
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

Vault Manager Contracts

Veridise Inc.
September 27, 2023

▶ Prepared For:

Range Protocol
https://www.rangeprotocol.com

▶ Prepared By:

Alberto Gonzalez
Benjamin Sepanski

▶ Contact Us: contact@veridise.com

▶ Version History:

Sep. 19, 2023 Initial Draft

© 2023 Veridise Inc. All Rights Reserved.

https://www.rangeprotocol.com
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 5

4 Vulnerability Report 7
4.1 Detailed Description of Issues . 8

4.1.1 V-RNG-VUL-001: Retroactive fees . 8
4.1.2 V-RNG-VUL-002: No slippage protection in mint(), swap(), or burn() . . 9
4.1.3 V-RNG-VUL-003: Out-of-bounds array access 11
4.1.4 V-RNG-VUL-004: Poor management of fees may lead to small theft . . . 12
4.1.5 V-RNG-VUL-005: Fee caps not checked at initialization 14
4.1.6 V-RNG-VUL-006: Manager address could be zero 15
4.1.7 V-RNG-VUL-007: Existing issues from prior reports 17
4.1.8 V-RNG-VUL-008: Unused error . 18
4.1.9 V-RNG-VUL-009: Performance fee cap documented incorrectly 19

Glossary 21

Veridise Audit Report: Range Protocol © 2023 Veridise Inc.

Executive Summary 1
From Sep. 4, 2023 to Sep. 13, 2023, Range Protocol engaged Veridise to review the security of
their Vault Manager Contracts. These vaults are designed to store user funds. A manager is
responsible for using user-supplied liquidity in Uniswap pools to produce profit in return for
fees. The Veridise auditors reviewed the vault implementation and its associated factory, as well
as slight modifications to Uniswap periphery contracts and renamings in an OpenZeppelin
access-control contract.

Veridise conducted the assessment over 2 person-weeks, with 2 engineers reviewing code over
1 week on commit 0x0bc6281e. The auditing strategy involved a tool-assisted analysis of the
source code performed by Veridise engineers as well as extensive manual auditing.

Code assessment. The Vault Manager Contracts developers provided the source code of the
Vault Manager Contracts contracts for review. To facilitate the Veridise auditors’ understanding
of the code, the developers provided online documentation explaining the high-level intent
of the project. Developers also met with the Veridise team to give an in-depth walk-through
of the code and point out areas of potential concern. The source code also contained some
documentation in the form of READMEs and documentation comments on functions and
storage variables.

The source code contained a test suite, which the Veridise auditors noted tested both positive
and negative paths, verifying most of the access-control related paths. Several files in the source
code also indicate that the developers use linting such as prettier.

The Veridise auditors felt that the code was well organized and followed Solidity best practices.
The vault had a very limited interface, which also reduces the attack surface. Note that this is
under the assumption that the managers are a fully trusted entity, which was indicated to the
auditors by the Range Protocol team.

Summary of issues detected. The audit uncovered 9 issues, 0 of which are assessed to be
of high or critical severity by the Veridise auditors. The Veridise auditors also identified 2
medium-severity issues, including retroactive application of fees (V-RNG-VUL-001) and lack of
slippage protection (V-RNG-VUL-002). The audit also uncovered a number of minor issues,
including an out-of-bounds array access (V-RNG-VUL-003) and opportunities for small theft
under mismanagement (V-RNG-VUL-004), as well as several maintainability issues. The Vault
Manager Contracts developers have resolved or acknowledged all 9 issues.

Recommendations. After auditing the protocol, the auditors had a few suggestions to improve
the Vault Manager Contracts.

Primary amongst these is to implement slippage protection as described in V-RNG-VUL-002.

Veridise Audit Report: Range Protocol © 2023 Veridise Inc.

2 1 Executive Summary

The auditors also recommend adding extensive documentation for managers. The Uniswap *core
contracts are designed only to implement core functionality. Many issues (such as optimality
and slippage protection) are implemented in the †periphery contracts. Managers may be prone
to a host of mathematical or Solidity-specific errors handled in the periphery, and should be
strongly recommended to rely on the heavily-used Uniswap contracts.

The auditors also recommend that this guide contain key management standards, as the manager
is a trusted point in the protocol. The guide should also include the recommendation from issue
V-RNG-VUL-004.

Finally, the Veridise team recommends active monitoring of the protocol as an additional
proactive defensive measure.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

* https://github.com/Uniswap/v3-core
† https://github.com/Uniswap/v3-periphery/

© 2023 Veridise Inc. Veridise Audit Report: Range Protocol

https://github.com/Uniswap/v3-core
https://github.com/Uniswap/v3-periphery/

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
Vault Manager Contracts 0x0bc6281e - 0x0bc6281e Solidity Ethereum

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
Sep. 4 - Sep. 13, 2023 Manual & Tools 2 2 person-weeks

Table 2.3: Vulnerability Summary.

Name Number Resolved
Critical-Severity Issues 0 0
High-Severity Issues 0 0
Medium-Severity Issues 2 2
Low-Severity Issues 2 2
Warning-Severity Issues 3 3
Informational-Severity Issues 2 2
TOTAL 9 9

Table 2.4: Category Breakdown.

Name Number
Logic Error 3
Data Validation 2
Maintainability 2
Transaction Ordering 1
Authorization 1

Veridise Audit Report: Range Protocol © 2023 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of Vault Manager Contracts’s
smart contracts. In our audit, we sought to answer the following questions:

▶ Is it possible to reenter the vault?
▶ Can reentry from the Uniswap pool lead to theft from the vault?
▶ Can manipulation of the Uniswap price between interactions with the vault enable theft?
▶ Can users profit from well-timed minting and burning?
▶ How can frontrunners profit from interactions with the vault?
▶ Can funds become locked in the vault?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a combination of
human experts and automated program analysis & testing tools. In particular, we conducted
our audit with the aid of our in-house static analyzer, Vanguard.

▶ Static analysis. To identify potential common vulnerabilities, we leveraged our custom
smart contract analysis tool Vanguard. These tools are designed to find instances of
common smart contract vulnerabilities, such as reentrancy, flash loan attacks, uninitialized
variables, and uses of variables before they are defined.

Scope. The scope of this audit is limited to the contracts/ folder of the source code provided by
the Vault Manager Contracts developers, which contains the smart contract implementation of the
Vault Manager Contracts. Namely, the RangeProtocolFactory.sol, RangeProtocolVault.sol,
and RangeProtocolStorage.sol files, along with the access/, errors/, and uniswap/ direc-
tories.

Methodology. Veridise auditors reviewed the reports of previous audits for Vault Manager
Contracts, inspected the provided tests, and read the Vault Manager Contracts documentation.
They then began a manual audit of the code assisted by both static analyzers and automated
testing. During the audit, the Veridise auditors regularly met with the Vault Manager Contracts
developers to ask questions about the code.

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Veridise Audit Report: Range Protocol © 2023 Veridise Inc.

6 3 Audit Goals and Scope

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

In this case, we judge the likelihood of a vulnerability as follows in Table 3.2:

Table 3.2: Likelihood Breakdown

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows in Table 3.3:

Table 3.3: Impact Breakdown

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2023 Veridise Inc. Veridise Audit Report: Range Protocol

Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowledged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-RNG-VUL-001 Retroactive fees Medium Fixed
V-RNG-VUL-002 No slippage protection in mint(), swap(), or bu. . . Medium Fixed
V-RNG-VUL-003 Out-of-bounds array access Low Fixed
V-RNG-VUL-004 Poor management of fees may lead to small theft Low Acknowledged
V-RNG-VUL-005 Fee caps not checked at initialization Warning Fixed
V-RNG-VUL-006 Manager address could be zero Warning Fixed
V-RNG-VUL-007 Existing issues from prior reports Warning Acknowledged
V-RNG-VUL-008 Unused error Info Fixed
V-RNG-VUL-009 Performance fee cap documented incorrectly Info Fixed

Veridise Audit Report: Range Protocol © 2023 Veridise Inc.

8 4 Vulnerability Report

4.1 Detailed Description of Issues

4.1.1 V-RNG-VUL-001: Retroactive fees

Severity Medium Commit 0bc6281
Type Logic Error Status Fixed

File(s) RangeProtocolVault.sol

Location(s) updateFees()
Confirmed Fix At 3f4e4f7

The updateFees() function allows the manager to change the fees.

1 function updateFees(
2 uint16 newManagingFee,
3 uint16 newPerformanceFee
4) external override onlyManager {
5 if (newManagingFee > MAX_MANAGING_FEE_BPS) revert VaultErrors.InvalidManagingFee

();
6 if (newPerformanceFee > MAX_PERFORMANCE_FEE_BPS) revert VaultErrors.

InvalidPerformanceFee();
7

8 managingFee = newManagingFee;
9 performanceFee = newPerformanceFee;

10 emit FeesUpdated(newManagingFee, newPerformanceFee);
11 }

Snippet 4.1: Implementation of updateFees().

However, performance fees are not collected until fees are pulled, tokens are burned, or liquidity
is removed. Thus, the new performance fee will be applied retroactively on fees garnered from
liquidity in the Uniswap pool.

Impact Users may be forced to pay larger fees than indicated in the contract.

Recommendation Collect uniswap fees from the pool and apply the old performance fee
before updating to the new fee.

Developer Response We acknowledged the issue and applied the recommended fix.

© 2023 Veridise Inc. Veridise Audit Report: Range Protocol

4.1 Detailed Description of Issues 9

4.1.2 V-RNG-VUL-002: No slippage protection in mint(), swap(), or burn()

Severity Medium Commit 0bc6281
Type Transaction Ordering Status Fixed

File(s) RangeProtocolVault.sol

Location(s) mint(), burn()
Confirmed Fix At 4120118

Callers of mint() submit a mintAmount, and then the RangeProtocolVault computes how much
of each token is owed. For example, the totalSupply > 0 case is shown in the below code
snippet.

1 (uint256 amount0Current, uint256 amount1Current) = getUnderlyingBalances();
2 amount0 = FullMath.mulDivRoundingUp(amount0Current, mintAmount, totalSupply);
3 amount1 = FullMath.mulDivRoundingUp(amount1Current, mintAmount, totalSupply);

Snippet 4.2: Computation of (amount0, amount1) when totalSupply > 0 in mint().

Once this is done, the specified amounts of each token is transferred to the pool.

1 if (amount0 > 0) {
2 userVaults[msg.sender].token0 += amount0;
3 token0.safeTransferFrom(msg.sender, address(this), amount0);
4 }
5 if (amount1 > 0) {
6 userVaults[msg.sender].token1 += amount1;
7 token1.safeTransferFrom(msg.sender, address(this), amount1);
8 }

Snippet 4.3: Transfer of funds inside mint().

The amounts are never checked, and may be larger than the user expects. In order to protect
against this, a user must have approved only a small amount.

Similarly, burn(), swap(), addLiquidity(), and removeLiquidity() have no slippage protection.

Impact Users have the largest potential impact with mint() and burn(). If a large swap() occurs
on the Uniswap pool right before the mint() (resp. burn()), the value expended may become
much larger (resp. smaller) than expected. For mint(), a user who naively approves uint.max

for the pool may then pay more than they wish. For burn(), regardless of user action they may
receive less than expected.

Swapping and adding/removing liquidity primarily affects the manager, who must be aware of
the possibility that their action could be frontrun.

Recommendation We recommend adding a parameter to provide slippage protection.

If not possible, we suggest noting in the documentation that a user must approve only the
amount they wish to spend for mint(), but still adding slippage protection for burn(). The
developers should also document that the managers are expected to check for slippage.

Veridise Audit Report: Range Protocol © 2023 Veridise Inc.

10 4 Vulnerability Report

Developer Response Slippage protection has been added.

Veridise Response We would recommend adding upper bounds for slippage protection when
sending funds, i.e. in mint() and addLiquidity().

Updated Developer Response We have updated the slippage protections.

© 2023 Veridise Inc. Veridise Audit Report: Range Protocol

4.1 Detailed Description of Issues 11

4.1.3 V-RNG-VUL-003: Out-of-bounds array access

Severity Low Commit 0bc6281
Type Logic Error Status Fixed

File(s) RangeProtocolFactory.sol

Location(s) getVaultAddresses()
Confirmed Fix At 3f4e4f7

The function getVaultAddresses() in RangeProtocolFactory.sol allows callers to receive any
contiguous subset of the _vaultsList from a startIdx through an endIdx by copying the values
into a local vaultList array, and returning that to the user.

1 function getVaultAddresses(
2 uint256 startIdx,
3 uint256 endIdx
4) external view returns (address[] memory vaultList) {
5 vaultList = new address[](endIdx - startIdx + 1);
6 for (uint256 i = startIdx; i <= endIdx; i++) {
7 vaultList[i] = _vaultsList[i];
8 }
9 }

Snippet 4.4: Implementation of getVaultAddresses()

However, the vaultList is indexed at i, which ranges from startIdx through endIdx, rather
than at i-startIdx, which ranges from 0 through endIdx-startIdx.

Impact Any call to getVaultAddresses() with startIdx > 0 will cause an out-of-bounds array
access in the last few iterations of the loop.

Recommendation Replace vaultList[i] = _vaultsList[i]; with vaultList[i-startIdx] =

_vaultsList[i];.

Developer Response We acknowledged the finding and the recommended fix has been
applied.

Veridise Audit Report: Range Protocol © 2023 Veridise Inc.

12 4 Vulnerability Report

4.1.4 V-RNG-VUL-004: Poor management of fees may lead to small theft

Severity Low Commit 0bc6281
Type Logic Error Status Acknowledged

File(s) RangeProtocolVault.sol

Location(s) burn(), _getUnderlyingBalances(), getBalanceInCollateralToken()
Confirmed Fix At N/A

When calling burn() or _computeUnderlyingBalances(), the manager balance is subtracted from
the accrued fees if the accrued fees are large enough.

1 (uint256 burn0, uint256 burn1, uint256 fee0, uint256 fee1) = _withdraw(
liquidityBurned);

2

3 _applyPerformanceFee(fee0, fee1);
4 (fee0, fee1) = _netPerformanceFees(fee0, fee1);
5 emit FeesEarned(fee0, fee1);
6

7 uint256 passiveBalance0 = token0.balanceOf(address(this)) - burn0;
8 uint256 passiveBalance1 = token1.balanceOf(address(this)) - burn1;
9 if (passiveBalance0 > managerBalance0) passiveBalance0 -= managerBalance0;

10 if (passiveBalance1 > managerBalance1) passiveBalance1 -= managerBalance1;
11

12 amount0 = burn0 + FullMath.mulDiv(passiveBalance0, burnAmount, totalSupply);
13 amount1 = burn1 + FullMath.mulDiv(passiveBalance1, burnAmount, totalSupply);

Snippet 4.5: inThePosition case of burn().

This means that, if the manager balance is very near, but below, the passive balance, a user who
burns from the vault will receive more than expected.

Impact If managers keep enough liquid values to just barely cover their fees, they may be
vulnerable to small thefts from the vault.

For example, the below scenario shows a situation where

1. An attacker mints in the vault.
2. The manager pulls fees from the pool then rebalances liquidity leaving just enough for

fees.
3. The attacker burns their tokens, profiting from the exchange.

1 Current fees from pool: (0.200229,0.200004)

2 Attacker quickly mints before fees are pulled from the pool

3 Cost: (1.994866,1.994872), Tokens Minted: 2000000000000000000

4 Fees are pulled from pool

5 Vault balance: (0.971597,1.136293)

6 Manager balance: (0.005134,0.005128)

7 Manager adds liquidity to the pool, leaving just enough for fees

8 Vault balance: (0.005134,0.222477)

9 Manager balance: (0.005134,0.005128)

10 Attacker burns all tokens!

11 Attacker reward: (1.997433,1.994872)

12 Attacker profit: (0.002567,-0.000000)

© 2023 Veridise Inc. Veridise Audit Report: Range Protocol

4.1 Detailed Description of Issues 13

Note that the amounts stolen here are typically small.

Recommendation We recommend either reverting when the passive balance cannot cover the
debt to the manager, or at least emitting an event.

If choosing not to revert, the range protocol should be sure to inform managers of this possibility,
and ensure the managers withdraw fees frequently.

Developer Response The off-chain strategy of managers will take the decision of either to
keep the manager fee in the vault or deploy it on the pool when adding liquidity along with the
assets.

Veridise Audit Report: Range Protocol © 2023 Veridise Inc.

14 4 Vulnerability Report

4.1.5 V-RNG-VUL-005: Fee caps not checked at initialization

Severity Warning Commit 0bc6281
Type Data Validation Status Fixed

File(s) RangeProtocolVault.sol

Location(s) constructor()
Confirmed Fix At 3f4e4f7

In the constructor() of RangeProtocolVault, the performanceFee and managingFee are initialized.
However, there is no comparison to MAX_PERFORMANCE_FEE_BPS or MAX_MANAGING_FEE_BPS to ensure
the initialized values are in the proper range.

1 performanceFee = 250;
2 managingFee = 0;
3 // Managing fee is 0% at the time vault initialization.
4 emit FeesUpdated(0, performanceFee);

Snippet 4.6: Initialization of fees in the constructor.

Impact If initialization values are changed, a developer may unintentionally change the fees
to be larger than their respective caps.

Recommendation Assert performanceFee < MAX_PERFORMANCE_FEE_BPS and managingFee <

MAX_MANAGING_FEE_BPS in the constructor.

Developer Response We acknowledged the issue and applied the recommended fix.

© 2023 Veridise Inc. Veridise Audit Report: Range Protocol

4.1 Detailed Description of Issues 15

4.1.6 V-RNG-VUL-006: Manager address could be zero

Severity Warning Commit 0bc6281
Type Data Validation Status Fixed

File(s) RangeProtocolVault.sol

Location(s) initialize()
Confirmed Fix At 3f4e4f7

The manager for the vault is provided through the data parameter of initialize(). Then,
ownership is transferred to the manager.

1 function initialize(
2 address _pool,
3 int24 _tickSpacing,
4 bytes memory data
5) external override initializer {
6 (address manager, string memory _name, string memory _symbol) = abi.decode(
7 data,
8 (address, string, string)
9);

10

11 __UUPSUpgradeable_init();
12 __ReentrancyGuard_init();
13 __Ownable_init();
14 __ERC20_init(_name, _symbol);
15 __Pausable_init();
16

17 _transferOwnership(manager);

Snippet 4.7: Implementation of initialize().

The caller of initialize is _createVault() inside RangeProtocolFactory:

1 function _createVault(
2 address tokenA,
3 address tokenB,
4 uint24 fee,
5 address pool,
6 address implementation,
7 bytes memory data
8) internal returns (address vault) {
9 if (data.length == 0) revert FactoryErrors.NoVaultInitDataProvided();

10 // irrelevant code elided
11 vault = address(
12 new ERC1967Proxy(
13 implementation,
14 abi.encodeWithSelector(INIT_SELECTOR, pool, tickSpacing, data)
15)
16);
17 _vaultsList.push(vault);
18 }

Snippet 4.8: Implementation of _createVault().

So, the only validation performed on data is length-based.

Veridise Audit Report: Range Protocol © 2023 Veridise Inc.

16 4 Vulnerability Report

Impact The manager address may be zero without causing any errors during initialization.

Recommendation Revert during initialization if the manager address (or other user-supplied
addresses) are 0x0.

Developer Response We acknowledged the finding and applied the recommended fix.

© 2023 Veridise Inc. Veridise Audit Report: Range Protocol

4.1 Detailed Description of Issues 17

4.1.7 V-RNG-VUL-007: Existing issues from prior reports

Severity Warning Commit 0bc6281
Type Authorization Status Acknowledged

File(s) N/A
Location(s) N/A

Confirmed Fix At N/A

Here we highlight several issues identified by previous audit reports which remain open, and
add our encouragement to that of prior auditors for the developers to address these issues.

1. HAL-04: Users can steal any manually added liquidity. In both repositories, if a manager
adds liquidity manually, then vault tokens become more valuable and attackers may
frontrun to buy the tokens while cheap, then burn them once they’ve gained value.

2. HAL-05: Fee payment bypass is possible for small amounts. Since fees are computed
with only 4 decimals, small burn amounts may avoid fees.

3. HAL-07: Malicious manager can steal a share of vault liquidity. In both repositories, the
managers are trusted entities. For instance, a manager may perform a large number of
swaps with the users own funds simply to generate fees.

Impact

1. Manually added liquidity may go to waste.
2. Small fees may go unpaid.
3. Untrusted managers, or managers who are hacked, may use bad swaps to steal user funds.

Recommendation

1. Be sure to document this possibility and make it clear that managers should not add
liquidity manually.

2. Notify managers of this possibility, or set a minimum fee.
3. Make clear to users that managers must be fully trusted, and add extra requirements on

managers to ensure their keys are stored safely.

Developer Response The managers will be KYCed and we have an onboarding document for
them. We will add the aforementioned points in the onboarding document.

Veridise Audit Report: Range Protocol © 2023 Veridise Inc.

18 4 Vulnerability Report

4.1.8 V-RNG-VUL-008: Unused error

Severity Info Commit 0bc6281
Type Maintainability Status Fixed

File(s) errors/VaultErrors.sol

Location(s) library VaultErrors
Confirmed Fix At 3f4e4f7

The MintFailed() error defined in the VaultErrors library is unused.

Impact Future developers may be confused about which error type to use.

Recommendation Remove the unused error type.

Developer Response Acknowledge the finding and the unused error has been removed.

© 2023 Veridise Inc. Veridise Audit Report: Range Protocol

4.1 Detailed Description of Issues 19

4.1.9 V-RNG-VUL-009: Performance fee cap documented incorrectly

Severity Info Commit 0bc6281
Type Maintainability Status Fixed

File(s) RangeProtocolVault.sol

Location(s) RangeProtocolVault
Confirmed Fix At 3f4e4f7

The README in the contracts repository indicates two different caps on fees:

• Vault manager can update the managing and performance fee managing fee is
capped at 1% and performance fee is capped at 1%.

There are two types of fees i.e. performance fee and managing fee. Performance fee
will be capped at 10% (1000 BPS) and at the time of vault initialisation, it will be set
to 250 BPS (2.5%). The managing fee at the time of vault initialisation will be set
to 0%, but it can be set up to 1% (100 BPS). Both of these fees are credited to state
variables of managerBalance0 and managerBalance1.

In RangeProtocolVault.sol, the caps are set as constants:

1 /// Performance fee cannot be set more than 10% of the fee earned from uniswap v3
pool.

2 uint16 public constant MAX_PERFORMANCE_FEE_BPS = 1000;
3 /// Managing fee cannot be set more than 1% of the total fee earned.
4 uint16 public constant MAX_MANAGING_FEE_BPS = 100;

Snippet 4.9: Fee caps defined in RangeProtocolVault.sol.

Impact Users of the protocol who read the documentation may misunderstand what the fee
caps are.

Recommendation Fix the documentation to list the performance fee cap at 10%.

Developer Response We acknowledge the finding and the documentation has been cor-
rected.

Veridise Audit Report: Range Protocol © 2023 Veridise Inc.

Glossary

AMM Automated Market Maker. 21

OpenZeppelin A security company which provides many standard implementations of com-
mon contract specifications. See https://www.openzeppelin.com. 1

prettier A code formatting tool, seehttps://prettier.io/docs/en/integrating-with-linters.
html to learn more. 1

smart contract A self-executing contract with the terms directly written into code. Hosted on a
blockchain, it automatically enforces and executes the terms of an agreement between
buyer and seller. Smart contracts are transparent, tamper-proof, and eliminate the need
for intermediaries, making transactions more efficient and secure.. 21

Solidity The standard high-level language used to develop smart contracts on the Ethereum
blockchain. See https://docs.soliditylang.org/en/v0.8.19/ to learn more. 2

Uniswap One of the most famous deployed AMMs. See https://uniswap.org to learn more.
1

Veridise Audit Report: Range Protocol © 2023 Veridise Inc.

https://www.openzeppelin.com
https://prettier.io/docs/en/integrating-with-linters.html
https://prettier.io/docs/en/integrating-with-linters.html
https://docs.soliditylang.org/en/v0.8.19/
https://uniswap.org

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	V-RNG-VUL-001: Retroactive fees
	V-RNG-VUL-002: No slippage protection in mint(), swap(), or burn()
	V-RNG-VUL-003: Out-of-bounds array access
	V-RNG-VUL-004: Poor management of fees may lead to small theft
	V-RNG-VUL-005: Fee caps not checked at initialization
	V-RNG-VUL-006: Manager address could be zero
	V-RNG-VUL-007: Existing issues from prior reports
	V-RNG-VUL-008: Unused error
	V-RNG-VUL-009: Performance fee cap documented incorrectly
	Glossary

