
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

0xMeowProtocol

Veridise Inc.
December 19, 2023

▶ Prepared For:

Meow Protocol
https://twitter.com/0xMeowProtocol/

▶ Prepared By:

Benjamin Sepanski
Andreea Buţerchi

▶ Contact Us: contact@veridise.com

▶ Version History:

Dec. 18, 2023 V2
Dec. 13, 2023 V1
Dec. 04, 2023 Initial Draft

© 2023 Veridise Inc. All Rights Reserved.

https://twitter.com/0xMeowProtocol/
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 6

4 Vulnerability Report 7
4.1 Detailed Description of Issues . 8

4.1.1 V-MEW-VUL-001: Interest never accumulated 8
4.1.2 V-MEW-VUL-002: Anyone can set fee receivers 9
4.1.3 V-MEW-VUL-003: Removed Initializer interface 10
4.1.4 V-MEW-VUL-004: Missing call to refreshConfigInternal() 11
4.1.5 V-MEW-VUL-005: No call to _disableInitializer 12
4.1.6 V-MEW-VUL-006: Variable can be immutable 13
4.1.7 V-MEW-VUL-007: Removed zero-cost abstraction 14

5 Fuzz Testing 15
5.1 Methodology . 15
5.2 Properties Fuzzed . 15
5.3 Detailed Description of Fuzzed Specifications 16

5.3.1 V-MEW-SPEC-001: ERC20.01: transfer should revert if a user attempts to
send more funds than they have . 16

5.3.2 V-MEW-SPEC-002: ERC20.02: Funds should be successfully transferred
from sender to to as long as sender ≠ to 17

5.3.3 V-MEW-SPEC-003: ERC20.03: transfer should not modify totalSupply,
allowances, or balances other than sender and to 18

5.3.4 V-MEW-SPEC-004: ERC20.04: transferFrom should enforce allowance and
user balance . 19

5.3.5 V-MEW-SPEC-005: ERC20.06: transferFrom should not modify totalSup-
ply, other allowances, or balances . 20

5.3.6 V-MEW-SPEC-006: ERC20.07: approve makes appropriate state changes 21
5.3.7 V-MEW-SPEC-007: ERC20.08: increaseAllowances makes appropriate

state changes . 22
5.3.8 V-MEW-SPEC-008: ERC20.09: decreaseAllowance makes appropriate

state changes . 23
5.3.9 V-MEW-SPEC-009: TokenDistributor: funds can only be sent to the original

recipients . 24

Glossary 25

Veridise Audit Report: 0xMeowProtocol © 2023 Veridise Inc.

Executive Summary 1
From Nov. 27, 2023 to Nov. 29, 2023, Meow Protocol engaged Veridise to review the security
of their project, 0xMeowProtocol. 0xMeowProtocol is an over-collateralized lending platform
based on AAVE’s V1 protocol*. Veridise conducted the assessment over 6 person-days, with 2
engineers reviewing code over 3 days on commit 0xe8217ac. The auditing strategy involved a
tool-assisted analysis of the source code performed by Veridise engineers as well as extensive
manual auditing.

Code assessment. The 0xMeowProtocol developers provided the source code of the 0xMeow-
Protocol contracts for review. The review focused on two smart contracts in 0xMeowProtocol.
First, a token distribution contract with a designated set of receivers, and second, a token contract
representing liquidity deposited into the larger lending protocol. The audit also validated that
the changes made to the remainder of the codebase did not lead to behavioral differences in the
protocol. For a security analysis of the core logic of this protocol, we refer the reader to various
publicly available audits of the AAVE V1 protocol†.

No documentation was provided, and most of the internal documentation was removed from the
original codebase. Veridise auditors used documentation from AAVE as an adequate substitute.
The source code did not include a test suite. However, several files in the source code indicate
that the developers use linting tools such as prettier.

Two behavioral changes from the AAVE V1 repository were made:

▶ Removal of flashloan functionality: Meow Protocol developers removed all functions, events,
and variables related to the lending pools providing flashloans.

▶ Removal of versioned upgradeability: Meow Protocol developers replaced versioned upgrade-
ability with standard OpenZeppelin Initializable contracts, which do not contain a
queryable version.

Otherwise, the functional behavior of the protocol remains untouched. The Veridise auditors
refer to prior audit reports publicly available on AAVE’s website† for a full analysis of protocol
security.

The two contracts which Veridise manually reviewed retained their primary functionality from
the original protocol. The main changes consist of removing support for interest redirection,
upgrading to modern Solidity standards, and removal of the various unused fields.

Summary of issues detected. The audit uncovered 7 issues, 2 of which are assessed to be of
high or critical severity by the Veridise auditors. Specifically, failure to accrue interest to liquidity
providers (V-MEW-VUL-001) and lack of access control allowing anyone to withdraw the protocol
fees (V-MEW-VUL-002). The Veridise auditors also identified 3 warnings and 2 informational
findings, largely related to best practices for initializer routines. The 0xMeowProtocol developers

* https://github.com/aave/aave-protocol/tree/4b4545fb5
† https://docs.aave.com/developers/v/1.0/developing-on-aave/security-and-audits

Veridise Audit Report: 0xMeowProtocol © 2023 Veridise Inc.

https://github.com/aave/aave-protocol/tree/4b4545fb5
https://docs.aave.com/developers/v/1.0/developing-on-aave/security-and-audits

2 1 Executive Summary

have resolved all of the critical issues. Meow Protocol deemed the remaining issues too minor
to fix, as they pertain to initialization and maintainability, and are unrelated to theft of funds.

Recommendations. After auditing the protocol, the auditors had a few suggestions to improve
the 0xMeowProtocol. First, the auditors strongly recommend adapting the entire AAVE test
suite into the development process for this repository, relying on standard tools like CI/CD to
prevent breaking changes. Second, the auditors suggest returning the comments from AAVE to
the codebase. This will improve readability, and help future developers navigate the codebase
more easily without needing to refer to AAVE.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

© 2023 Veridise Inc. Veridise Audit Report: 0xMeowProtocol

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
0xMeowProtocol 0xe8217ac Solidity Polygon

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
Nov. 27 - Nov. 29, 2023 Manual & Tools 2 6 person-days

Table 2.3: Vulnerability Summary.

Name Number Resolved
Critical-Severity Issues 2 2
High-Severity Issues 0 0
Medium-Severity Issues 0 0
Low-Severity Issues 0 0
Warning-Severity Issues 3 0
Informational-Severity Issues 2 0
TOTAL 7 2

Table 2.4: Category Breakdown.

Name Number
Logic Error 2
Access Control 2
Maintainability 2
Gas Optimization 1

Veridise Audit Report: 0xMeowProtocol © 2023 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of 0xMeowProtocol’s smart
contracts. In our audit, we sought to answer questions such as:

▶ Do all functions have proper access control?
▶ Are all rewards distributed correctly?
▶ Are the contracts vulnerable to any common Solidity security issues (reentrancy, large

stakeholder attacks, etc.)?
▶ Does the upgrade to Solidity 0.8 lead to any breaking changes?
▶ Are any known vulnerabilities present in V1 of AAVE?
▶ Are all key AAVE invariants maintained?
▶ Is any core AAVE functionality disrupted?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a combination of
human experts and automated program analysis & testing tools. In particular, we conducted
our audit with the aid of the following techniques:

▶ Static analysis. To identify potential common vulnerabilities, we leveraged our custom
smart contract analysis tool Vanguard. These tools are designed to find instances of
common smart contract vulnerabilities, such as reentrancy, flash loans, and uninitialized
variables.

▶ Fuzzing/Property-based Testing. We also leverage fuzz testing to determine if the protocol
may deviate from the expected behavior. To do this, we formalize the desired behavior of
the protocol as [V] specifications and then use our fuzzing framework OrCa to determine
if a violation of the specification can be found. See Chapter 5 for more details.

Scope. The scope of this audit is limited to the fees/TokenDistirbutor.sol contract and the
tokenization/BToken.sol contract. The remaining files were excluded from a detailed manual
review. Veridise auditors programmatically compared the excluded files to their equivalents
from the AAVE repository, and manually reviewed any differences to check that the functionality
was unchanged. During the audit, the Veridise auditors referred to these excluded files, but
assumed that they have otherwise been implemented correctly.

Methodology. Veridise auditors reviewed the reports of previous audits for 0xMeowProtocol,
and read the AAVE documentation. They then began a manual audit of the code assisted by
both static analyzers and automated testing.

Veridise Audit Report: 0xMeowProtocol © 2023 Veridise Inc.

6 3 Audit Goals and Scope

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

In this case, we judge the likelihood of a vulnerability as follows in Table 3.2:

Table 3.2: Likelihood Breakdown

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows in Table 3.3:

Table 3.3: Impact Breakdown

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2023 Veridise Inc. Veridise Audit Report: 0xMeowProtocol

Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowledged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-MEW-VUL-001 Interest never accumulated Critical Fixed
V-MEW-VUL-002 Anyone can set fee receivers Critical Fixed
V-MEW-VUL-003 Removed Initializer interface Warning Acknowledged
V-MEW-VUL-004 Missing call to refreshConfigInternal() Warning Acknowledged
V-MEW-VUL-005 No call to _disableInitializer Warning Acknowledged
V-MEW-VUL-006 Variable can be immutable Info Acknowledged
V-MEW-VUL-007 Removed zero-cost abstraction Info Acknowledged

Veridise Audit Report: 0xMeowProtocol © 2023 Veridise Inc.

8 4 Vulnerability Report

4.1 Detailed Description of Issues

4.1.1 V-MEW-VUL-001: Interest never accumulated

Severity Critical Commit e8217ac
Type Logic Error Status Fixed

File(s) contracts/tokenization/MToken.sol

Location(s) cumulateBalanceInternal()
Confirmed Fix At c7ef0e9

The cumulateBalanceInternal() function relies on the overriden implementation of balanceOf()
to compute the balanceIncrease of a user’s account due to interest.

1 uint256 previousPrincipalBalance = super.balanceOf(_user);
2

3 //calculate the accrued interest since the last accumulation
4 uint256 balanceIncrease = balanceOf(_user).sub(previousPrincipalBalance);

Snippet 4.1: Snippet from cumulateBalanceInternal()

However, the MToken contract does not override balanceOf(). In the above snippet, both function
calls refer to the same method, and balanceIncrease will always be zero.

Note that the AAVE V1 implementation does override balanceOf(), as can be seen at this link.
This implementation uses the calculateCumulatedBalanceInternal() to accumulate interest.
The corresponding function in MToken is unused.

Impact Liquidity providers will receive no benefit from their deposits.

Recommendation Override balanceOf() using the same implementation from AAVE.

Developer Response We restored the overridden definition of balanceOf() to match the AAVE
implementation, less components related to interest redirection.

© 2023 Veridise Inc. Veridise Audit Report: 0xMeowProtocol

https://github.com/aave/aave-protocol/blob/4b4545fb583fd4f400507b10f3c3114f45b8a037/contracts/tokenization/AToken.sol#L338
https://github.com/aave/aave-protocol/blob/4b4545fb583fd4f400507b10f3c3114f45b8a037/contracts/tokenization/AToken.sol#L338-L373
https://github.com/aave/aave-protocol/blob/4b4545fb583fd4f400507b10f3c3114f45b8a037/contracts/tokenization/AToken.sol#L338-L373

4.1 Detailed Description of Issues 9

4.1.2 V-MEW-VUL-002: Anyone can set fee receivers

Severity Critical Commit e8217ac
Type Access Control Status Fixed

File(s) fees/TokenDistirbutor.sol

Location(s) initialize()
Confirmed Fix At c7ef0e9

The TokenDistirbutor contract doles out fees to a set of receiver addresses determined at
initialization. In the AAVE implementation, this contract is initializable and the receivers are
set during initialization.

1 function initialize(
2 address[] memory _receivers,
3 uint256[] memory _percentages
4) public initializer {
5 internalSetTokenDistribution(_receivers, _percentages);
6 emit DistributionUpdated(_receivers, _percentages);
7

8 }

Snippet 4.2: Definition of initialize in AAVE’s implementation of TokenDistributor.sol

Note the use of the initializer modifier, which prevents the method from being called twice.

The developers of 0xMeowProtocol have removed the upgradeability feature, and also the
modifier. However, the initialize function is still public.

1 function initialize(address[] memory _receivers, uint256[] memory _percentages)
public {

2 internalSetTokenDistribution(_receivers, _percentages);// percentage express in x
/10000

3

4 }

Snippet 4.3: Implementation of initialize in 0xMeowProtocol’s implementation.

Impact Once a large amount of fees have accumulated, anyone may set themselves as the
receiver and take the funds (e.g. by calling distributeWithAmount). If the contract is not monitored,
this may go unnoticed and allow theft for some time.

Recommendation Keep the contract as upgradeable and return the initialize modifier to its
former place. This will allow upgrading the receivers (and possibly the entire token distribution
mechanism) in a permissioned way.

Developer Response We added in the initialize modifier.

Veridise Audit Report: 0xMeowProtocol © 2023 Veridise Inc.

https://github.com/aave/aave-protocol/blob/4b4545fb583fd4f400507b10f3c3114f45b8a037/contracts/fees/TokenDistributor.sol

10 4 Vulnerability Report

4.1.3 V-MEW-VUL-003: Removed Initializer interface

Severity Warning Commit e8217ac
Type Maintainability Status Acknowledged

File(s) configuration/LendingPoolParametersProvider.sol,
fees/FeeProvider.sol

Location(s) N/A
Confirmed Fix At

The LendingPoolParametersProvider and FeeProvider contracts inherit from the VersionedInitializable
contract in the AAVE V1 implementation. See, for example, the below snippet.

1 contract LendingPoolParametersProvider is VersionedInitializable {

Snippet 4.4: Snippet from configuration/LendingPoolParametersProvider.sol in the AAVE V1
repository.

The initialize() function is still present in FeeProvider, but unguarded. The initialize()

function in LendingPoolParametersProvider is no longer present.

Impact While the current implementations will not directly cause errors, it may not be clear to
future developers that these contracts can be upgraded. This may lead to misuse or incorrect
modifications in the future.

Recommendation Make the two contracts Initializable with a guarded initialization func-
tion.

© 2023 Veridise Inc. Veridise Audit Report: 0xMeowProtocol

https://github.com/aave/aave-protocol/blob/4b4545fb583fd4f400507b10f3c3114f45b8a037/contracts/configuration/LendingPoolParametersProvider.sol#L13

4.1 Detailed Description of Issues 11

4.1.4 V-MEW-VUL-004: Missing call to refreshConfigInternal()

Severity Warning Commit e8217ac
Type Logic Error Status Acknowledged

File(s) lendingpool/LendingPoolCore.sol

Location(s) initialize()
Confirmed Fix At

The LendingPoolCore.initialize() function in the AAVE protocol repository includes a call to
refreshConfigInternal().

1 function initialize(LendingPoolAddressesProvider _addressesProvider) public
initializer {

2 addressesProvider = _addressesProvider;
3 refreshConfigInternal();
4 }

Snippet 4.5: Implementation of initialize() in the AAVE protocol repository.

refreshConfigInternal() sets the lendingPoolAddress to the one provided by the addressesProvider
.

1 function refreshConfigInternal() internal {
2 lendingPoolAddress = addressesProvider.getLendingPool();
3 }

Snippet 4.6: Implementation of refreshConfigInternal().

In the client’s implementation, initialize() does not call refreshConfigInternal().

Impact Not calling this function will leave the contract partially uninitialized when deployed,
leading to potential errors until refreshConfiguration() is called by the LendingPoolConfigurator
.

Recommendation Call refreshConfigInternal() in the initialize() function.

Veridise Audit Report: 0xMeowProtocol © 2023 Veridise Inc.

https://github.com/aave/aave-protocol/blob/4b4545fb583fd4f400507b10f3c3114f45b8a037/contracts/lendingpool/LendingPoolCore.sol#L94C1-L97C6

12 4 Vulnerability Report

4.1.5 V-MEW-VUL-005: No call to _disableInitializer

Severity Warning Commit e8217ac
Type Access Control Status Acknowledged

File(s) See issue description
Location(s) See issue description

Confirmed Fix At

Several contracts inherit from OpenZeppelin’s Initializable contract, but do not call the
function _disableInitializers() in their constructor. These contracts include:

▶ LendingPool

▶ LendingPoolLiquidationManager

▶ LendingPoolDataProvider

▶ LendingPoolCore

▶ LendingPoolConfigurator

Impact The implementation contracts may be initialized by malicious actors, leading to
possible scams.

Further, deployment scripts may incorrectly initialize the implementations instead of the proxies,
leading to errors and the opportunity for third-party actors to initialize the proxies.

Recommendation As recommended by OpenZeppelin, call _disableInitializers() in the
constructor of each Initializable contract.

© 2023 Veridise Inc. Veridise Audit Report: 0xMeowProtocol

https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable

4.1 Detailed Description of Issues 13

4.1.6 V-MEW-VUL-006: Variable can be immutable

Severity Info Commit e8217ac
Type Gas Optimization Status Acknowledged

File(s) tokenization/MToken.sol

Location(s) underlyingAssetDecimals
Confirmed Fix At

The underlyingAssetDecimals variable is set in the constructor() and never written to again.
This variable can be replaced with an immutable one to save on gas.

Veridise Audit Report: 0xMeowProtocol © 2023 Veridise Inc.

14 4 Vulnerability Report

4.1.7 V-MEW-VUL-007: Removed zero-cost abstraction

Severity Info Commit e8217ac
Type Maintainability Status Acknowledged

File(s) configuration/LendingPoolAddressesProvider.sol

Location(s) N/A
Confirmed Fix At

The developers removed the ILendingPoolAddressesProvider.sol interface.

Recommendation Since this interface has no direct cost during deployment, but does provide
a useful tool for development on top of the protocol, we recommend restoring the interface and
having LendingPoolAddressesProvider inherit from the interface.

© 2023 Veridise Inc. Veridise Audit Report: 0xMeowProtocol

Fuzz Testing 5
5.1 Methodology

Our goal was to fuzz test 0xMeowProtocol to assess its functional correctness (i.e, whether the
implementation deviates from the intended behavior).

We used OrCa, Veridise’s specification-guided fuzzer, and wrote invariants – logical formulas
that should hold after every transaction. We then encoded those invariants as assertions in [V],
Veridise’s in-house specification language.

We used Foundry to setup the environment and write the deployment scripts. Based on the
deployed artifacts, we performed fuzzing campaigns using OrCa in order to find violations for
the specifications detailed below.

5.2 Properties Fuzzed

Table 5.1 describes the invariants we fuzz-tested. The second column describes the invariant
informally in English, and the third shows the total amount of compute time spent fuzzing
this property. The last column notes whether we found a bug when fuzzing the invariant (✗
indicates no bug was found and ✓ means fuzzing this invariant revealed a bug).

The Veridise auditors devoted a total of 12 compute-hours to fuzzing this protocol, identifying a
total of 1 bug.

See Section 5.3 for more details on the specifications.

Table 5.1: Invariants Fuzzed.

Specification Invariant Minutes Fuzzed Bugs Found
V-MEW-SPEC-001 ERC20.01: transfer should revert if a user atte. . . 180 ✗
V-MEW-SPEC-002 ERC20.02: Funds should be successfully transfer. . . 180 ✗
V-MEW-SPEC-003 ERC20: static totalSupply 180 ✗
V-MEW-SPEC-004 ERC20: allowance/balances 180 ✗
V-MEW-SPEC-005 ERC20: no extra modfications 180 ✗
V-MEW-SPEC-006 ERC20.07: approve makes appropriate state changes 180 ✗
V-MEW-SPEC-007 ERC20: increaseAllowance correctness 180 ✗
V-MEW-SPEC-008 ERC20: decreaseAllowance correctness 180 ✗
V-MEW-SPEC-009 TokenDistributor: funds can only be sent to the. . . 1 ✓

Veridise Audit Report: 0xMeowProtocol © 2023 Veridise Inc.

16 5 Fuzz Testing

5.3 Detailed Description of Fuzzed Specifications

5.3.1 V-MEW-SPEC-001: ERC20.01: transfer should revert if a user attempts to send
more funds than they have

Minutes Fuzzed 180 Bugs Found 0

Scope MToken.sol

Natural Language transfer should revert if a user attempts to send more funds than they
have.

Formal Specification

1 vars: MToken t

2 inv: reverted(t.transfer(to, amt), amt > t.balanceOf(sender))

© 2023 Veridise Inc. Veridise Audit Report: 0xMeowProtocol

5.3 Detailed Description of Fuzzed Specifications 17

5.3.2 V-MEW-SPEC-002: ERC20.02: Funds should be successfully transferred from
sender to to as long as sender ≠ to

Minutes Fuzzed 180 Bugs Found 0

Scope MToken.sol

Natural Language Funds should be successfully transferred from sender to to as long as
sender ≠ to.

Formal Specification

1 vars: MToken t

2 inv: finished(t.transfer(to, amt),

3 to != sender |=>

4 t.balanceOf(sender) = old(t.balanceOf(sender)) - amt &&

5 t.balanceOf(to) = old(t.balanceOf(to)) + amt

6)

Veridise Audit Report: 0xMeowProtocol © 2023 Veridise Inc.

18 5 Fuzz Testing

5.3.3 V-MEW-SPEC-003: ERC20.03: transfer should not modify totalSupply,
allowances, or balances other than sender and to

Minutes Fuzzed 180 Bugs Found 0

Scope MToken.sol

Natural Language transfer should not modify totalSupply, allowances, or balances other
than sender and to.

Formal Specification

1 vars: MToken t, address o1, address o2, address o3

2 inv: finished(t.transfer(to, amt),

3 o1 != sender && o1 != to |=>

4 t.totalSupply() = old(t.totalSupply()) &&

5 t.balanceOf(o1) = old(t.balanceOf(o1)) &&

6 t.allowance(o2, o3) = old(t.allowance(o2, o3))

7)

© 2023 Veridise Inc. Veridise Audit Report: 0xMeowProtocol

5.3 Detailed Description of Fuzzed Specifications 19

5.3.4 V-MEW-SPEC-004: ERC20.04: transferFrom should enforce allowance and user
balance

Minutes Fuzzed 180 Bugs Found 0

Scope MToken.sol

Natural Language transferFrom should enforce allowance and user balance.

transferFrom should revert when the amount requested is greater than what the spender owns
or beyond the recipient’s allowance.

Formal Specification

1 vars: MToken t

2 inv: reverted(t.transferFrom(from, to, amt),

3 amt > t.balanceOf(from) || (from != sender && amt > t.allowance(from, sender))

4)

Veridise Audit Report: 0xMeowProtocol © 2023 Veridise Inc.

20 5 Fuzz Testing

5.3.5 V-MEW-SPEC-005: ERC20.06: transferFrom should not modify totalSupply,
other allowances, or balances

Minutes Fuzzed 180 Bugs Found 0

Scope ERC20 tokens.

Natural Language transferFrom should not modify totalSupply, other allowances, or bal-
ances.

Formal Specification

1 vars: MToken t, address o1, address o2, address o3, address o4

2 inv: finished(t.transferFrom(from, to, amt),

3 o1 != from && o1 != to && o2 != sender && o3 != from |=>

4 t.balanceOf(o1) = old(t.balanceOf(o1)) &&

5 t.allowance(from, o2) = old(t.allowance(from, o2)) &&

6 t.allowance(o3, o4) = old(t.allowance(o3, o4)) &&

7 t.totalSupply() = old(t.totalSupply())

8)

© 2023 Veridise Inc. Veridise Audit Report: 0xMeowProtocol

5.3 Detailed Description of Fuzzed Specifications 21

5.3.6 V-MEW-SPEC-006: ERC20.07: approve makes appropriate state changes

Minutes Fuzzed 180 Bugs Found 0

Scope MToken.sol

Natural Language approve makes appropriate state changes.

approve should never finish in a state where the allowance of the spender is not equal to the
given amount. totalSupply, other allowances and balances should not be modified.

Formal Specification

1 vars: MToken t, address o1, address o2, address o3

2 inv: finished(t.approve(spender, amt),

3 o2 != sender && o1 != spender |=>

4 t.allowance(sender, spender) = amt &&

5 t.allowance(sender, o1) = old(t.allowance(sender, o1)) &&

6 t.allowance(o2, o3) = old(t.allowance(o2, o3)) &&

7 t.balanceOf(o3) = old(t.balanceOf(o3)) &&

8 t.totalSupply() = old(t.totalSupply())

9)

Veridise Audit Report: 0xMeowProtocol © 2023 Veridise Inc.

22 5 Fuzz Testing

5.3.7 V-MEW-SPEC-007: ERC20.08: increaseAllowances makes appropriate state
changes

Minutes Fuzzed 180 Bugs Found 0

Scope MToken.sol

Natural Language increaseAllowances makes appropriate state changes.

The function should increase a user’s allowance by the indicated amount. totalSupply, other
allowances, and balances should not be modified.

Formal Specification

1 vars: MToken t, address o1, address o2, address o3

2 inv: finished(t.increaseAllowance(spender, amt),

3 o2 != sender && o1 != spender |=>

4 t.allowance(sender, spender) = old(t.allowance(sender, spender)) + amt &&

5 t.allowance(sender, o1) = old(t.allowance(sender, o1)) &&

6 t.allowance(o2, o3) = old(t.allowance(o2, o3)) &&

7 t.balanceOf(o3) = old(t.balanceOf(o3)) &&

8 t.totalSupply() = old(t.totalSupply())

9)

© 2023 Veridise Inc. Veridise Audit Report: 0xMeowProtocol

5.3 Detailed Description of Fuzzed Specifications 23

5.3.8 V-MEW-SPEC-008: ERC20.09: decreaseAllowance makes appropriate state
changes

Minutes Fuzzed 180 Bugs Found 0

Scope MToken.sol

Natural Language decreaseAllowance makes appropriate state changes.

The function should decrease a user’s allowance by the indicated amount. totalSupply, other
allowances, and balances should not be modified.

Formal Specification

1 vars: MToken t, address o1, address o2, address o3

2 inv: finished(t.decreaseAllowance(spender, amt),

3 o2 != sender && o1 != spender |=>

4 t.allowance(sender, spender) = old(t.allowance(sender, spender)) - amt &&

5 t.allowance(sender, o1) = old(t.allowance(sender, o1)) &&

6 t.allowance(o2, o3) = old(t.allowance(o2, o3)) &&

7 t.balanceOf(o3) = old(t.balanceOf(o3)) &&

8 t.totalSupply() = old(t.totalSupply())

9)

Veridise Audit Report: 0xMeowProtocol © 2023 Veridise Inc.

24 5 Fuzz Testing

5.3.9 V-MEW-SPEC-009: TokenDistributor: funds can only be sent to the original
recipients

Minutes Fuzzed 1 Bugs Found 1

Scope TokenDistributor.sol

Natural Language distribute/ distributeWithAmount/ distributeWithPercentage should
only send funds to the original recipients. Hence initialize is public-facing, it can be called by
malicious actors to alter the list of original recipients. This is a PoC for the issue reported here
[add link to the V-MEW-VUL-002 issue].

Formal Specification The [V] specification below can be can interpreted as follows: it is never
the case that we can call initialize twice with two different sets of receivers.

1 vars: TokenDistributor td, address u

2 spec: []!(finished(td.initialize(r1, p1), foreach(x : r1, x != u)) && X<>finished(td.

initialize(r2, p2), !foreach(x : r2, x != u)))

This [V] specification says that it is never the case that after a call to initialize with a specific
set of recipients it is possible to distribute the funds to other accounts that are not recipients
(their balances should remain the same).

© 2023 Veridise Inc. Veridise Audit Report: 0xMeowProtocol

Glossary

AAVE Aave is an Open Source Protocol to create Non-Custodial Liquidity Markets to earn
interest on supplying and borrowing assets. To learn more, visit https://aave.com . 1

OpenZeppelin A security company which provides many standard implementations of com-
mon contract specifications. See https://www.openzeppelin.com. 1

prettier A code formatting tool, seehttps://prettier.io/docs/en/integrating-with-linters.
html to learn more. 1

smart contract A self-executing contract with the terms directly written into code. Hosted on a
blockchain, it automatically enforces and executes the terms of an agreement between
buyer and seller. Smart contracts are transparent, tamper-proof, and eliminate the need
for intermediaries, making transactions more efficient and secure.. 1, 25

Solidity The standard high-level language used to develop smart contracts on the Ethereum
blockchain. See https://docs.soliditylang.org/en/v0.8.19/ to learn more. 1

Veridise Audit Report: 0xMeowProtocol © 2023 Veridise Inc.

https://www.openzeppelin.com
https://prettier.io/docs/en/integrating-with-linters.html
https://prettier.io/docs/en/integrating-with-linters.html
https://docs.soliditylang.org/en/v0.8.19/

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	V-MEW-VUL-001: Interest never accumulated
	V-MEW-VUL-002: Anyone can set fee receivers
	V-MEW-VUL-003: Removed Initializer interface
	V-MEW-VUL-004: Missing call to refreshConfigInternal()
	V-MEW-VUL-005: No call to _disableInitializer
	V-MEW-VUL-006: Variable can be immutable
	V-MEW-VUL-007: Removed zero-cost abstraction
	Fuzz Testing
	Methodology

	Methodology
	Properties Fuzzed

	Properties Fuzzed
	Detailed Description of Fuzzed Specifications

	Detailed Description of Fuzzed Specifications
	V-MEW-SPEC-001: ERC20.01: transfer should revert if a user attempts to send more funds than they have
	V-MEW-SPEC-002: ERC20.02: Funds should be successfully transferred from sender to to as long as sender to
	V-MEW-SPEC-003: ERC20.03: transfer should not modify totalSupply, allowances, or balances other than sender and to
	V-MEW-SPEC-004: ERC20.04: transferFrom should enforce allowance and user balance
	V-MEW-SPEC-005: ERC20.06: transferFrom should not modify totalSupply, other allowances, or balances
	V-MEW-SPEC-006: ERC20.07: approve makes appropriate state changes
	V-MEW-SPEC-007: ERC20.08: increaseAllowances makes appropriate state changes
	V-MEW-SPEC-008: ERC20.09: decreaseAllowance makes appropriate state changes
	V-MEW-SPEC-009: TokenDistributor: funds can only be sent to the original recipients
	Glossary

