn(address(this), receipt.withdrawShares);
33 withdrawingSharesInPast =
34 withdrawingSharesInPast -
35 receipt.withdrawShares;
36

37 receipt.withdrawShares = _shares;
38 receipt.withdrawableAmount =
39 receipt.withdrawableAmount +
40 withdrawAmount;
41 receipt.withdrawRound = latestRoundID;
42 }
43

44 emit InitiateWithdraw(msg.sender, _shares, latestRoundID);
45 }

Snippet 4.2: requestWithdraw() in StoneVault

© 2023 Veridise Inc. Veridise Audit Report: StoneVault-V1

4.1 Detailed Description of Issues 13

1 if (_amount != 0) {
2 UserReceipt storage receipt = userReceipts[msg.sender];
3

4 if (
5 receipt.withdrawRound != latestRoundID &&
6 receipt.withdrawRound != 0
7) {

Snippet 4.3: Snippet from instantWithdraw() in StoneVault

1 if (_shares != 0) {
2 uint256 sharePrice;
3

4 if (latestRoundID == 0) {
5 sharePrice = MULTIPLIER;
6 } else {
7 uint256 currSharePrice = currentSharePrice();
8 uint256 latestSharePrice = roundPricePerShare[
9 latestRoundID - 1

10];
11

12 sharePrice = latestSharePrice < currSharePrice
13 ? latestSharePrice
14 : currSharePrice;
15 }
16

17 uint256 ethAmount = VaultMath.sharesToAsset(_shares, sharePrice);
18

19 stoneMinter.burn(msg.sender, _shares);
20

21 if (ethAmount <= idleAmount) {
22 actualWithdrawn = actualWithdrawn + ethAmount;
23

24 emit Withdrawn(msg.sender, ethAmount, latestRoundID);
25 } else {
26 actualWithdrawn = actualWithdrawn + idleAmount;
27 ethAmount = ethAmount - idleAmount;
28

29 StrategyController controller = StrategyController(
30 strategyController
31);
32 uint256 actualAmount = controller.forceWithdraw(ethAmount);
33

34 actualWithdrawn = actualWithdrawn + actualAmount;
35

36 emit WithdrawnFromStrategy(
37 msg.sender,
38 ethAmount,
39 actualAmount,
40 latestRoundID
41);
42 }
43 }

Snippet 4.4: Branch for redeeming shares in instantWithdraw() in StoneVault

Veridise Audit Report: StoneVault-V1 © 2023 Veridise Inc.

14 4 Vulnerability Report

4.1.3 V-STN-VUL-003: withdrawFeeRate not initialised in constructor

Severity Medium Commit 8a49bb0
Type Logic Error Status Intended Behavior

File(s) StoneVault.sol

Location(s) N/A
Confirmed Fix At

StoneVault charges a percentage of withdrawal amount as withdrawalFee. This percentage is
stored in withdrawFeeRate state variable. This fee is calculated at the end of instantWithdraw()
as shown in following code snippet.

1 uint256 withFee;

2 if (withdrawFeeRate != 0) {

3 withFee = (actualWithdrawn * withdrawFeeRate) / ONE_HUNDRED_PERCENT;

4 aVault.withdraw(feeRecipient, withFee);

5

6 emit FeeCharged(msg.sender, withFee);

7 }

8 aVault.withdraw(msg.sender, actualWithdrawn - withFee);

withdrawFeeRate is not initialised in StoneVaults constructor and has to be set by calling
setWithdrawFeeRate().

As the vault does not have functionality to pause, the vault is active as soon as it is instantiated.
Therefore, this opens a window between the time when the StoneVault is instantiated and
setWithdrawFeeRate() is not called. The withdrawFeeRate will be zero in this window. The
window can grow arbitrary large if the deployment scripts miss calling setWithdrawFeeRate()

.

Impact No fees will be collected until setWithdrawFeeRate() is called. This will lead to financial
losses to the vault

Recommendation Initialise withdrawFeeRate with an initial value in constructor.

Developer Response The initial fee rate should be 0. We will not collect fees on vault at start.

© 2023 Veridise Inc. Veridise Audit Report: StoneVault-V1

4.1 Detailed Description of Issues 15

4.1.4 V-STN-VUL-004: _ratios can be all zero

Severity Low Commit 8a49bb0
Type Data Validation Status Intended Behavior

File(s) StoneVault.sol

Location(s) constructor()
Confirmed Fix At

In StoneVault contract the constructor()validates and initializes the state variables for addresses
of other contracts as well as parameters of the vault.

1 constructor(
2 address _minter,
3 address _proposal,
4 address payable _assetsVault,
5 address[] memory _strategies,
6 uint256[] memory _ratios
7) {
8 require(
9 _minter != address(0) &&

10 _proposal != address(0) &&
11 _assetsVault != address(0),
12 "ZERO ADDRESS"
13);
14

15 uint256 length = _strategies.length;
16 for (uint256 i; i < length; i++) {
17 require(_strategies[i] != address(0), "ZERO ADDRESS");
18 }
19

20 minter = _minter;
21 proposal = _proposal;
22 assetsVault = _assetsVault;
23

24 feeRecipient = msg.sender;
25

26 StrategyController controller = new StrategyController(
27 _assetsVault,
28 _strategies,
29 _ratios
30);

Snippet 4.5: Snippet from constructor() in StoneVault

The argument _ratios is not validated and passed to constructor() of StrategyController

which in turn calls _initStrategies(). This function checks if the sum of all ratios is upper
bounded by the constant ONE_HUNDRED_PERCENT.

This function does not check if all the ratios are not zero simultaneously.

Impact If all the ratios are zero none of the strategies will be active.

Recommendation Validate if sum of all the ratios is not zero

Veridise Audit Report: StoneVault-V1 © 2023 Veridise Inc.

16 4 Vulnerability Report

1 function _initStrategies(
2 address[] memory _strategies,
3 uint256[] memory _ratios
4) internal {
5 require(_strategies.length == _ratios.length, "invalid length");
6

7 uint256 totalRatio;
8 uint256 length = _strategies.length;
9 for (uint i; i < length; i++) {

10 strategies.add(_strategies[i]);
11 ratios[_strategies[i]] = _ratios[i];
12 totalRatio = totalRatio + _ratios[i];
13 }
14 require(totalRatio <= ONE_HUNDRED_PERCENT, "exceed 100%");
15 }

Snippet 4.6: _initStrategies() in StrategyController

Developer Response It is possible for the vault to set all ratios as zero. And we make a
proposal to call updatePortfolioConfig to allocate the assets to different strategies.

© 2023 Veridise Inc. Veridise Audit Report: StoneVault-V1

4.1 Detailed Description of Issues 17

4.1.5 V-STN-VUL-005: Addresses should not be hardcoded

Severity Low Commit 8a49bb0
Type Usability Issue Status Fixed

File(s) Multiple Strategies
Location(s) N/A

Confirmed Fix At 5626240

Various strategy contracts within contracts/strategies contain hard-coded addresses for tokens
and other external contracts.

1 address public immutable STETH = 0xae7ab96520DE3A18E5e111B5EaAb095312D7fE84;
2 address public immutable WSTETH =
3 0x7f39C581F595B53c5cb19bD0b3f8dA6c935E2Ca0;
4 address public immutable VAULT = 0xBA12222222228d8Ba445958a75a0704d566BF2C8;
5 address public immutable LP_TOKEN =
6 0x42ED016F826165C2e5976fe5bC3df540C5aD0Af7;
7 address public immutable BOOSTER =
8 0xA57b8d98dAE62B26Ec3bcC4a365338157060B234;
9 address public immutable AURA_REWARD_POOL =

10 0x032B676d5D55e8ECbAe88ebEE0AA10fB5f72F6CB;
11 address public immutable BAL_TOKEN =
12 0xba100000625a3754423978a60c9317c58a424e3D;
13 address public immutable AURA_TOKEN =
14 0xC0c293ce456fF0ED870ADd98a0828Dd4d2903DBF;

Snippet 4.7: Hard-coded addresses within BalancerLPAuraStrategy.sol

1 address public immutable WETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
2 address public immutable RETH = 0xae78736Cd615f374D3085123A210448E74Fc6393;
3 address public immutable VAULT = 0xBA12222222228d8Ba445958a75a0704d566BF2C8;
4 address public immutable LP_TOKEN =
5 0x1E19CF2D73a72Ef1332C882F20534B6519Be0276;
6

7 address public immutable AURA_REWARD_POOL =
8 0xDd1fE5AD401D4777cE89959b7fa587e569Bf125D;
9 address public immutable BAL_TOKEN =

10 0xba100000625a3754423978a60c9317c58a424e3D;
11 address public immutable AURA_TOKEN =
12 0xC0c293ce456fF0ED870ADd98a0828Dd4d2903DBF;
13 address public immutable EXTRA_REWARD =
14 0xf66a72886749c96b18526E8E124cC2e18b7c72D2;

Snippet 4.8: Hard-coded addresses within RETHBalancerAuraStrategy.sol

Instead of using hard-coded addresses, these addresses should be initialized during deploy-
ment.

Impact There are two downsides to hard-coding addresses in this way, rather than initializing
addresses during construction:

1. Hard-coding addresses makes upgrading the corresponding token impossible. If new
versions of the corresponding contracts are published, these new versions cannot be used

Veridise Audit Report: StoneVault-V1 © 2023 Veridise Inc.

18 4 Vulnerability Report

by stone vault.
2. Testing stone vault locally is difficult when addresses are hard coded, particularly when

testing on mock blockchains.

Recommendation Initialize addresses during deployment instead of hard-coding them.

Developer Response Will fix.

© 2023 Veridise Inc. Veridise Audit Report: StoneVault-V1

4.1 Detailed Description of Issues 19

4.1.6 V-STN-VUL-006: Separate functionality for instantWithdraw()

Severity Warning Commit 8a49bb0
Type Usability Issue Status Acknowledged

File(s) StoneVault.sol

Location(s) instantWithdraw()
Confirmed Fix At

The instantWithdraw() function takes two parameters as input: _amount, which specifies the
amount of ETH to withdraw, and _shares, which specifies the number of shares to withdraw.
Based on these inputs, instantWithdraw() then withdraws the combined amount of ETH from
_amount and ETH equivalent to _shares through two different paths in the function.

1 function instantWithdraw(

2 uint256 _amount,

3 uint256 _shares

4) external nonReentrant returns (uint256 actualWithdrawn) {

5 ...

6

7 if (_amount != 0) {

8 ...

9 }

10

11 if (_shares != 0) {

12 ...

13 }

14

15 ...

16 }

In order to more clearly delineate these two separate functionalities, we recommend separating
instantWithdraw() into two external functions as demonstrated by the following pseudocode:

1 function completeWithdraw(

2 uint256 _amount,

3) external nonReentrant returns (uint256 actualWithdrawn) {

4 require(_amount != 0);

5 ...

6 }

7

8 function instantRedeem(

9 uint256 _shares,

10) external nonReentrant returns (uint256 actualWithdrawn) {

11 require(_shares != 0);

12 ...

13 }

Impact Since instantWithdraw performs varying functionality for withdrawing shares versus
ETH directly, users may make erroneous assumptions on the affects of instantWithdraw. For
example, if a user attempts to withdraw through _amount and _shares at the same time, but has
not requested a withdraw previously, instantWithdraw() will revert even when the _shares are
withdrawable (since receipt.withdrawableAmount will be 0).

Veridise Audit Report: StoneVault-V1 © 2023 Veridise Inc.

20 4 Vulnerability Report

Recommendation Separate instantWithdraw into two functions: completeWithdrawwhich takes
an amount of ETH as input and instantRedeem which takes a number of shares as input.

© 2023 Veridise Inc. Veridise Audit Report: StoneVault-V1

4.1 Detailed Description of Issues 21

4.1.7 V-STN-VUL-007: Better revert messages

Severity Warning Commit 8a49bb0
Type Maintainability Status Acknowledged

File(s) StoneVault.sol

Location(s) N/A
Confirmed Fix At

Various error messages in require statements lack necessary details to help users understand
the cause for the revert. A few examples are as follows, with corresponding suggestions for
more clear messages.

StoneVault.sol Line 105-110

1 require(

2 _minter != address(0) &&

3 _proposal != address(0) &&

4 _assetsVault != address(0),

5 "ZERO ADDRESS"

6);

Change message to "Addresses for minter, proposal, and assetsVault must be
non-zero"

StoneVault.sol Line 181

1 require(_shares != 0, "too small");

Change message to "Must withdraw a non-zero number of shares"

StoneVault.sol Line 333

1 require(aVault.getBalance() >= actualWithdrawn, "still need wait");

Change message to "StoneVault has insufficient balance to process the withdrawal"

Note that there are more occurrences outside of these cases (and outside of StoneVault.sol)
where the reverting error message needs more detail.

Impact Callers into StoneVault may have trouble determining the cause of reverted transac-
tions.

Recommendation Include more detailed error messages in revert statements.

Developer Response The developers acknowledged this issue.

Veridise Audit Report: StoneVault-V1 © 2023 Veridise Inc.

22 4 Vulnerability Report

4.1.8 V-STN-VUL-008: Duplicate Code

Severity Warning Commit 8a49bb0
Type Maintainability Status Acknowledged

File(s) StoneVault.sol

Location(s) N/A
Confirmed Fix At

In both instantWithdraw and requestWithdraw, the existing withdraw receipt of the requesting
user is checked to determine if the receipt values should be updated (for example, in the case of
a previous withdraw request that has not been satisfied).

1 // Withdraw previous round share first
2 uint256 withdrawAmount = VaultMath.sharesToAsset(
3 receipt.withdrawShares,
4 roundPricePerShare[receipt.withdrawRound]
5);
6

7 stoneMinter.burn(address(this), receipt.withdrawShares);
8 withdrawingSharesInPast =
9 withdrawingSharesInPast -

10 receipt.withdrawShares;
11

12 receipt.withdrawShares = _shares;
13 receipt.withdrawableAmount =
14 receipt.withdrawableAmount +
15 withdrawAmount;
16 receipt.withdrawRound = latestRoundID;

Snippet 4.9: Logic performed in requestWithdraw, nearly identical to that performed in
instantWithdraw

Since this logic is nearly identical in the two use cases, it should be moved into a separate
internal function.

Impact If part of this logic to update user receipts changes in the future, it is possible that
developers may erroneously change the logic in only one of these two locations.

Recommendation Create an internal function updateWithdrawReceipt that performs the logic
of updated the user withdraw receipt. Then, call updateWithdrawReceipt from within both
instantWithdraw and requestWithdraw.

Developer Response The developers acknowledged this issue.

© 2023 Veridise Inc. Veridise Audit Report: StoneVault-V1

4.1 Detailed Description of Issues 23

4.1.9 V-STN-VUL-009: Type address used instead of interfaces

Severity Warning Commit 8a49bb0
Type Maintainability Status Acknowledged

File(s) Multiple
Location(s) N/A

Confirmed Fix At

The following contracts encode the logic of the protocol.

▶ StoneVault

▶ StrategyController

▶ AssetsVault

▶ Minter

▶ Stone

The address of these contracts is stored in each contract and is casted whenever an external call
is made to these contracts.

1 StrategyController controller = StrategyController(
2 strategyController
3);

Snippet 4.10: Code snippet from instantWithdraw() in StoneVault The address
strategyController is cast to contract StrategyController

Impact This pattern is error prone and type unsafe.

Recommendation Define interfaces for these contract and initialise have state variables with
type of these interfaces.

Developer Response The developers acknowledged this issue.

Veridise Audit Report: StoneVault-V1 © 2023 Veridise Inc.

24 4 Vulnerability Report

4.1.10 V-STN-VUL-010: Use consistent solidity version

Severity Warning Commit 8a49bb0
Type Usability Issue Status Intended Behavior

File(s) StoneCross.sol

Location(s) N/A
Confirmed Fix At

All contracts except StoneCross.sol use solidity version 0.8.21, but StoneCross.sol uses version
0.8.19.

1 pragma solidity 0.8.19;

Snippet 4.11: Pragma statement in StoneCross.sol

StoneCross.sol does not require 0.8.19 specifically, so version 0.8.21 should be used to keep
consistent with the rest of stone vault.

Impact Using inconsistent solidity versions unnecessarily complicates deployment and test-
ing.

Recommendation Use solidity version 0.8.21 in StoneCross.sol.

Developer Response The developers acknowledged this issue.

© 2023 Veridise Inc. Veridise Audit Report: StoneVault-V1

4.1 Detailed Description of Issues 25

4.1.11 V-STN-VUL-011: Use in-fix addition instead of uint256 add function

Severity Warning Commit 8a49bb0
Type Maintainability Status Acknowledged

File(s) Proposal.sol

Location(s) N/A
Confirmed Fix At

The functions voteFor and retreiveAllToken in Proposal.sol use the uint256 function add

instead of using the built-in solidity addtion.

1 function voteFor(address _proposal, uint256 _poll, bool _flag) external {
2 ...
3

4 if (_flag) {
5 detail.support = detail.support.add(_poll);
6 } else {
7 detail.oppose = detail.oppose.add(_poll);
8 }
9

10 polls[msg.sender][_proposal] = polls[msg.sender][_proposal].add(_poll);
11

12 ...
13 }

Snippet 4.12: The add function used in voteFor

1 function retrieveAllToken() external {
2 ...
3 for (uint i; i < length; i++) {
4 address addr = proposals.at(i);
5 uint256 voteAmount = polls[msg.sender][addr];
6

7 if (!canVote(addr) && voteAmount != 0) {
8 polls[msg.sender][addr] = 0;
9 withAmount = withAmount.add(voteAmount);

10

11 ...
12 }
13 }
14 ...
15 }

Snippet 4.13: The add function used in retreiveAllToken

While this could prevent overflow bugs in previous versions of solidity, version 0.8.x has
built-in overflow protection. For this reason, we recommend using built-in addition to improve
code readability.

Impact Unnecessary use of uint256 add reduces readability in Proposal.sol, and may incur a
slightly higher gas cost.

Veridise Audit Report: StoneVault-V1 © 2023 Veridise Inc.

26 4 Vulnerability Report

Recommendation Using built-in addition with + and += to update values in voteFor and
retreiveAllToken.

Developer Response The developers acknowledged this issue.

© 2023 Veridise Inc. Veridise Audit Report: StoneVault-V1

4.1 Detailed Description of Issues 27

4.1.12 V-STN-VUL-012: Same constants defined in multiple contracts

Severity Warning Commit 8a49bb0
Type Maintainability Status Acknowledged

File(s) Multiple
Location(s) N/A

Confirmed Fix At

The protocol defines multiple constants viz.

▶ MULTIPLIER

▶ ONE_HUNDRED_PERCENT

▶ minVotePeriod

▶ DAY_INTERVAL

▶ MINIMUM_REBASE_INTERVAL

These constants have same values but are defined in multiple contracts. This pattern is error
prone.

Impact Any future change in the value of these constants will have to be be replicated in all
the places where these constants are defined. Missing such a change might various open attack
vectors.

Recommendation Define these contracts in a Configuration contract and inherit all the
contracts which use any of these constants from Configuration contract

Developer Response The developers acknowledged this issue. But informed us that they
would not update already deployed smart contracts

Veridise Audit Report: StoneVault-V1 © 2023 Veridise Inc.

28 4 Vulnerability Report

4.1.13 V-STN-VUL-013: Explicit return recommended

Severity Info Commit 8a49bb0
Type Maintainability Status Acknowledged

File(s) StoneCross.sol

Location(s) getQuota()
Confirmed Fix At

The getQuota function in StoneCross.sol uses the default return value when the if statement
condition is not satisfied

1 function getQuota() external returns (uint256) {
2 uint256 amount = quota[block.timestamp / DAY_INTERVAL];
3 if (cap > amount && enable) {
4 return cap - amount;
5 }
6 }

Snippet 4.14: getQuota function within StoneCross.sol

To make the semantics of getQuota more clear for developers, we recommend an explicit return
statement.

Impact Implicit return statements lead to code that is more difficult for developers to main-
tain.

Recommendation Explicitly return 0 at the end of getQuota.

Developer Response The developers acknowledged this issue.

© 2023 Veridise Inc. Veridise Audit Report: StoneVault-V1

4.1 Detailed Description of Issues 29

4.1.14 V-STN-VUL-014: Unnecessary ternary statement

Severity Info Commit 8a49bb0
Type Maintainability Status Acknowledged

File(s) Proposal.sol

Location(s) canVote()
Confirmed Fix At

The canVote function in Proposal.sol uses a ternary statement to return a boolean value.
However, this is unnecessary, as the ternary expression evaluates to the same value as the
condition.

1 function canVote(address _proposal) public view returns (bool result) {
2 if (!proposals.contains(_proposal)) {
3 return false;
4 }
5 ProposalDetail memory detail = proposalDetails[_proposal];
6 return block.timestamp < detail.deadline ? true : false;
7 }

Snippet 4.15: canVote function with unnecessary ternary statement

Impact Unnecessary ternary statements make the code less easily readable.

Recommendation Change the return statement to the following:

1 return block.timestamp < detail.deadline;

Developer Response The developers acknowledged this issue.

Veridise Audit Report: StoneVault-V1 © 2023 Veridise Inc.

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	V-STN-VUL-001: A malicious strategy can force invest all ETH in itself
	V-STN-VUL-002: Round based withdrawal logic can be bypassed
	V-STN-VUL-003: withdrawFeeRate not initialised in constructor
	V-STN-VUL-004: _ratios can be all zero
	V-STN-VUL-005: Addresses should not be hardcoded
	V-STN-VUL-006: Separate functionality for instantWithdraw()
	V-STN-VUL-007: Better revert messages
	V-STN-VUL-008: Duplicate Code
	V-STN-VUL-009: Type address used instead of interfaces
	V-STN-VUL-010: Use consistent solidity version
	V-STN-VUL-011: Use in-fix addition instead of uint256 add function
	V-STN-VUL-012: Same constants defined in multiple contracts
	V-STN-VUL-013: Explicit return recommended
	V-STN-VUL-014: Unnecessary ternary statement

