
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

Versa Wallet

Veridise Inc.
August 23, 2023

▶ Prepared For:

Versa Lab
https://www.versawallet.io/

▶ Prepared By:

Yanju Chen
Himanshu
Bryan Tan

▶ Contact Us: contact@veridise.com

▶ Version History:

Aug. 23, 2023 V1

© 2023 Veridise Inc. All Rights Reserved.

https://www.versawallet.io/
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 6

4 Vulnerability Report 7
4.1 Detailed Description of Issues . 8

4.1.1 V-VERS-VUL-001: Malicious hook can avoid removal 8
4.1.2 V-VERS-VUL-002: Reentrancy into disableModule() can make a module

un-disableable . 10
4.1.3 V-VERS-VUL-003: Hooks that dynamically change hasHooks() may be

executed incorrectly . 12
4.1.4 V-VERS-VUL-004: Recorded token balances may not match actual amount

transferred . 14
4.1.5 V-VERS-VUL-005: Signed hashes do not include validator address . . . 16
4.1.6 V-VERS-VUL-006: Instant transaction signatures have no expiry 18
4.1.7 V-VERS-VUL-007: SpendingLimitHooks cannot account for spending on

extra methods added by custom ERC20 tokens 19
4.1.8 V-VERS-VUL-008: resetTimeIntervalMinutes is assumed to be nonzero

but not checked . 20
4.1.9 V-VERS-VUL-009: lastResetTimeMinutes rounding logic not applied in

one of the cases . 21
4.1.10 V-VERS-VUL-010: ECDSA, MultiSigValidators will not be initialized when

re-enabled . 23
4.1.11 V-VERS-VUL-011: _getValidationIntersection reverts if both validUntil

times are 0 . 24
4.1.12 V-VERS-VUL-012: Missing length checks in _validateMultipleSessions() 26
4.1.13 V-VERS-VUL-013: isValidSignature does not check validity times of sched-

uled transactions . 28
4.1.14 V-VERS-VUL-014: validateUserOp() does not call _checkNormalExecute() 30
4.1.15 V-VERS-VUL-015: _enableHooks() bitfield check may be incorrect 32
4.1.16 V-VERS-VUL-016: _isWalletInited() default implementation is error-prone 33
4.1.17 V-VERS-VUL-017: Non-compliance in some ERC165 implementations . . 34
4.1.18 V-VERS-VUL-018: Executor.execute() should explicitly check for the nor-

mal call operation . 35
4.1.19 V-VERS-VUL-019: Normal execution operation type check is error-prone 36
4.1.20 V-VERS-VUL-020: replace() allows special values to be inserted into the list 37
4.1.21 V-VERS-VUL-021: Signature length check does not capture actual property 39

Veridise Audit Report: Versa Lab © 2023 Veridise Inc.

4.1.22 V-VERS-VUL-022: Error-prone assumption that msg.sender and wallet
are the same . 40

4.1.23 V-VERS-VUL-023: Out of date doc comment in executeTransactionFrom-
Module() . 41

4.1.24 V-VERS-VUL-024: createAccount() reverts if wallet already exists 42

Executive Summary 1
From Jul. 26, 2023 to Aug. 10, 2023, Versa Lab engaged Veridise to review the security of
their Versa Wallet, an on-chain, extensible wallet smart contract supporting EIP-4337* account
abstraction. Veridise conducted the assessment over 6 person-weeks, with 3 engineers reviewing
code over 2 weeks from commits de6c674 - 56b82dd. The auditing strategy involved a tool-assisted
analysis of the source code performed by Veridise engineers as well as extensive manual code
review.

Project summary. The security assessment covered the Solidity smart contract implementation
of the Versa Wallet, including the core wallet smart contract as well as several implementations
of plugins that extend the wallet functionality. A Versa wallet has two "roles" in which user
operations can be executed: a normal validator is able to perform normal executions that execute
standard external calls from the wallet (with some limitations); and sudo validators can execute
normal executions as well as sudo executions that are used to make arbitrary external calls
or delegatecalls from the wallet (including calls to customize the wallet). The plugins are
categorized into three major types: a validator is a custom smart contract for authenticating and
authorizing user operations; a hooks contract can trigger custom callbacks on normal executions;
and a module contract can execute arbitrary calls as the wallet. The validator implementations in
the security assessment include an ECDSA signature validator, a multi-signature validator, and
a session key-based validator.

Code assessment. The Versa Wallet developers provided the source code of the Versa Wallet
contracts for review. To aid the Veridise auditors, the developers also provided a documentation
website† that demonstrates the intended behavior of the project. The source code also contained
some documentation in the form of READMEs and documentation comments on functions and
storage variables. The source code is mostly original, but with some parts based on the account
abstract reference implementation‡ and the Safe Contracts§ project.

The source code contained a test suite, which the Veridise auditors noted provides test coverage
of common behaviors of the smart contracts. Several files in the source code also indicate
that the developers use linting and static analysis tools such as Solhint. During the audit, the
Versa Wallet developers made several additions to the code. This is because the Versa Wallet
developers wanted to include an additional contract SessionkeyValidator in the audit scope.
Consequently, the Veridise auditors extended the duration of the audit by two days.

Summary of issues detected. The audit uncovered 24 issues, 2 of which are assessed to be of
high or critical severity by the Veridise auditors. Specifically, a malicious hooks contract can
make its callbacks unremovable (V-VERS-VUL-002), and a reentrancy vulnerability allows a

* Also known as "Account Abstraction Using Alt Mempool": https://eips.ethereum.org/EIPS/eip-4337
† https://versawallet.gitbook.io/versa-docs/
‡ https://github.com/eth-infinitism/account-abstraction
§ https://github.com/safe-global/safe-contracts/

Veridise Audit Report: Versa Lab © 2023 Veridise Inc.

https://eips.ethereum.org/EIPS/eip-4337
https://versawallet.gitbook.io/versa-docs/
https://github.com/eth-infinitism/account-abstraction
https://github.com/safe-global/safe-contracts/

2 1 Executive Summary

module to make itself unable to be disabled by the wallet (V-VERS-VUL-001). The Veridise
auditors also identified several medium-severity issues, including a potential replay attack
vector caused by validators not being included in the signed hashes (V-VERS-VUL-005), as
well as an issue where ERC20 tokens with fees and/or interest may cause inconsistencies in
a VersaVerifyingPaymaster’s bookkeeping (V-VERS-VUL-004). The Veridise auditors further
identified 8 low-severity issues, 8 warnings, and 2 informational findings.

The Versa Wallet developers resolved all of the reported issues.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

© 2023 Veridise Inc. Veridise Audit Report: Versa Lab

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
Versa Wallet de6c674 - 56b82dd Solidity Ethereum

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
Jul. 26 - Aug. 10, 2023 Manual & Tools 3 6 person-weeks

Table 2.3: Vulnerability Summary.

Name Number Resolved
Critical-Severity Issues 0 0
High-Severity Issues 2 2
Medium-Severity Issues 4 4
Low-Severity Issues 8 8
Warning-Severity Issues 8 8
Informational-Severity Issues 2 2
TOTAL 24 24

Table 2.4: Category Breakdown.

Name Number
Logic Error 8
Data Validation 6
Maintainability 6
Replay Attack 2
Reentrancy 1
Usability Issue 1

Veridise Audit Report: Versa Lab © 2023 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of Versa Wallet’s smart contracts.
In our audit, we sought to answer questions such as:

▶ How can compromised or malicious hooks contracts harm a wallet?
▶ Are there exploitable vulnerabilities in the signature parsing logic?
▶ Does the wallet correctly validate normal executions?
▶ Does the verifying paymaster omit any checks when validating its signatures?
▶ Are all data that need to be validated included as part of the hashes computed in the

signature schemes?
▶ Are session key signatures correctly validated?
▶ Does the session key validator correctly restrict calls to the ones specified in the corre-

sponding session key?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a combination of
human experts and automated program analysis & testing tools. In particular, we conducted
our audit with the aid of the following techniques:

▶ Static analysis. To identify potential common vulnerabilities, we leveraged our custom
smart contract analysis tool Vanguard, as well as the open-source tool Slither. These
tools are designed to find instances of common smart contract vulnerabilities, such as
reentrancy and uninitialized variables.

▶ Fuzzing/Property-based Testing. We also leverage fuzz testing to determine if the protocol
may deviate from the expected behavior. To do this, we formalize the desired behavior of
the protocol as [V] specifications and then use our fuzzing framework OrCa to determine
if a violation of the specification can be found.

Scope. The scope of this audit is limited to the contracts folder of the source code provided by
the Versa Wallet developers, which contains the smart contract implementation of the Versa
Wallet. During the audit, the Veridise auditors referred to external packages and services used
by the Versa Wallet but assumed that they have been implemented correctly.

Methodology. The Veridise auditors inspected the provided tests, read the Versa Wallet documen-
tation, and reviewed relevant documents such as the EIP-4337 specification. They then began a
manual audit of the code assisted by both static analyzers and automated testing. During the
audit, the Veridise auditors regularly met with the Versa Wallet developers to ask questions
about the code.

Veridise Audit Report: Versa Lab © 2023 Veridise Inc.

6 3 Audit Goals and Scope

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

In this case, we judge the likelihood of a vulnerability as follows in Table 3.2:

Table 3.2: Likelihood Breakdown

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows in Table 3.3:

Table 3.3: Impact Breakdown

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2023 Veridise Inc. Veridise Audit Report: Versa Lab

Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowledged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-VERS-VUL-001 Malicious hook can avoid removal High Fixed
V-VERS-VUL-002 Reentrancy into disableModule() can make a modu. . .High Acknowledged
V-VERS-VUL-003 Hooks that dynamically change hasHooks() may be. . .Medium Acknowledged
V-VERS-VUL-004 Recorded token balances may not match actual am. . .Medium Acknowledged
V-VERS-VUL-005 Signed hashes do not include validator address Medium Fixed
V-VERS-VUL-006 Instant transaction signatures have no expiry Medium Won’t Fix
V-VERS-VUL-007 SpendingLimitHooks cannot account for spending . . . Low Intended Behavior
V-VERS-VUL-008 resetTimeIntervalMinutes is assumed to be nonze. . . Low Fixed
V-VERS-VUL-009 lastResetTimeMinutes rounding logic not applied. . . Low Intended Behavior
V-VERS-VUL-010 ECDSA, MultiSigValidators will not be initializ. . . Low Intended Behavior
V-VERS-VUL-011 _getValidationIntersection reverts if both vali. . . Low Fixed
V-VERS-VUL-012 Missing length checks in _validateMultipleSessi. . . Low Fixed
V-VERS-VUL-013 isValidSignature does not check validity times . . . Low Intended Behavior
V-VERS-VUL-014 validateUserOp() does not call _checkNormalExec. . . Low Intended Behavior
V-VERS-VUL-015 _enableHooks() bitfield check may be incorrect Warning Fixed
V-VERS-VUL-016 _isWalletInited() default implementation is err. . . Warning Fixed
V-VERS-VUL-017 Non-compliance in some ERC165 implementations Warning Acknowledged
V-VERS-VUL-018 Executor.execute() should explicitly check for . . . Warning Won’t Fix
V-VERS-VUL-019 Normal execution operation type check is error-. . . Warning Fixed
V-VERS-VUL-020 replace() allows special values to be inserted . . . Warning Fixed
V-VERS-VUL-021 Signature length check does not capture actual . . . Warning Fixed
V-VERS-VUL-022 Error-prone assumption that msg.sender and wall. . .Warning Fixed
V-VERS-VUL-023 Out of date doc comment in executeTransactionFr. . . Info Fixed
V-VERS-VUL-024 createAccount() reverts if wallet already exists Info Fixed

Veridise Audit Report: Versa Lab © 2023 Veridise Inc.

8 4 Vulnerability Report

4.1 Detailed Description of Issues

4.1.1 V-VERS-VUL-001: Malicious hook can avoid removal

Severity High Commit de6c674
Type Logic Error Status Fixed

File(s) HookManager.sol

Location(s) disableHooks()

A hooks on a Versa wallet can be disabled by calling the wallet’s HooksManager.disableHooks()
method. This will update the beforeTxHooks and afterTxHooks mappings, which store the hooks
to execute before and after a transaction (respectively). The _disableHooks() function determines
which mapping(s) to update by inspecting the bit field returned by the hasHooks() method.

If a hooks contract returns 0 from hasHooks(), then it will not be removed from beforeTxHooks

and afterTxHooks.

1 function _disableHooks(address prevBeforeTxHook, address prevAfterTxHooks, address
hooks) internal {

2 // Try to clear wallet configurations
3 try IHooks(hooks).clearWalletConfig() {
4 emit DisabledHooks(hooks);
5 } catch {
6 emit DisabledHooksWithError(hooks);
7 }
8 // Remove hooks from exsiting linked list
9 uint256 hasHooks = IHooks(hooks).hasHooks();

10 if (hasHooks >> 128 == 1) {
11 beforeTxHooks.remove(prevBeforeTxHook, hooks);
12 }
13 if (uint128(hasHooks) == 1) {
14 afterTxHooks.remove(prevAfterTxHooks, hooks);
15 }
16 }

Snippet 4.1: Definition of _disableHooks()

Impact A malicious hooks can exploit this vulnerability so that the before- and after-transaction
callbacks will continue to be triggered even after the hooks is disabled. For example, a hooks
contract can return an appropriate non-zero value in hasHooks() before it is initialized. As part
of its initialization, it can change some storage variables so that hasHooks() will now return
zero.

This vulnerability can prevent sudo validators from stopping malicious hooks from triggering
on normal executions. For example, even after a malicious hook is disabled, the following
behaviors could still occur:

▶ A hooks can always revert in one of its callbacks, causing a denial-of-service problem on
normal executions.

▶ A malicious hooks could use the before-transaction callback to perform frontrunning
attacks when a normal execution is used.

© 2023 Veridise Inc. Veridise Audit Report: Versa Lab

4.1 Detailed Description of Issues 9

Note that hooks callbacks are not executed on sudo executions.

Recommendation Change _disableHooks() to always remove the hooks contract from the
beforeTxHooks and afterTxHooks (if it is contained in them).

Veridise Audit Report: Versa Lab © 2023 Veridise Inc.

10 4 Vulnerability Report

4.1.2 V-VERS-VUL-002: Reentrancy into disableModule() can make a module
un-disableable

Severity High Commit de6c674
Type Reentrancy Status Acknowledged

File(s) ModuleManager.sol

Location(s) _disableModule()

The disableModule() method of a Versa wallet (inherited from the ModuleManager base class)
can be called through a sudo execution to disable a module. This method will first attempt to
call the clearWalletConfig() on the module to execute any module-specific logic to clear the
configuration related to this wallet, and then it will remove the module from the wallet’s list of
enabled modules.

1 function _disableModule(address prevModule, address module) internal {
2 try IModule(module).clearWalletConfig() {
3 emit DisabledModule(module);
4 } catch {
5 emit DisabledModuleWithError(module);
6 }
7 modules.remove(prevModule, module);
8 }

Snippet 4.2: Definition of _disableModule(), which is the internal implementation of
disableModule()

However, _disableModule() is theoretically prone to a reentrancy attack that allows a module to
make itself un-disableable. For example, a malicious module could implement clearWalletConfig
() in a way that causes the following behavior:

1. A sudo execution calls disableModule(), which then will make an external call to the
module’s clearWalletConfig() method.

2. Within the module’s clearWalletConfig(), the module can use the wallet’s execTransactionFromModule
() method to invoke disableModule() again.

3. The nested call to disableModule() can invoke clearWalletConfig() on the module again;
in this case, the module can be implemented in a way that it does not do anything on the
second invocation to clearWalletConfig().

4. The nested call to disableModule() will successfully remove the module from the module
list and return.

5. Finally, control flow returns to the original call to disableModule(). Then the modules

.remove(prevModule, module) line will be executed again, but this will cause a revert
because the module has already been removed.

Impact If a module is malicious or becomes compromised, it can use this attack to make itself
unremovable from the wallet. An attacker can exploit this vulnerability to increase the damage
of an attack, and perhaps prevent a wallet from being recovered by its legitimate users.

Recommendation There are many possible mitigations, each with different trade-offs. We list
some of them here:

© 2023 Veridise Inc. Veridise Audit Report: Versa Lab

4.1 Detailed Description of Issues 11

▶ Add a reentrancy guard to related functions, e.g., _disableModule. This solution will
prevent the exact attack described here, but it cannot prevent the attacker from performing
similar attacks using execTransactionFromModule().

▶ Implement a mechanism to disable execTransactionFromModule() from being called when
a module is being disabled. This should prevent this attack as well as similar attacks, but
at the cost of increasing the complexity of the ModuleManager logic.

▶ Remove the module from the module list before calling clearWalletConfig(). This will
ensure that the module will no longer have access to the wallet functionalities before any
module-controlled code is executed. However, this change will require some API changes
in the modules, since the reference implementation of clearWalletConfig() currently
requires the calling wallet to have the module on the enabled module list.

Developer Response The developers acknowledged the problem but do not intend to add
any mitigations for the following reason:

Modules are a security risk since they can execute arbitrary transactions. A malicious
module can completely take over a Versa wallet like using delegatecall to change
the wallet implementation and change the code behavior as whatever they like.
So we think add restrictions to avoid un-disableable module might not help. To
mitigate this issue, each module should be well audited to be added to Versa wallet.
Additionally, we will provide our users with warnings to make them aware of the
risks associated with using third-party modules and advise them to use modules
with caution.

Veridise Audit Report: Versa Lab © 2023 Veridise Inc.

12 4 Vulnerability Report

4.1.3 V-VERS-VUL-003: Hooks that dynamically change hasHooks() may be
executed incorrectly

Severity Medium Commit de6c674
Type Logic Error Status Acknowledged

File(s) HooksManager
Location(s) _beforeTransaction()

When a user operation is executed with a normal validator, the "before transaction hooks"
callbacks are executed before the actual operation, and the "after transaction hooks" callbacks are
executed after the actual operation. This is done through the HooksManager._beforeTransaction

() (resp. HooksManager._afterTransaction()) function, which will iterate through the hooks
stored in beforeTxHooks (resp. afterTxHooks) and execute each hooks’ callback. The actual
entries in beforeTxHooks and afterTxHooks are created in HooksManager.enableHooks(), which
will inspect the hasHooks() method of a hooks contract.

If the value of a hooks contract’s hasHooks() function changes after the hooks is enabled for a
wallet, then the beforeTxHooks and afterTxHooks will become inconsistent with the new value
of hasHooks().

1 /**
2 * @dev Loop through the beforeTransactionHooks list and execute all before

transaction hooks.
3 * @param to The address of the transaction recipient.
4 * @param value The value of the transaction.
5 * @param data The data of the transaction.
6 * @param operation The type of operation being performed.
7 */
8 function _beforeTransaction(address to, uint256 value, bytes memory data, Enum.

Operation operation) internal {
9 address addr = beforeTxHooks[AddressLinkedList.SENTINEL_ADDRESS];

10 while (uint160(addr) > AddressLinkedList.SENTINEL_UINT) {
11 IHooks(addr).beforeTransaction(to, value, data, operation);
12 addr = beforeTxHooks[addr];
13 }
14 }

Snippet 4.3: Definition of _beforeTransaction

1 uint256 hasHooks = IHooks(hooks).hasHooks();
2 if (hasHooks >> 128 == 1) {
3 beforeTxHooks.add(hooks);
4 }
5 if (uint128(hasHooks) == 1) {
6 afterTxHooks.add(hooks);
7 }

Snippet 4.4: Snippet in _enableHooks() that adds a hooks to the appropriate lists.

Impact Such a situation may arise if a hooks contract is upgradeable or acting maliciously. For
example, if a hooks originally only requires to be run before a transaction, but it is upgraded to

© 2023 Veridise Inc. Veridise Audit Report: Versa Lab

4.1 Detailed Description of Issues 13

also run after the transaction, then the afterTxHooks will not be updated unless a sudo execution
disables and enables the hooks again. This can result in bugs in the hooks if it requires the
after-transaction code to run.

Recommendation The developers could adopt one or more possible mitigations depending
on what the intended behavior of hooks should be in this scenario:

▶ To allow for upgradeable hooks or other hooks whose hasHooks() value can dynamically
change, the developers could change the HooksManager to use a single variable to store all
enabled hooks. Then, _beforeTransaction and _afterTransaction can be changed so that
they iterate over all hooks and check the hasHooks() to determine whether the hooks has
a before (resp. after) callback.

▶ If it is not intended for hasHooks() to change dynamically, the developers should clearly
document this assumption and warn end-users to avoid hooks that are upgradeable.

Developer Response The developers noted that "Hooks are not supposed to change their
supported hooks type dynamically" and have added a documentation comment on _enableHooks

noting as such.

Veridise Audit Report: Versa Lab © 2023 Veridise Inc.

14 4 Vulnerability Report

4.1.4 V-VERS-VUL-004: Recorded token balances may not match actual amount
transferred

Severity Medium Commit de6c674
Type Logic Error Status Acknowledged

File(s) VersaVerifyingPaymaster.sol

Location(s) _postOp()

The VersaVerifyingPaymaster is an EIP-4337 paymaster that allows an account to pay for user
operations using ERC-20 tokens. It collects the token fees in the _postOp() method, which is
called after the user operation is executed. To charge the fees, the paymaster will call token.
safeTransferFrom(...) to transfer actualTokenCost tokens from the account to the paymaster
and then increase the balances[token] mapping entry by actualTokenCost.

The balance update logic assumes that the amount of tokens transferred is actualTokenCost,
but the amount may be different in practice. For example, some tokens may charge fees, accrue
interest, or rebase, which could result in the actualTokenCost differing from the actual amount
transferred.

1 if (mode != PostOpMode.postOpReverted) {
2 token.safeTransferFrom(account, address(this), actualTokenCost);
3 balances[token] += actualTokenCost;
4 emit UserOperationSponsored(account, address(token), actualTokenCost);
5 }

Snippet 4.5: Relevant lines in _postOp()

Impact The balances mapping is used in the withdrawTokensTo() method, which the owner
of the paymaster can call to withdraw any fees that have been paid. If an entry in _token is
inconsistent with the actual number of tokens, then withdrawTokensTo() is likely to revert (either
when subtracting _amount or in the _token.safeTransfer() call).

1 function withdrawTokensTo(IERC20Metadata _token, address _target, uint256 _amount)
external onlyOwner {

2 balances[_token] -= _amount;
3 _token.safeTransfer(_target, _amount);
4 }

Snippet 4.6: Definition of withdrawTokensTo()

Recommendation Some potential mitigations include:

▶ To deal with fees or interest, the code could be changed so that it keeps track of the
token.balanceOf(...) before and after the transfer. The balances[token] entry should
then be increased by the difference between the recorded values.

▶ To deal with rebasing tokens, the code may need to be modified to also account for changes
in the token’s total supply.

© 2023 Veridise Inc. Veridise Audit Report: Versa Lab

4.1 Detailed Description of Issues 15

▶ The paymaster contract could store a list of tokens that are allowed to be used for payments
(and can be dynamically adjusted by the owner). This would also have the advantage of
allowing the owner to revoke supported tokens.

Developer Response The developers stated that "[t]his paymaster service is managed by us,
and we will only allow the use of sufficiently secure ERC20 tokens to pay for gasfee."

Veridise Audit Report: Versa Lab © 2023 Veridise Inc.

16 4 Vulnerability Report

4.1.5 V-VERS-VUL-005: Signed hashes do not include validator address

Severity Medium Commit 56b82dd
Type Replay Attack Status Fixed

File(s) SignatureHandler.sol

Location(s) splitUserOpSignature()

The signature format defined by the Versa wallet requires the address of the target valida-
tor to be stored in the first 20 bytes of the signature data. When the ECDSAValidator and
MultiSignatureValidator parse the signature data using the splitUserOpSignature function,
the validator address is not included in the hash. This may introduce a small risk of replay
attacks on user operations, where an attacker could keep the signature the same but modify the
validator address.

1 if (splitedSig.signatureType == INSTANT_TRANSACTION) {
2 splitedSig.signature = userOp.signature[INSTANT_SIG_OFFSET:];
3 splitedSig.hash = userOpHash;
4 } else if (splitedSig.signatureType == SCHEDULE_TRANSACTION) {
5 // ...
6 bytes memory extraData = abi.encode(
7 splitedSig.validUntil,
8 splitedSig.validAfter,
9 splitedSig.maxFeePerGas,

10 splitedSig.maxPriorityFeePerGas
11);
12 splitedSig.hash = keccak256(abi.encode(userOpHash, extraData));
13 }

Snippet 4.7: Relevant lines in splitUserOpSignature()

Impact The signature scheme for splitUserOpSignature() is used by ECDSAValidator and
MultiSigValidator. An attacker could exploit the missing validator address check to perform
replay attacks in specific scenarios. For example, consider a situation where:

▶ The wallet has two MultiSigValidators enabled.

• One of the MultiSigValidators is a validator that requires two signatures, with
guardians Alice and Bob.

• One of the MultiSigValidators is a validator that requires three signatures, with
guardians Alice, Bob, Charlie, and Eve.

▶ Alice, Bob, and Charlie sign a user op to be used with the second validator. They submit it
to an Ethereum client’s user op mempool, but it is rejected by the validation step because
Charlie’s signature is invalid.

If the attacker observes the user op in the user operation mempool, then they can replace the
first validator’s address with the second validator’s address and then resubmit the operation to
the mempool. This would then allow the method to be executed using the first validator, even
though Charlie did not provide a valid signature and Alice and Bob meant for the user op to
only be executed through the second validator with Charlie’s approval.

© 2023 Veridise Inc. Veridise Audit Report: Versa Lab

4.1 Detailed Description of Issues 17

Recommendation Include the validatorAddress as part of the hash.

Veridise Audit Report: Versa Lab © 2023 Veridise Inc.

18 4 Vulnerability Report

4.1.6 V-VERS-VUL-006: Instant transaction signatures have no expiry

Severity Medium Commit 56b82dd
Type Replay Attack Status Won’t Fix

File(s) SignatureHandler.sol

Location(s) splitUserOpSignature()

The signature scheme described in SignatureHandler.sol describes two types of transactions:
instant transactions and scheduled transactions. While scheduled transactions include fields
for EIP-4337 validUntil and validAfter timestamps, instant transactions do not. Consequently,
there is no way to attach expiry times to instant transactions, so instant transactions are always
valid once signed.

1 if (splitedSig.signatureType == INSTANT_TRANSACTION) {
2 splitedSig.signature = userOp.signature[INSTANT_SIG_OFFSET:];
3 splitedSig.hash = userOpHash;
4 } else if (splitedSig.signatureType == SCHEDULE_TRANSACTION) {

Snippet 4.8: Relevant lines in splitUserOpSignature(). The hash to be signed only consists of
the userOpHash provided by the EIP-4337 entrypoint contract.

Impact Due to the missing timestamp expiry logic, instant transactions may be more vulnerable
to replay attacks. For example, consider a scenario where a user operation is submitted to an
Ethereum client’s user operation mempool, but the operation is rejected at the validation step
(e.g., for reasons such as not enough gas). An attacker can save the operation and replay it at
a later date, assuming that the signer has already "given up" on the operation and that the
validator is still enabled on the wallet. Such an attack could be performed even after a long
period of time has passed, and the signer no longer intends for the operation to be executed.

Recommendation Include the validUntil and validAfter dates as part of the signature for
instant transactions. For "instant" transactions, signers should set the validAfter to occur in the
near future (e.g., within 30 minutes).

Developer Response The developers noted that "instant transactions" are meant to emulate
transactions sent by an externally-owned account. The developers do not intend to extend the
instant transaction type with timestamps. Instead, the developers suggest that users should
submit a newer user operation with the same nonce and a higher gas value in order to revoke
previous user operations.

© 2023 Veridise Inc. Veridise Audit Report: Versa Lab

4.1 Detailed Description of Issues 19

4.1.7 V-VERS-VUL-007: SpendingLimitHooks cannot account for spending on extra
methods added by custom ERC20 tokens

Severity Low Commit de6c674
Type Logic Error Status Intended Behavior

File(s) SpendingLimitHooks.sol

Location(s) _checkERC20TokenSpendingLimit()

The SpendingLimitHooks contract is a hooks contract that can be used to impose a "spending
limit" on normal executions that will transfer native currency and/or ERC20 tokens. The
spending limits for ERC20 tokens are implemented in the _checkERC20TokenSpendingLimit()

function, which checks the selector of the ERC20 method call and reverts if the call would put
the wallet above the spending limit for that token. However, the spending limit is only applied
to standard ERC20 methods such as transfer() and transferFrom(), and it will not be applied
to extra or custom methods that the token may also support.

1 function _checkERC20TokenSpendingLimit(address _wallet, address _token, bytes
calldata _data) internal {

2 ...
3 if (methodSelector == TRANSFER || methodSelector == INCREASE_ALLOWANCE) {
4 ...
5 } else if (methodSelector == TRANSFER_FROM) {
6 ...
7 } else if (methodSelector == APPROVE) {
8 ...
9 }

10 ...
11 }

Snippet 4.9: Relevant code in _checkERC20TokenSpendingLimit()

Impact If the token contract supports custom methods that transfers tokens or adjusts approvals,
then normal executions can evade the spending limit by calling these custom methods.

Recommendation Some mitigations, each with different trade-offs, include:

▶ Add an else case that will revert, so that the only allowed calls are to one of the methods
handled in one of the if branches. This will prevent normal executions from attempting
to evade the spending limit checks by calling custom methods, but it may also prevent
users from using some features of the tokens.

▶ Allow calls to other methods and clearly document the limitations of the SpendingLimitHooks
contracts.

Developer Response The developers opted to allow calls to other methods and documented
the limitations of the SpendingLimitHooks.

Veridise Audit Report: Versa Lab © 2023 Veridise Inc.

20 4 Vulnerability Report

4.1.8 V-VERS-VUL-008: resetTimeIntervalMinutes is assumed to be nonzero but not
checked

Severity Low Commit de6c674
Type Data Validation Status Fixed

File(s) SpendingLimitHooks.sol

Location(s) _setSpendingLimit()

In the _setSpendingLimit() function, the value of config.resetTimeIntervalMinutes is assumed
to be nonzero, but there is no check that is it is indeed nonzero. If a value of zero is used,
then the function may revert when the value of spendingLimitInfo.lastResetTimeMinutes

is calculated, since the config.resetTimeIntervalMinutes is used as the right-hand-side of a
modulus operation. We note that other methods such as getSpendingLimitInfo() , which perform
similar calculations, do have checks that _config.resetTimeIntervalMinutes is nonzero.

1 if (_config.resetBaseTimeMinutes > 0) {
2 require(
3 _config.resetBaseTimeMinutes <= currentTimeMinutes,
4 "SpendingLimitHooks: resetBaseTimeMinutes can not greater than

currentTimeMinutes"
5);
6 spendingLimitInfo.lastResetTimeMinutes =
7 currentTimeMinutes -
8 ((currentTimeMinutes - _config.resetBaseTimeMinutes) % _config.

resetTimeIntervalMinutes);
9 } else if (spendingLimitInfo.lastResetTimeMinutes == 0) {

10 // ...
11 }

Snippet 4.10: Relevant lines in _setSpendingLimit()

Recommendation Add code that handles the situation when _config.resetTimeIntervalMinutes

is zero.

© 2023 Veridise Inc. Veridise Audit Report: Versa Lab

4.1 Detailed Description of Issues 21

4.1.9 V-VERS-VUL-009: lastResetTimeMinutes rounding logic not applied in one of
the cases

Severity Low Commit de6c674
Type Logic Error Status Intended Behavior

File(s) SpendingLimitHooks.sol

Location(s) _setSpendingLimit()

The SpendingLimitHooks hooks contract can be used to set an "allowance" or "spending limit" of
a given currency over a period of time. It can optionally be configured to periodically reset the
spending limit.

A spending limit reset may occur when a sudo validator calls the _setSpendingLimit() func-
tion to enable or reconfigure a spending limit for a specified currency. There are two cases
in this function that may adjust the lastResetTimeMinutes; however, in the case where the
_config.resetBaseTimeMinutes == 0 and spendingLimitInfo.lastResetTimeMinutes == 0, the
lastResetTimeMinutes will be directly set to the currentTimeMinutes. This is inconsistent with
the code in the other case.

1 function _setSpendingLimit(SpendingLimitSetConfig memory _config) internal {
2 // ...
3 if (_config.resetBaseTimeMinutes > 0) {
4 require(
5 _config.resetBaseTimeMinutes <= currentTimeMinutes,
6 "SpendingLimitHooks: resetBaseTimeMinutes can not greater than

currentTimeMinutes"
7);
8 spendingLimitInfo.lastResetTimeMinutes =
9 currentTimeMinutes -

10 ((currentTimeMinutes - _config.resetBaseTimeMinutes) % _config.
resetTimeIntervalMinutes);

11 } else if (spendingLimitInfo.lastResetTimeMinutes == 0) {
12 spendingLimitInfo.lastResetTimeMinutes = currentTimeMinutes;
13 }
14 spendingLimitInfo.resetTimeIntervalMinutes = _config.resetTimeIntervalMinutes;
15 spendingLimitInfo.allowanceAmount = _config.allowanceAmount;
16 _updateSpendingLimitInfo(_config.tokenAddress, spendingLimitInfo);
17 // ...

Snippet 4.11: Relevant lines in _setSpendingLimit()

Furthermore, the case above is also inconsistent with the getSpendingInfo() method, which
returns a SpendingLimitInfo struct with the following fields:

▶ The lastResetTimeMinutes, if nonzero, stores the last time the spending limit was reset.
▶ The resetTimeIntervalMinutes, if nonzero, stores the time that must pass after the

lastResetTimeMinutes before the spending limit can be reset.

In getSpendingInfo(), the SpendingLimitInfo will first be retrieved from storage, and then its
lastResetTimeMinutes to be checked to determine if the spending limit can be reset. If so, the
lastResetTimeMinutes will be set to:

1 lastResetTimeMinutes + c * resetTimeIntervalMinutes

Veridise Audit Report: Versa Lab © 2023 Veridise Inc.

22 4 Vulnerability Report

where c is the number of full intervals passed since the lastResetTimeMinutes (note that the
actual formula in the code can be shown to be equivalent to this form).

1 function getSpendingLimitInfo(address _wallet, address _token) public view returns (
SpendingLimitInfo memory) {

2 SpendingLimitInfo memory spendingLimitInfo = _tokenSpendingLimitInfo[_wallet][
_token];

3 uint32 currentTimeMinutes = uint32(block.timestamp / 60);
4 if (
5 spendingLimitInfo.resetTimeIntervalMinutes > 0 &&
6 spendingLimitInfo.lastResetTimeMinutes + spendingLimitInfo.

resetTimeIntervalMinutes <= currentTimeMinutes
7) {
8 spendingLimitInfo.spentAmount = 0;
9 spendingLimitInfo.lastResetTimeMinutes =

10 currentTimeMinutes -
11 ((currentTimeMinutes - spendingLimitInfo.lastResetTimeMinutes) %
12 spendingLimitInfo.resetTimeIntervalMinutes);
13 }
14 return spendingLimitInfo;
15 }

Snippet 4.12: Definition of getSpendingInfo()

Impact If a sudo validator calls setSpendingLimit()without specifying a resetBaseTimeMinutes
or a lastResetTimeMinutes, then the lastResetTimeMinutes will be set to the current time.

Consequently, the spending limit will not be reset until the next interval.

Recommendation The developers may want to consider whether this behavior is intended
and adjust the else if case accordingly.

Developer Response The developers noted that this is intended behavior and have added
comments in the relevant parts of the code explaining why this is the case.

© 2023 Veridise Inc. Veridise Audit Report: Versa Lab

4.1 Detailed Description of Issues 23

4.1.10 V-VERS-VUL-010: ECDSA, MultiSigValidators will not be initialized when
re-enabled

Severity Low Commit 56b82dd
Type Logic Error Status Intended Behavior

File(s) ECDSAValidator.sol, MultiSigValidator.sol

Location(s) _clear()

The ECDSAValidator and MultiSigValidator implement the _clear() method as a no-op, and
comments on the corresponding files indicate that this is intended behavior. However, this is
unexpected behavior from a user’s perspective because a user may want to re-enable a validator
with a new set of signers. As an example, consider the following scenario:

1. User of the wallet disables an ECDSA or MultiSigValidator. Because the _clear() method
is a no-op, this does not clear any existing signers.

2. The user enables the previously disabled validator for the wallet, but supplies a new set
of signers as initialization data.

3. Because the validator is already "initialized", the _init() method is not executed, and the
new signers are ignored.

Impact Since the new signers are ignored, a user may unintentionally create access control
problems when re-enabling a validator. For example, if the user intends to revoke signing
permission by disabling a validator, and then attempts to re-enable the validator with a new set
of signers, then the old signers may still submit user operations for the wallet even though their
access should have been revoked.

Recommendation Implement the _clear() method to remove all existing signers.

Developer Response The developers stated that this is intended behavior:

If an user want to re-enable an ECDSAValidator or a MultiSigValidator, our front-end
will let the user to set a new signer / set of signers. If the new signers do not match
the initial ones, our front-end will batch a setSigner or resetGuardians transaction
to update user’s new signers which in some cases may save some gas as some slot
read and write can be avoid.

Veridise Audit Report: Versa Lab © 2023 Veridise Inc.

24 4 Vulnerability Report

4.1.11 V-VERS-VUL-011: _getValidationIntersection reverts if both validUntil times
are 0

Severity Low Commit 56b82dd
Type Logic Error Status Fixed

File(s) SessionkeyValidator.sol

Location(s) _getValidationIntersection()

The function _getValidationIntersection() is used to calculate the "intersection" of the validity
intervals of two sessions. The end of the two sessions are provided as the validUntil1 and
validUntil2 arguments, respectively. A session may have a validUntil value set to 0 to indicate
a validity interval with no expiry time.

1 function _getValidationIntersection(
2 uint48 validUntil1,
3 uint48 validunitil2,
4 uint48 validAfter1,
5 uint48 validAfter2
6) internal pure returns (uint48 validUntil, uint48 validAfter) {
7 if (validUntil1 != 0 && validunitil2 != 0) {
8 validUntil = validUntil1 < validunitil2 ? validUntil1 : validunitil2;
9 } else {

10 validUntil = validUntil1 > validunitil2 ? validUntil1 : validunitil2;
11 }
12 validAfter = validAfter1 > validAfter2 ? validAfter1 : validAfter2;
13 require(validUntil >= validAfter, "SessionKeyValidator: invalid validation

duration");
14 }

Snippet 4.13: Definition of _getValidationIntersection()

1 struct Session {
2 // ...
3 // The timestamp when the session is expired, 0 for infinite
4 uint48 validUntil;
5 // ...
6 }

Snippet 4.14: Definition of struct Session

A require statement at the end of the function checks that the interval is nonempty (by asserting
that the end time of the validity interval cannot come before the start time). However, if both
validUntil and validUntil2 are both zero, then the condition will evaluate to false, causing the
function to revert. This appears to be unintended: the intersection of the validity intervals of
two sessions with a validUntil of 0 (i.e., infinite) should correspond to a valid interval with an
infinite end time.

Impact The _getValidationIntersection() function is used when validating a batched execu-
tion. Thus, if the list of sessions has two adjacent sessions that both have a validUntil time of 0,
then the function will revert and cause the user operation to be rejected.

© 2023 Veridise Inc. Veridise Audit Report: Versa Lab

4.1 Detailed Description of Issues 25

Recommendation Modify _getValidationIntersection to account for the case where both
validUntil values are 0.

Veridise Audit Report: Versa Lab © 2023 Veridise Inc.

26 4 Vulnerability Report

4.1.12 V-VERS-VUL-012: Missing length checks in _validateMultipleSessions()

Severity Low Commit 56b82dd
Type Data Validation Status Fixed

File(s) SessionkeyValidator.sol

Location(s) _validateMultipleSessions()

The _validateMultipleSessions() function is invoked when the SessionkeyValidator is used
to validate the signature of a call to VersaWallet.batchNormalExecute(). One of the checks
performed during this validation is to ensure that the correct amount of information is provided
as part of the signature. As indicated by the loop, the data, proof, session, rlpCalldata, to, and
value arrays are assumed to be the same length. However, only the lengths of to, session, and
proof are checked to be equal.

1 function _validateMultipleSessions(
2 /* ... other parameters ... */,
3 bytes32[][] memory proof,
4 Session[] memory session,
5 bytes[] memory rlpCalldata,
6 address[] memory to,
7 uint256[] memory value,
8 bytes[] memory data
9) internal returns (uint48 validUntil, uint48 validAfter) {

10 require(
11 to.length == session.length && session.length == proof.length,
12 "SessionKeyValidator: invalid batch length"
13);
14 address paymaster = _parsePaymaster(userOp.paymasterAndData);
15 for (uint256 i = 0; i < data.length; i++) {
16 // ...
17 _validateSession(
18 /* ... other parameters ... */
19 proof[i],
20 session[i],
21 rlpCalldata[i],
22 paymaster,
23 to[i],
24 value[i],
25 data[i]
26);
27 }

Snippet 4.15: Relevant lines in _validateMultipleSessions()

Impact The submitter of the user operation may append extra data, session, value, rlpCalldata
or other fields, but the validator will silently ignore the extra data and accept the user operation
instead of rejecting it. This could potentially result in the operation performing an action that
the user does not intend to be performed.

Furthermore, batchNormalExecute() will check that the lengths of to, value, and data are equal.
If the validator accepts a user operation in which the lengths of to, value, and data are not equal,

© 2023 Veridise Inc. Veridise Audit Report: Versa Lab

4.1 Detailed Description of Issues 27

then batchNormalExecute() will revert during the actual execution of the user operation. This
will waste the gas fees paid by the wallet or paymaster.

1 function batchNormalExecute(
2 address[] memory to,
3 uint256[] memory value,
4 bytes[] memory data,
5 Enum.Operation[] memory operation
6) external onlyFromEntryPoint {
7 _checkBatchDataLength(to.length, value.length, data.length, operation.length);
8 // ...
9 }

10

11 function _checkBatchDataLength(
12 uint256 toLen,
13 uint256 valueLen,
14 uint256 dataLen,
15 uint256 operationLen
16) internal pure {
17 require(toLen == valueLen && dataLen == operationLen && toLen == dataLen, "Versa:

invalid batch data");
18 }

Snippet 4.16: Relevant lines in VersaWallet

Recommendation Add the missing length checks to _validateMultipleSessions().

Developer Response The developers added a check for rlpCalldata, but they did not add the
remaining checks for the following reason:

We don’t check to, value, data’s length to be equal here as they are checked at
VersaWallet.batchNormalExecute() . The user operation will be rejected during the
bundler estimateGas call if a transaction has invalid data length as estimateGas will
simulate the transaction and revert on the invalid data length. So the user operation
will not able to be actually sent to the bundler mempool.

The auditors note that EIP-4337 only requires bundlers to simulate validation, but not execution;
so this issue may occur with any bundler that does not simulate the execution.

Veridise Audit Report: Versa Lab © 2023 Veridise Inc.

28 4 Vulnerability Report

4.1.13 V-VERS-VUL-013: isValidSignature does not check validity times of
scheduled transactions

Severity Low Commit 56b82dd
Type Data Validation Status Intended Behavior

File(s) ECDSAValidator.sol

Location(s) isValidSignature()

A Versa wallet supports the ERC-1271 standard for on-chain signature validation. This is im-
plemented in the CompatibilityFallbackHandler.isValidSignature() method, which delegates
the actual signature validation to a validator implementation.

1 function isValidSignature(
2 bytes32 _hash,
3 bytes calldata _signature
4) public view override returns (bytes4 magicValue) {
5 address validator = address(bytes20(_signature[0:20]));
6 require(
7 ValidatorManager(msg.sender).getValidatorType(validator) == ValidatorManager.

ValidatorType.Sudo,
8 "Only sudo validator"
9);

10 bool isValid = IValidator(validator).isValidSignature(_hash, _signature[20:], msg
.sender);

11 return isValid ? EIP1271_MAGIC_VALUE : bytes4(0xffffffff);
12 }

Snippet 4.17: Definition of CompatibilityFallbackHandler.isValidSignature().

The signature format used by an ECDSAValidator (as defined in SignatureHandler.sol) defines
two transaction "types": instant transactions and scheduled transactions. The latter require
the signature to contain the validUntil and validAfter validity times (corresponding to the
timestamps specified by EIP-4337).

However, the ECDSAValidator implementation of isValidSignature() currently assumes that
the actual validity times are 0 when validating the signature. For scheduled transactions, this
would be weaker than the check performed for user operations.

1 function isValidSignature(bytes32 hash, bytes calldata signature, address wallet)
external view returns (bool) {

2 uint256 validUntil;
3 uint256 validAfter;
4 address signer = _signers[wallet];
5 uint256 validationData = _validateSignature(signer, signature, hash, validUntil,

validAfter);
6 return validationData == 0 ? true : false;
7 }

Snippet 4.18: Definition of ECDSAValidator.isValidSignature(). The _validateSignature()

call will return the packed validation format described by EIP-4337. But since the
validUntil and validAfter values are set to 0 here, a successful validation will

also have the validity times set to 0.

© 2023 Veridise Inc. Veridise Audit Report: Versa Lab

4.1 Detailed Description of Issues 29

Impact When an ECDSAValidator is used as an ERC-1271 signature validator, the isValidSignature
() method will accept signatures of scheduled transactions that are already expired.

Recommendation Require users of the ERC-1271 interface to provide the full signature data
described in SignatureHandler.sol so that fields such as validUntil and validAfter can be
validated.

Developer Response The developers noted that:

The isValidSignature function is for ERC-1271 support to verify whether a signature
on a behalf of a given contract is valid. It’s not meat to verify 4337 transactions but
messages generated by third-party dapps. For example, an user need to sign the
OpenSea Term of Service and Privacy Policy and other related messages to connect
to Opensea. So we provide this function to verify signature signed by the wallet
owner. The validity times is an option for these dapps to be added to the message
rather than for the isValidSignature function to enforce.

Veridise Audit Report: Versa Lab © 2023 Veridise Inc.

30 4 Vulnerability Report

4.1.14 V-VERS-VUL-014: validateUserOp() does not call _checkNormalExecute()

Severity Low Commit 56b82dd
Type Data Validation Status Intended Behavior

File(s) VersaWallet.sol

Location(s) validateUserOp()

The VersaWallet.validateUserOp() function is called by the Ethereum client and EIP-4337
entrypoint to check whether a user operation should be executed. However, it is missing a call
to the _checkNormalExecute() operation, which restricts normal executions to specific targets
and operation types.

1 function validateUserOp(
2 UserOperation calldata userOp,
3 bytes32 userOpHash,
4 uint256 missingAccountFunds
5) external override onlyFromEntryPoint returns (uint256 validationData) {
6 address validator = _getValidator(userOp.signature);
7 _validateValidatorAndSelector(validator, bytes4(userOp.callData[0:4]));
8 validationData = IValidator(validator).validateSignature(userOp, userOpHash);
9 _payPrefund(missingAccountFunds);

10 }

Snippet 4.19: Definition of validateUserOp()

1 /**
2 * @dev A normal execution has following restrictions:
3 * 1. Cannot selfcall, i.e., change wallet’s config
4 * 2. Cannot call to an enabled plugin, i.e, change plugin’s config or call wallet

from plugin
5 * 3. Cannot perform a delegatecall
6 * @param to The address to which the transaction is directed.
7 * @param _operation The operation type of the transaction.
8 */
9 function _checkNormalExecute(address to, bytes memory data, Enum.Operation _operation

) internal view {
10 require(
11 (to != address(this) || (to == address(this) && data.length == 0)) &&
12 !isValidatorEnabled(to) &&
13 !isHooksEnabled(to) &&
14 !isModuleEnabled(to) &&
15 _operation != Enum.Operation.DelegateCall,
16 "Versa: operation is not allowed"
17);
18 }

Snippet 4.20: Definition of _checkNormalExecute()

Impact This currently should have limited impact in terms of the correctness of the access
controls, as normal executions will result in a call to _checkNormalExecute(). However, if a
normal execution validates successfully but reverts due to _checkNormalExecute(), then any gas
paid by the wallet or paymaster will have been wasted.

© 2023 Veridise Inc. Veridise Audit Report: Versa Lab

4.1 Detailed Description of Issues 31

Recommendation Modify validateUserOp() so that _checkNormalExecute() will be called
when the user operation is a normal execution.

Developer Response The developers do not intend to insert the check for the following
reason:

The user operation described below will be rejected by the bundler during
eth_estimateUserOperationGas call, as eth_estimateUserOperationGas will simulate
the user operation and revert on any unmet conditions. We will chose bundler that
has the simulation implementation to avoid actual gas lost.

Veridise Audit Report: Versa Lab © 2023 Veridise Inc.

32 4 Vulnerability Report

4.1.15 V-VERS-VUL-015: _enableHooks() bitfield check may be incorrect

Severity Warning Commit de6c674
Type Maintainability Status Fixed

File(s) HooksManager.sol

Location(s) _enableHooks()

When a Versa wallet enables a hooks contract in HooksManager.enableHooks(), it checks the
hasHooks() method of the hooks to determine when the hooks’ callbacks should be executed.
The hasHooks() method returns a bit field (as a uint256) where:

▶ the least significant bit is asserted if the hook should be executed after a transaction
▶ bit 129 (assuming the most significant bit is "bit 256") is asserted if the hook should be

executed before a transaction

However, the way these checks are implemented may be prone to errors, especially if the
developers intend to support additional flags in the bit field:

▶ When checking the flag indicating an after-transaction hook, the lower 128 bits are
compared with the integer 1. This means that if bits 2 to 128 are used, then the comparison
will fail.

▶ Similarly, when checking the flag indicating a before-transaction hook, the upper 128 bits
are compared with the integer 1. This means that if bits 130 to 256 are used, then the
comparison will fail.

1 uint256 hasHooks = IHooks(hooks).hasHooks();
2 if (hasHooks >> 128 == 1) {
3 beforeTxHooks.add(hooks);
4 }
5 if (uint128(hasHooks) == 1) {
6 afterTxHooks.add(hooks);
7 }

Snippet 4.21: Location in _enableHooks() where hasHooks() bitfield is used.

Recommendation To make the code more robust, the additional bits should be cleared before
performing the comparison:

▶ Change hasHooks >> 128 to (hasHooks >> 128) & 1

▶ Change uint128(hasHooks) to hasHooks & 1

© 2023 Veridise Inc. Veridise Audit Report: Versa Lab

4.1 Detailed Description of Issues 33

4.1.16 V-VERS-VUL-016: _isWalletInited() default implementation is error-prone

Severity Warning Commit de6c674
Type Maintainability Status Fixed

File(s) BaseHooks.sol, BaseValidator.sol

Location(s) _isWalletInited()

The BaseHooks and BaseValidator contracts provide some convenience functions for implement-
ing hooks and validators, respectively. The two base contracts provide a default implementation
of _isWalletInited() that always returns false.

The _isWalletInited() method is used in initWalletConfig() to determine whether the ini-
tialization code should be invoked; and in clearWalletConfig() to determine whether the
deinitialization code should be invoked.

1 function initWalletConfig(bytes memory _data) external onlyEnabledHooks {
2 if (!_isWalletInited(msg.sender)) {
3 _init(_data);
4 emit InitWalletConfig(msg.sender);
5 }
6 }
7

8 /**
9 * @dev Clears the wallet configuration. Triggered when disabled by a wallet

10 */
11 function clearWalletConfig() external onlyEnabledHooks {
12 if (_isWalletInited(msg.sender)) {
13 _clear();
14 emit ClearWalletConfig(msg.sender);
15 }
16 }
17

18 function _isWalletInited(address wallet) internal view virtual returns (bool) {}

Snippet 4.22: The relevant functions in BaseHooks. The ones in BaseValidator are similar.

The default implementation of _isWalletInited() is error-prone, since it will always cause the
wallet configuration to be initialized when the hooks or validator is enabled, but never cleared
when the hooks or validator is disabled. This can cause a developer that forgets to override
_isWalletInited() to introduce bugs into their hooks or validator implementation.

Recommendation Remove the default implementation of _isWalletInited() and make it
pure virtual, so that subclasses of BaseHooks and BaseValidator will be forced to implement the
method.

Veridise Audit Report: Versa Lab © 2023 Veridise Inc.

34 4 Vulnerability Report

4.1.17 V-VERS-VUL-017: Non-compliance in some ERC165 implementations

Severity Warning Commit de6c674
Type Logic Error Status Acknowledged

File(s) BaseValidator.sol, BaseHooks.sol

Location(s) supportsInterface()

The ERC-165 standard specifies a supportInterface() method that returns true when the called
smart contract supports a given function interface. BaseValidator and BaseHooks implement
the IERC165 interface, but they do not return true (as required by the specification) when the
ERC-165 interface ID is provided as the argument.

1 contract BaseValidator{
2 function supportsInterface(bytes4 interfaceId) external pure returns (bool) {
3 return interfaceId == type(IValidator).interfaceId;
4 }
5 }

Snippet 4.23: Definition of BaseValidator.supportsInterface()

1 contract BaseHooks{
2 function supportsInterface(bytes4 _interfaceId) external pure returns (bool)

{
3 return _interfaceId == type(IHooks).interfaceId;
4 }
5 }

Snippet 4.24: Definition of BaseHooks.supportsInterface()

Impact Third-party smart contracts which dynamically check support for ERC-165 using
the algorithm suggested in the specification may falsely mark hooks and validators as not
supporting ERC-165.

Recommendation Change the implementations of supportsInterface() so that they return
true when passed the ERC165 interface ID. To help with testing, the developers may want
to consider adding test cases that use OpenZeppelin’s ERC165Checker library to perform the
check.

Developer Response The developer noted that they only implemented supportsInterface()

to allow the manager classes to dynamically check whether an address is a hooks or validator
contract, so they think there is no need to fix this issue at this time.

© 2023 Veridise Inc. Veridise Audit Report: Versa Lab

https://eips.ethereum.org/EIPS/eip-165#how-a-contract-will-publish-the-interfaces-it-implements
https://eips.ethereum.org/EIPS/eip-165#how-to-detect-if-a-contract-implements-erc-165
https://docs.openzeppelin.com/contracts/3.x/api/introspection#ERC165Checker

4.1 Detailed Description of Issues 35

4.1.18 V-VERS-VUL-018: Executor.execute() should explicitly check for the normal
call operation

Severity Warning Commit de6c674
Type Maintainability Status Won’t Fix

File(s) Executor.sol

Location(s) execute()

The execute() helper function is used to implement a call supported by the Versa wallet.
Currently, this only includes two types of calls: a normal external call and a delegatecall. The
way the function is implemented currently is error-prone: if the developer adds an operation
type to the enum Enum.Operation but forgets to add the corresponding case in execute(), then
any operation of that new type will be executed as if it is a normal call.

1 function execute(...) internal returns(bool success){
2 if (operation == Enum.Operation.DelegateCall) {
3 // delegatecall
4 }
5 else {
6 // call
7 }
8 }

Snippet 4.25: Relevant lines in execute()

Recommendation Change the else case to an else if (operation == Enum.Operation.Call)

{ ... } and add an additional else case that reverts.

Veridise Audit Report: Versa Lab © 2023 Veridise Inc.

36 4 Vulnerability Report

4.1.19 V-VERS-VUL-019: Normal execution operation type check is error-prone

Severity Warning Commit 56b82dd
Type Maintainability Status Fixed

File(s) VersaWallet.sol

Location(s) _checkNormalExecute()

The _checkNormalExecute() function is used to restrict normal executions (i.e., user operations
made with a normal validator). One of these restrictions is that the call cannot use be a
delegatecall. Since the only other type of operation supported by a Versa wallet is a normal
external call, this means that normal executions can only access normal calls.

However, the way this is currently implemented is error-prone, as it checks that the operation is
not a delegatecall and permits all other types of calls. If the developers add additional types
of operation in the future, they may forget to update _checkNormalExecute(). This can lead to
access control vulnerabilities.

1 function _checkNormalExecute(address to, bytes memory data, Enum.Operation _operation
) internal view {

2 require(
3 (to != address(this) || (to == address(this) && data.length == 0)) &&
4 !isValidatorEnabled(to) &&
5 !isHooksEnabled(to) &&
6 !isModuleEnabled(to) &&
7 _operation != Enum.Operation.DelegateCall,
8 "Versa: operation is not allowed"
9);

10 }

Snippet 4.26: Implementation of _checkNormalExecute()

1 abstract contract Enum {
2 enum Operation {
3 Call,
4 DelegateCall
5 }
6 }

Snippet 4.27: The two types of calls supported by a Versa wallet.

Recommendation Instead of a "allow by default" policy that checks for operations to deny, the
developers should use a "deny by default" policy that checks for operations to allow. Specifically,
the developers should change operator != Enum.Operation.DelegateCall to operator == Enum

.Operation.NormalCall. This can help prevent the developers from accidentally introducing
access control vulnerabilities as the wallet implementation is updated.

© 2023 Veridise Inc. Veridise Audit Report: Versa Lab

4.1 Detailed Description of Issues 37

4.1.20 V-VERS-VUL-020: replace() allows special values to be inserted into the list

Severity Warning Commit de6c674
Type Data Validation Status Fixed

File(s) AddressLinkedList.sol

Location(s) replace()

The AddressLinkedList library implements a set data structure of nonzero addresses, as a
circular linked list on top of a mapping. It has the following properties:

▶ Any key that has a value of address(0) is not contained in the set.
▶ The special key SENTINEL_ADDRESS (equal to address(1)) has an address value pointing to

the head of the linked list.
▶ The last address in the linked list has a value of SENTINEL_ADDRESS.

The replace() function will replace an existing entry with a new one (that does not already
exist). However, the replace() function can be successfully called with the zero address or the
SENTINEL_ADDRESS. This can violate some of the above properties of the AddressLinkedList.

1 function replace(mapping(address => address) storage self, address oldAddr, address
newAddr) internal {

2 require(isExist(self, oldAddr), "address not exists");
3 require(!isExist(self, newAddr), "new address already exists");
4

5 address cursor = SENTINEL_ADDRESS;
6 while (true) {
7 address _addr = self[cursor];
8 if (_addr == oldAddr) {
9 address next = self[_addr];

10 self[newAddr] = next;
11 self[cursor] = newAddr;
12 self[_addr] = address(0);
13 return;
14 }
15 cursor = _addr;
16 }
17 }

Snippet 4.28: Definition of replace()

1 function isExist(mapping(address => address) storage self, address addr) internal
view returns (bool) {

2 return self[addr] != address(0) && uint160(addr) > SENTINEL_UINT;
3 }

Snippet 4.29: Definition of isExist()

As a concrete example, the following sequence of function calls can result in an address being
inserted twice:

1. add(list, addr1)

2. add(list, addr2)

3. replace(list, addr1, address(0))

Veridise Audit Report: Versa Lab © 2023 Veridise Inc.

38 4 Vulnerability Report

4. add(list, addr2)

This occurs because the replace() function does not check that the newAddr parameter is nonzero,
so that the lastAddr will actually be replaced with the zero address. Furthermore, it is also
possible to replace an existing entry with the SENTINEL_ADDRESS.

Impact Currently, this has no impact since the replace() function is not used. However, if
replace() is used and this issue is triggered, then several invariants will be violated, including:

▶ Replacing an existing address with the zero address will "remove" all items after that
address, as they cannot be reached by iterating over the SENTINEL_ADDRESS key. However,
the "removed" addresses will still exist in the sense that isExist() will evaluate to true on
them. Furthermore, the new "last" address will not have the value SENTINEL_ADDRESS.

▶ Replacing an existing address with the SENTINEL_ADDRESS also leads to size() of the list
being calculated incorrectly.

An invariant violation can result in bugs. For example, it is possible to cause an infinite loop in
replace(), causing transactions to use up all gas and revert. One such sequence of calls that
demonstrate the issue is:

1. add(list, addr1)

2. add(list, addr2)

3. replace(list, addr1, address(0))

4. add(list, addr2)

5. add(list, addr3)

6. add(list, addr1)

7. add(list, addr4)

8. replace(list, addr4, addr5)

Recommendation Add the onlyAddress(newAddr) modifier to prevent the zero address and
the SENTINEL_ADDRESS from being inserted.

© 2023 Veridise Inc. Veridise Audit Report: Versa Lab

4.1 Detailed Description of Issues 39

4.1.21 V-VERS-VUL-021: Signature length check does not capture actual property

Severity Warning Commit 56b82dd
Type Data Validation Status Fixed

File(s) ECDSAValidator.sol

Location(s) validateSignature()

The first few lines of the validateSignature() method check that the signature attached
to the user operation matches the length needed for the signature scheme described in
SignatureHandler.sol. For the ECDSAValidator, the scheme requires that:

1. The signature field of an instant transaction is exactly 86 bytes long.
2. The signature field of a scheduled transaction is exactly 162 bytes long.

However, the actual check that is performed is that (1) the signature type is either instant or
scheduled; and (2) the length is equal to either 86 bytes or 162 bytes. The actual behavior is not
logically equivalent to the intended behavior.

Impact This could result in bugs if the signature is an instant transaction with a signature of
length 162 bytes or a scheduled transaction with a signature of length 86 bytes. In the current
code, this has no impact due to the following reasons:

1. An instant transaction with signature length 162 will cause a revert, as the OpenZeppelin
ECDSA library requires an ECDSA signature that is exactly 65 bytes in length, but the
actual signature passed in will be 141 bytes in length.

2. A scheduled transaction with signature length 86 will cause a revert, as splitUserOpSignature
() will go out-of-bounds when indexing into the user operation signature field.

Recommendation Despite having no impact, we recommend that the behavior is corrected
in case the developers intend to change some of the signature parsing logic in the future.
Specifically, the developers should change the length check so that it checks the property
"(signature type is instant transaction implies length is 86) and (signature type is scheduled
transaction implies length is 162)".

Veridise Audit Report: Versa Lab © 2023 Veridise Inc.

40 4 Vulnerability Report

4.1.22 V-VERS-VUL-022: Error-prone assumption that msg.sender and wallet are
the same

Severity Warning Commit de6c674
Type Maintainability Status Fixed

File(s) MultiSigValidator.sol

Location(s) _revokeGuardian(), _addGuardian()

The MultiSigValidator keeps track of its signers ("guardians") in the _guardians mapping,
where an address g is a guardian of a wallet w if and only if _guardians[g][w] is set to true.
When the _addGuardian() and _revokeGuardian() functions are used to update _guardians, the
actual wallet key that is used is msg.sender rather than the wallet parameter. Thus, the code
assumes that msg.sender equals wallet, though this assumption is neither enforced nor stated
anywhere.

1 function _addGuardian(address wallet, address guardian) internal {
2 require(!_isGuardian(wallet, guardian), "Guardian is already added");
3 require(guardian != wallet && guardian != address(0), "Invalid guardian address")

;
4 WalletInfo storage info = _walletInfo[wallet];
5 info.guardianCount++;
6 _guardians[guardian][msg.sender] = true;
7 emit AddGuardian(wallet, guardian);
8 }
9

10 function _revokeGuardian(address wallet, address guardian) internal {
11 require(_isGuardian(wallet, guardian), "Not a valid guardian");
12 WalletInfo storage info = _walletInfo[wallet];
13 _guardians[guardian][msg.sender] = false;
14 info.guardianCount--;
15 emit RevokeGuardian(wallet, guardian);
16 }

Snippet 4.30: Definitions of _addGuardian() and _revokeGuardian()

Impact This currently has no impact as the msg.sender will be the same as wallet on all
paths to _addGuardian() and _revokeGuardian(). However, a future refactor may break this
assumption, which can result in bugs where the wrong address is added to or removed from
the guardian set.

Recommendation Change msg.sender to wallet to match the assumption in the code.

© 2023 Veridise Inc. Veridise Audit Report: Versa Lab

4.1 Detailed Description of Issues 41

4.1.23 V-VERS-VUL-023: Out of date doc comment in
executeTransactionFromModule()

Severity Info Commit de6c674
Type Maintainability Status Fixed

File(s) ModuleManager.sol

Location(s) executeTransactionFromModule()

The execTransactionFromModule() method has a documentation comment stating:

1 * @notice Subclasses must override ‘_isPluginEnabled‘ to ensure the plugin is enabled

.

However, there is no function named _isPluginEnabled in the code base.

Recommendation To avoid confusion, update the documentation comment to be consistent
with the code.

Veridise Audit Report: Versa Lab © 2023 Veridise Inc.

42 4 Vulnerability Report

4.1.24 V-VERS-VUL-024: createAccount() reverts if wallet already exists

Severity Info Commit de6c674
Type Usability Issue Status Fixed

File(s) VersaAccountFactory.sol

Location(s) createAccount()

createAccount() reverts if there is an attempt to create an account at an address where some
account already exists. This is inconsistent with EIP-4337, which states:

If the factory does use CREATE2 or some other deterministic method to create the
wallet, it’s expected to return the wallet address even if the wallet has already been
created. This is to make it easier for clients to query the address without knowing if
the wallet has already been deployed, by [. . .]

1 function createAccount(/* ... */) public returns(address){
2 // ...
3 require(addr.code.length == 0, "Versa factory: account already created");
4 // ...
5 }

Snippet 4.31: Relevant lines in createAccount()

Recommendation Return the address if it already exists, as suggested.

© 2023 Veridise Inc. Veridise Audit Report: Versa Lab

https://eips.ethereum.org/EIPS/eip-4337#first-time-account-creation

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	V-VERS-VUL-001: Malicious hook can avoid removal
	V-VERS-VUL-002: Reentrancy into disableModule() can make a module un-disableable
	V-VERS-VUL-003: Hooks that dynamically change hasHooks() may be executed incorrectly
	V-VERS-VUL-004: Recorded token balances may not match actual amount transferred
	V-VERS-VUL-005: Signed hashes do not include validator address
	V-VERS-VUL-006: Instant transaction signatures have no expiry
	V-VERS-VUL-007: SpendingLimitHooks cannot account for spending on extra methods added by custom ERC20 tokens
	V-VERS-VUL-008: resetTimeIntervalMinutes is assumed to be nonzero but not checked
	V-VERS-VUL-009: lastResetTimeMinutes rounding logic not applied in one of the cases
	V-VERS-VUL-010: ECDSA, MultiSigValidators will not be initialized when re-enabled
	V-VERS-VUL-011: _getValidationIntersection reverts if both validUntil times are 0
	V-VERS-VUL-012: Missing length checks in _validateMultipleSessions()
	V-VERS-VUL-013: isValidSignature does not check validity times of scheduled transactions
	V-VERS-VUL-014: validateUserOp() does not call _checkNormalExecute()
	V-VERS-VUL-015: _enableHooks() bitfield check may be incorrect
	V-VERS-VUL-016: _isWalletInited() default implementation is error-prone
	V-VERS-VUL-017: Non-compliance in some ERC165 implementations
	V-VERS-VUL-018: Executor.execute() should explicitly check for the normal call operation
	V-VERS-VUL-019: Normal execution operation type check is error-prone
	V-VERS-VUL-020: replace() allows special values to be inserted into the list
	V-VERS-VUL-021: Signature length check does not capture actual property
	V-VERS-VUL-022: Error-prone assumption that msg.sender and wallet are the same
	V-VERS-VUL-023: Out of date doc comment in executeTransactionFromModule()
	V-VERS-VUL-024: createAccount() reverts if wallet already exists

