
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

Daimo

Veridise Inc.
October 6, 2023

▶ Prepared For:

Daimo
https://daimo.xyz/

▶ Prepared By:

Daniel Domínguez Álvarez
Jacob Van Geffen
Bryan Tan

▶ Contact Us: contact@veridise.com

▶ Version History:

Oct. 6, 2023 V1.00

© 2023 Veridise Inc. All Rights Reserved.

https://daimo.xyz/
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 6

4 Vulnerability Report 7
4.1 Detailed Description of Issues . 8

4.1.1 V-DMO-VUL-001: iOS FallbackKeyManager does not require user presence 8
4.1.2 V-DMO-VUL-002: Android FallbackKeyManager does not require user

presence . 9
4.1.3 V-DMO-VUL-003: Zero name/address can be registered 12
4.1.4 V-DMO-VUL-004: Initial public key not validated 14
4.1.5 V-DMO-VUL-005: addSigningKey does not check public key validity . . 16
4.1.6 V-DMO-VUL-006: Unchecked ERC20 token transfer success status . . . 17
4.1.7 V-DMO-VUL-007: User operation signatures have no expiry 18
4.1.8 V-DMO-VUL-008: Inconsistent doc comment on createEphemeralNote . 19
4.1.9 V-DMO-VUL-009: DaimoNameRegistry does not disable initializers . . 20
4.1.10 V-DMO-VUL-010: Subclassing OpenZeppelin contracts with upgradable

proxies . 21
4.1.11 V-DMO-VUL-011: Consider adding atomic approval change methods . . 22
4.1.12 V-DMO-VUL-012: Undocumented assumption that notes contract uses

the same token . 23
4.1.13 V-DMO-VUL-013: fromHex does not validate nonceType 24
4.1.14 V-DMO-VUL-014: Improve Swift code quality with guard 25
4.1.15 V-DMO-VUL-015: External call to register() can be safely replaced with

internal call . 26

Veridise Audit Report: Daimo © 2023 Veridise Inc.

Executive Summary 1
From Sep. 13, 2023 to Sep. 26, 2023, Daimo engaged Veridise to review the security of several
major components of their Daimo project, a wallet app (for iOS and Android) backed by an
on-chain Ethereum smart contract compliant with EIP-4337* account abstraction. Veridise
conducted the assessment over 6 person-weeks, with 3 engineers reviewing code over 2 weeks
on commit f0dc56d. The security assessment was performed in the same audit as that of Daimo’s
P256Verifier project†, which the Daimo project depends on. The auditing strategy involved a
tool-assisted analysis of the source code performed by Veridise engineers as well as extensive
manual auditing.

Project Summary. The security assessment covered the following components of Daimo: the
on-chain smart contracts used in Daimo, the daimo-userop package, and the daimo-expo-enclave

package. Specifically, the Daimo smart contracts consist of the DaimoAccount EIP-4337 smart
contract, whose authentication protocol uses ECDSA public keys on NIST curve P-256; the
EphemeralNotes contract that implements the on-chain part of the payment links feature; and
the DaimoNameRegistry for mapping human-readable names to on-chain addresses.

The iOS and Android apps (out-of-scope of this audit) are each implemented as a React Native
application. The daimo-userop package is a TypeScript library used in the apps to invoke the
Daimo smart contracts. Lastly, the daimo-expo-enclave package provides a TypeScript wrapper
around Swift/Kotlin code for accessing the cryptographic functions of the phone’s secure
enclave.

Code assessment. The Daimo developers provided the source code of Daimo for review‡. The
source code appears to be original and written by the developers. It contains some documentation
in the form of READMEs and documentation comments on functions and variables. The source
code also contains a test suite, which the Veridise auditors noted provides decent test coverage
over the major features of each package, including tests of known good situations and some
failure cases. Several files in the source code also indicate that the developers use linting and
static analysis tools such as ESLint and Solhint.

Summary of issues detected. The audit uncovered 15 issues, 2 of which are assessed to be
of medium severity by the Veridise auditors. Specifically, when the phone is unlocked and
does not have a secure enclave available, then the user is not prompted for re-authentication
and/or re-authorization before a transaction is signed for some devices (V-DMO-VUL-001,
V-DMO-VUL-002). The Veridise auditors also identified 5 low-severity issues, including a lack
of expiry times on user operation signatures (V-DMO-VUL-007) and lack of status validation
on ERC20 token transfers (V-DMO-VUL-006). In addition, the Veridise auditors identified

* Also known as "Account Abstraction Using Alt Mempool": https://eips.ethereum.org/EIPS/eip-4337
† The audit report for P256Verifier can be found on our website: https://veridise.com/audits
‡ The source code is publicly available at https://github.com/daimo-eth/daimo

Veridise Audit Report: Daimo © 2023 Veridise Inc.

https://eips.ethereum.org/EIPS/eip-4337
https://veridise.com/audits
https://github.com/daimo-eth/daimo

2 1 Executive Summary

6 warnings and 2 informational issues. The Daimo developers resolved all of the reported
issues.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

© 2023 Veridise Inc. Veridise Audit Report: Daimo

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform

Daimo f0dc56d
Solidity, TypeScript, Swift,

Kotlin
Ethereum, React Native,

iOS, Android

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
Sep. 13 - Sep. 26, 2023 Manual & Tools 3 6 person-weeks

Table 2.3: Vulnerability Summary.

Name Number Resolved
Critical-Severity Issues 0 0
High-Severity Issues 0 0
Medium-Severity Issues 2 2
Low-Severity Issues 5 5
Warning-Severity Issues 6 6
Informational-Severity Issues 2 2
TOTAL 15 15

Table 2.4: Category Breakdown.

Name Number
Data Validation 4
Logic Error 3
Maintainability 3
Access Control 2
Replay Attack 1
Frontrunning 1
Gas Optimization 1

Veridise Audit Report: Daimo © 2023 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of the major components of
Daimo as described in Section 1. In our audit, we sought to answer questions such as:

▶ Does the DaimoAccount have any weaknesses in its signature scheme?
▶ Does the DaimoAccount correctly validate its signers?
▶ Can funds be locked in the EphemeralNotes contract?
▶ Does the the DaimoNameRegistry correctly handle name-address registrations?
▶ Are there ways for the app to sign a transaction without obtaining the user’s authorization

for the transaction?
▶ Are there potential flaws in the way that transactions are constructed?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a combination of
human experts and automated program analysis & testing tools. In particular, we conducted
our audit with the aid of the following techniques:

▶ Static analysis. To identify potential common vulnerabilities, we leveraged our custom
smart contract analysis tool Vanguard, as well as the open-source tool Slither. These
tools are designed to find instances of common smart contract vulnerabilities, such as
reentrancy and uninitialized variables.

▶ Fuzzing/Property-based Testing. We also leverage fuzz testing to determine if the protocol
may deviate from the expected behavior. To do this, we formalize the desired behavior of
the protocol as [V] specifications and then use our fuzzing framework OrCa to determine
if a violation of the specification can be found.

Scope. The scope of this audit is limited to the following folders of the source code provided by
the Daimo developers:

▶ packages/contract/contract/src

▶ packages/daimo-expo-enclave

▶ packages/daimo-userop/src

All other packages in the provided source code (e.g., the application code in app/) are not in the
scope of the audit. During the audit, the Veridise auditors referred to the excluded files but
assumed that they have been implemented correctly.

Methodology. Veridise auditors reviewed relevant specifications such as EIP-4337, inspected the
provided tests, and read the Daimo documentation. They then began a manual audit of the
code assisted by both static analyzers and automated testing. During the audit, the Veridise
auditors regularly met with the Daimo developers to ask questions about the code.

Veridise Audit Report: Daimo © 2023 Veridise Inc.

6 3 Audit Goals and Scope

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

In this case, we judge the likelihood of a vulnerability as follows in Table 3.2:

Table 3.2: Likelihood Breakdown

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows in Table 3.3:

Table 3.3: Impact Breakdown

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2023 Veridise Inc. Veridise Audit Report: Daimo

Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowledged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-DMO-VUL-001 iOS FallbackKeyManager does not require user pr. . .Medium Fixed
V-DMO-VUL-002 Android FallbackKeyManager does not require use. . .Medium Fixed
V-DMO-VUL-003 Zero name/address can be registered Low Fixed
V-DMO-VUL-004 Initial public key not validated Low Intended Behavior
V-DMO-VUL-005 addSigningKey does not check public key validity Low Intended Behavior
V-DMO-VUL-006 Unchecked ERC20 token transfer success status Low Fixed
V-DMO-VUL-007 User operation signatures have no expiry Low Fixed
V-DMO-VUL-008 Inconsistent doc comment on createEphemeralNote Warning Fixed
V-DMO-VUL-009 DaimoNameRegistry does not disable initializers Warning Fixed
V-DMO-VUL-010 Subclassing OpenZeppelin contracts with upgrada. . .Warning Fixed
V-DMO-VUL-011 Consider adding atomic approval change methods Warning Acknowledged
V-DMO-VUL-012 Undocumented assumption that notes contract use. . .Warning Fixed
V-DMO-VUL-013 fromHex does not validate nonceType Warning Fixed
V-DMO-VUL-014 Improve Swift code quality with guard Info Fixed
V-DMO-VUL-015 External call to register() can be safely repla. . . Info Fixed

Veridise Audit Report: Daimo © 2023 Veridise Inc.

8 4 Vulnerability Report

4.1 Detailed Description of Issues

4.1.1 V-DMO-VUL-001: iOS FallbackKeyManager does not require user presence

Severity Medium Commit f0dc56d
Type Access Control Status Fixed

File(s) GenericPasswordStore.swift

Location(s) See description
Confirmed Fix At https://github.com/daimo-eth/daimo/pull/274

Elements stored in the Keychain Services using GenericPasswordStore have a default level
of access which allows apps to access elements while the device is unlocked. Following
Apple’s documentation for the Keychain Services API, for payment applications like Daimo,
it is recommended to require user presence while accessing elements of the keychain. Such
configuration would require the user to be prompted for authorization when account keys
are retrieved for use in signing transactions. This prevents unauthorized users from accessing
account keys if they attempt to do so when the device is unlocked (for example, an unattended
child playing around with the device, or theft of the device while it is unlocked).

Impact This issue only affects the FallbackKeyManager, which relies completely on
GenericPasswordStore and thus will not enforce user presence on key retrieval. In contrast, the
SecureEnclaveKeyManager will require user presence when accessing the Secure Enclave.

If an unauthorized user accesses the application when device is unlocked, they can access
elements of the keychain and perform unauthorized actions in the app, such as signing
transactions.

Since the most common key manager for most users is the one based on Secure Enclave, this
issue will likely only affect users whose phones lack a Secure Enclave and must rely on the
fallback method.

Recommendation Modify the keychain access code to require user presence when the element
is unlocked. According to Apple’s documentation, the queries to the keychain would need to be
modified as follows:

First, set up the access control with the following line of code:

1 var error: NSError?

2 let access = SecAccessControlCreateWithFlags(NULL, // Use the default allocator.

3 kSecAttrAccessibleWhenUnlocked,

4 kSecAccessControlUserPresence,

5 &error);

Use access in the subsequent queries:

1 var query: [String: Any] = [/* ... */

2 kSecAttrAccessControl as String: access,

3 /* ... */]

This will cause the app to prompt the user for authentication using the available methods
(biometry, password, etc) whenever the keychain item is accessed.

© 2023 Veridise Inc. Veridise Audit Report: Daimo

https://github.com/daimo-eth/daimo/pull/274
https://developer.apple.com/documentation/security/keychain_services/keychain_items/restricting_keychain_item_accessibility#2974973
https://developer.apple.com/documentation/security/keychain_services/keychain_items/restricting_keychain_item_accessibility#2974973

4.1 Detailed Description of Issues 9

4.1.2 V-DMO-VUL-002: Android FallbackKeyManager does not require user
presence

Severity Medium Commit f0dc56d
Type Access Control Status Fixed

File(s) FallbackKeyManager.kt

Location(s) createSigningPrivkey()
Confirmed Fix At https://github.com/daimo-eth/daimo/pull/289

Similar to V-DMO-VUL-001, this issue allows messages to be signed without user presence in
cases where FallbackKeyManager is used. This happens because no authentication requirement
is set for KeyGenParameterSpec.Builder in the createSigningPrivkey method, nor is the user
prompted for authentication in the sign() method.

1 internal fun createSigningPrivkey(accountName: String) {
2 var params = KeyGenParameterSpec.Builder(accountName, KeyProperties.PURPOSE_SIGN or

KeyProperties.PURPOSE_VERIFY)
3 .setAlgorithmParameterSpec(ECGenParameterSpec("secp256r1"))
4 .setDigests(KeyProperties.DIGEST_SHA256)
5 .build()
6

7 var keyPairGenerator = KeyPairGenerator.getInstance(KeyProperties.KEY_ALGORITHM_EC,
KEYSTORE_PROVIDER)

8 keyPairGenerator.initialize(params)
9 keyPairGenerator.generateKeyPair()

10 }

Snippet 4.1: Definition of createSigningPrivkey()

Impact Note that the FallbackKeyManager is only used if the call to ExpoEnclaveModule.

hasBiometrics() returns false. In general, this will occur on phones with API level 29 or
lower, as the combination BIOMETRIC_STRONG | DEVICE_CREDENTIAL is not supported on those
levels (see documentation). On API level 30 or above, the FallbackKeyManager will only be used
if the user does not have any biometrics or device credentials enabled.

1 internal fun hasBiometrics(): Boolean {
2 val biometricManager = BiometricManager.from(context)
3 return biometricManager.canAuthenticate(BiometricManager.Authenticators.

BIOMETRIC_STRONG or BiometricManager.Authenticators.DEVICE_CREDENTIAL) ==
BiometricManager.BIOMETRIC_SUCCESS

4 }

Snippet 4.2: Definition of hasBiometrics()

When the FallbackKeyManager is used, unauthorized users may sign messages through the
FallbackKeyManager while the phone is unlocked. Although these users cannot authenticate
through biometric inputs, they should still be prompted for authentication through other
means.

Veridise Audit Report: Daimo © 2023 Veridise Inc.

https://github.com/daimo-eth/daimo/pull/289
https://developer.android.com/reference/androidx/biometric/BiometricManager#canAuthenticate(int)

10 4 Vulnerability Report

Recommendation Due to the instability of the BiometricPrompt API across API levels 28-30,
there are several potential ways in which this issue can be addressed:

▶ In FallbackKeyManager.sign(), use the createConfirmDeviceCredentialIntent() method
of KeyguardManager to launch an activity that prompts the user for their credentials
(PIN, password, etc.), following the steps in the documentation. Note that the method is
deprecated in API level 29 but has not been removed.
Enforcing user authentication at the application level, rather than on the keystore object
itself, may increase the complexity of the code, however.

▶ For API level 29 or lower, if additional security on the FallbackKeyManager keys is desired,
the developers may want to consider constructing the parameters in createSigningPrivkey

() in the following way:

1 var params = KeyGenParameterSpec.Builder(accountName, KeyProperties.PURPOSE_SIGN

or KeyProperties.PURPOSE_VERIFY)

2 .setAlgorithmParameterSpec(ECGenParameterSpec("secp256r1"))

3 .setDigests(KeyProperties.DIGEST_SHA256)

4 .setUserAuthenticationRequired(true)

5 .setUserAuthenticationValidityDurationSeconds(some_seconds_as_int)

6 .build()

As noted in the documentation, setting required user authentication with a positive
validity duration will cause a use of the key to throw an error, unless the user has been
previously authenticated through a lock screen.
It is important to also note that setUserAuthenticationRequire(true) may cause the key
to be invalidated when new biometrics (e.g., fingerprints) are enrolled, locking users
out of their accounts. However, setting a positive validity duration will not cause the
key to be invalidated by biometric enrollment, as documented in the related method
setInvalidatedByBiometricEnrollment().

▶ For API level 28 or 29, the developers could modify hasBiometrics() to allow Class 3
biometrics (e.g., fingerprints) to be used if they are available, e.g.:

1 var authFlags = BiometricManager.Authenticators.BIOMETRIC_STRONG or

BiometricManager.Authenticators.DEVICE_CREDENTIAL

2 if (Build.VERSION_SDK_INT <= Build.VERSION_CODES.Q) {

3 // the combination BIOMETRIC_STRONG | DEVICE_CREDENTIAL is unsupported on API

level < 30

4 authFlags = BiometricManager.Authenticators.BIOMETRIC_STRONG

5 }

6 return biometricManager.canAuthenticate(authFlags) == BiometricManager.

BIOMETRIC_SUCCES

Note that this will also require the same authentication parameters to be passed to the
KeyGenParameterSpec.Builder in BiometricsKeyManager.createSigningPrivkey().
One caveat of adding support like this is that if the user is currently accessing a key
through the FallbackKeyManager and then decides to add a strong biometric, then the
BiometricsKeyManager will always be used to generate the key in the future. Since the
key generation parameters in FallbackKeyManager do not require user authentication, the
existing key will not require user authentication when it is used to sign messages in
BiometricsKeyManager.

© 2023 Veridise Inc. Veridise Audit Report: Daimo

https://developer.android.com/reference/android/app/KeyguardManager.html#createConfirmDeviceCredentialIntent(java.lang.CharSequence,%20java.lang.CharSequence)
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setUserAuthenticationValidityDurationSeconds(int)
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setInvalidatedByBiometricEnrollment(boolean)
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder#setInvalidatedByBiometricEnrollment(boolean)

4.1 Detailed Description of Issues 11

Developer Response The developers noted that they only intend to support phones with
API level 28 and above, and they documented the intended behavior of the expo module
across different devices in the following GitHub issue: https://github.com/daimo-eth/
daimo/issues/288

The developers will add the createConfirmDeviceCredentialIntent() prompt to the
FallbackKeyManager. The developers do not intend to apply the other recommendations due to
the complexity involved. Instead, the developers will force the FallbackKeyManager to be used
on API levels 28-29 and the BiometricsKeyManager to be used on API levels 30 and above.

Veridise Audit Report: Daimo © 2023 Veridise Inc.

https://github.com/daimo-eth/daimo/issues/288
https://github.com/daimo-eth/daimo/issues/288

12 4 Vulnerability Report

4.1.3 V-DMO-VUL-003: Zero name/address can be registered

Severity Low Commit f0dc56d
Type Data Validation Status Fixed

File(s) DaimoNameRegistry.sol

Location(s) registerName()
Confirmed Fix At https://github.com/daimo-eth/daimo/pull/268

The DaimoNameRegistry contract maintains a one-to-one relation between names (of maximum
length 32 bytes) and addresses. This relation is represented by the _names and _addrs mappings,
where a name/address pair (n, a) is registered if and only if _names[a] == n and _addrs[n] ==

a. Any address may invoke the register() method to add a unique name/address pair to the
contract.

If _names[a] or _addrs[n] is set to zero or the zero bytes, then conceptually the pair (n, a) is
considered to be unregistered. However, the register() method allows registering a pair where
one component is zero and the other is nonzero.

1 /// Enforces uniqueness. Doesn’t do any validation on name. The app
2 /// validates names both for claiming and lookup, so there’s no advantage
3 /// to registering an invalid name onchain (will be ignored / unusable).
4 function register(bytes32 name, address addr) public {
5 require(_addrs[name] == address(0), "NameRegistry: name taken");
6 require(_names[addr] == bytes32(0), "NameRegistry: addr taken");
7 _addrs[name] = addr;
8 _names[addr] = name;
9 emit Registered(name, addr);

10 }
11

12 /// Registers msg.sender under a given name.
13 function registerSelf(bytes32 name) external {
14 this.register(name, msg.sender);
15 }

Snippet 4.3: Definition of the relevant functions in DaimoNameRegistry

Impact If either (n, 0) or (0, a) is registered for nonzero n or a, then the relation will no
longer be a one-to-one relation. This may violate assumptions made by third-party applications
that use the resolveAddr() and resolveName() methods. Specifically, the two methods treat the
return value zero as a special value representing a missing entry. If, for example, the pair (n, 0)

is registered, then resolveAddr(n) will return address(0), which would indicate that (n, 0) is
"missing" despite it being registered.

Furthermore, the issue may cause a denial-of-service problem in the forceRegister() method.
The owner of the registry can call forceRegister() in order to override a name/address pair.
This is implemented by (1) clearing any entry with a nonzero _addrs[name]; and then (2) calling
register(). However, if (name, address(0)) is already registered for some nonzero name, then
prevAddr will be zero (so the existing entry will not be cleared), and the call to register() will
always revert when checking that _names[address(0)] is zero.

© 2023 Veridise Inc. Veridise Audit Report: Daimo

https://github.com/daimo-eth/daimo/pull/268

4.1 Detailed Description of Issues 13

Because register() does not have any access controls, it would be very easy for the zero address
to be registered, allowing one name to be irrevocably denied to future registrations.

1 /// Looks up the address for a given name, or address(0) if missing.
2 function resolveAddr(bytes32 name) external view returns (address) {
3 return _addrs[name];
4 }
5

6 /// Looks up the name for a given address, or bytes32(0) if missing.
7 function resolveName(address addr) external view returns (bytes32) {
8 return _names[addr];
9 }

10

11 /// Allow owner to override a claimed name.
12 /// The purpose of this is to prevent name-squatting early on.
13 /// Eventually, ownership of the NameRegistry will be burned to ossify.
14 function forceRegister(bytes32 name, address addr) external onlyOwner {
15 address prevAddr = _addrs[name];
16 if (prevAddr != address(0)) {
17 assert(_names[prevAddr] == name); // invariant
18 _names[prevAddr] = bytes32(0);
19 _addrs[name] = address(0);
20 }
21 register(name, addr);
22 }

Snippet 4.4: Affected functions in DaimoNameRegistry

Recommendation Require both of the name and addr function parameters to be nonzero in
register() and forceRegister().

Veridise Audit Report: Daimo © 2023 Veridise Inc.

14 4 Vulnerability Report

4.1.4 V-DMO-VUL-004: Initial public key not validated

Severity Low Commit f0dc56d
Type Data Validation Status Intended Behavior

File(s) DaimoAccount.sol

Location(s) initialize()
Confirmed Fix At N/A

The DaimoAccount.initialize() method takes as an argument a NIST P-256 public key to use
as the initial key. However, it assumes that the key is valid and does not perform any validation
on the key. SEC 1 version 2.0, section 3.2.2 [PDF] recommends that "it is either necessary or
desirable for an entity using an elliptic curve public key to receive an assurance that the public
key is valid."

While we note that the typical usage scenario for a DaimoAccount is to construct it with one of
the APIs or applications provided by Daimo (arguably a "trusted party" that ensures that the
public key is valid), a third-party application that initializes a DaimoAccount may not necessarily
ensure that the provided public key is valid.

1 function initialize(
2 uint8 slot,
3 bytes32[2] calldata key,
4 Call[] calldata initCalls
5) public virtual initializer {
6 keys[slot] = key;
7 numActiveKeys = 1;

Snippet 4.5: Relevant lines in initialize()

Impact If the initial signing key is not a valid P-256 public key, then the account creator will
be permanently locked out of the account. Any gas, tokens, or other valuables that the account
has been initialized with will be locked.

Recommendation Validate that the initial key is a valid public key for curve P-256. To avoid
implementation mistakes, it is recommended to reuse the validation logic in addSigningKey()

(esp. after applying the recommendation in V-DMO-VUL-005).

Developer Response The developers noted that they are making the following trade-off:

The validity of public keys is an invariant that we do not think makes sense to enforce
in the on-chain contract.

The similar but actual invariant we would like to maintain for the user/owner of
the account is that signing keys authorised to the account are ones the user owns
the private key of / can produce valid signatures from (note that besides simply
being valid public keys, this requires that the user must also be able to sign using
the key via the app). This is something that the application enforces on behalf of the
user off-chain.

© 2023 Veridise Inc. Veridise Audit Report: Daimo

https://www.secg.org/sec1-v2.pdf

4.1 Detailed Description of Issues 15

Note also that since the transactions for signing key changes will always originate
from the user themselves, key validity seems like a "application level" invariant to
enforce, rather than on-chain contract level.

Thus, we would prefer not to add additional complexity/gas cost to enforce
suggested weaker invariant that actually does not add sufficient real guarantee for
the user of the app.

Veridise Audit Report: Daimo © 2023 Veridise Inc.

16 4 Vulnerability Report

4.1.5 V-DMO-VUL-005: addSigningKey does not check public key validity

Severity Low Commit f0dc56d
Type Data Validation Status Intended Behavior

File(s) DaimoAccount.sol

Location(s) addSigningKey()
Confirmed Fix At N/A

The addSigningKey() method is used to add a ECDSA public key (on curve P-256) to the account.
The key must be provided as a point (x, y) on the curve P-256 in affine coordinates. However,
addSigningKey() only checks that x is nonzero and does not fully validate the given public
key. The "Elliptic Curve Public Key Validation Primitive" procedure described in SEC 1 Ver.
2.0 [PDF], Section 3.2.2.1 includes the following steps that are not in the implementation of
addSigningKey():

▶ Checking that x and y are valid integer representations of elements of {𝐹}_𝑝 (i.e., by
checking that x and y are in the inclusive range [0, p - 1]).

▶ Checking that (x, y) is a point on curve P-256.

1 function addSigningKey(uint8 slot, bytes32[2] memory key) public onlySelf {
2 require(keys[slot][0] == bytes32(0), "key already exists");
3 require(key[0] != bytes32(0), "new key cannot be 0");
4 require(numActiveKeys < maxKeys, "max keys reached");
5 keys[slot] = key;
6 numActiveKeys++;
7 emit SigningKeyAdded(this, slot, key);
8 }

Snippet 4.6: Implementation of addSigningKey()

Note that there is also a step that checks that (x, y) is a scalar multiple of the base point of the
curve; however, this check can be skipped for curve P-256, as the the base point is a generator
for the curve.

Impact If a user of the account adds an invalid public key and removes all other public keys,
then all users will be permanently locked out of the account.

Recommendation Validate that the given key is a valid ECDSA public key on curve P-256 by
also including the checks described above.

Developer Response See the developer response in V-DMO-VUL-004.

© 2023 Veridise Inc. Veridise Audit Report: Daimo

https://www.secg.org/sec1-v2.pdf
https://www.secg.org/sec1-v2.pdf

4.1 Detailed Description of Issues 17

4.1.6 V-DMO-VUL-006: Unchecked ERC20 token transfer success status

Severity Low Commit f0dc56d
Type Logic Error Status Fixed

File(s) DaimoEphemeralNotes.sol

Location(s) createNote(), claimNote()
Confirmed Fix At https://github.com/daimo-eth/daimo/pull/267

When the EphemeralNotes contract is used to create or claim a note, the contract will call
ERC20.transferFrom() or ERC20.transfer(), respectively. These transfer methods may return a
boolean value indicating whether the transfer is successful; however, this value is not checked.

1 function createNote(address _ephemeralOwner, uint256 _amount) external {
2 // ...
3 token.transferFrom(msg.sender, address(this), _amount);
4 }
5

6 function claimNote(
7 address _ephemeralOwner,
8 bytes memory _signature
9) external {

10 // ...
11 token.transfer(msg.sender, note.amount);
12 }

Snippet 4.7: Relevant lines in createNote() and claimNote()

1 function transfer(address _to, uint256 _value) public returns (bool success)
2

3 function transferFrom(address _from, address _to, uint256 _value) public returns (
bool success)

Snippet 4.8: Function signatures of transfer and transferFrom in the ERC-20 specification.

Impact An ephemeral note may be successfully created even if the transferFrom() call in
createNote returns false (i.e., transfer unsuccessful). A user may be able to claim such a note
and transfer tokens out of the notes contract, even if no tokens were transferred in during the
creation of the note.

Recommendation Use OpenZeppelin’s SafeTransfer library, which will check the return
value and correctly handle ERC-20 token contracts that do not return a boolean success value.

Veridise Audit Report: Daimo © 2023 Veridise Inc.

https://github.com/daimo-eth/daimo/pull/267
https://eips.ethereum.org/EIPS/eip-20#methods

18 4 Vulnerability Report

4.1.7 V-DMO-VUL-007: User operation signatures have no expiry

Severity Low Commit f0dc56d
Type Replay Attack Status Fixed

File(s) DaimoAccount.sol

Location(s) _validateUseropSignature()
Confirmed Fix At https://github.com/daimo-eth/daimo/pull/270

The signatures of user operations for a DaimoAccount consists of 65 bytes in the following
format:

▶ A 1 byte index indicating which public key of the DaimoAccount to use to validate the
signature.

▶ A 32 byte integer containing the r component of the ECDSA signature.
▶ A 32 byte integer containing the s component of the ECDSA signature.

Crucially, this signature does not include information that indicates the time period over which
the signature is valid, meaning that any signature is valid forever. This could increase the risk
of replay attacks. For example, if a user operation is submitted to a bundler’s mempool, the
bundler decides not to include the user operation (e.g., for reasons such as insufficient gas), and
the user no longer wants the user operation to be executed as a result, then a malicious actor
may be able to resubmit the operation at a later point in the future.

Impact Each EIP-4337 user operation has a nonce that is used to protect against replay attacks
(see here for details). Specifically, the nonce consists of a pair (key, sequence) such that the
64-bit sequence must be strictly increasing among all user operations with the same key.

However, the nonce values generated by the daimo-userop package always have sequence set to 0,
meaning that the signatures generated by daimo-userop will not be able to use the replay attack
protection built into EIP-4337. This may expose DaimoAccounts to the attack scenario described
above.

Recommendation Include a timestamp in the signature that indicates when the user operation
expires, and change the _validateSignature() method to reject the signature if the current time
is after the expiry time.

Developer Response In response, developers stated:

I agree it’s a good feature and we’ll add it.

I don’t think it’s accurate to call this a replay attack. A bundler can’t include an op
twice, or replay it on a different chain—it can only delay an op, including it onchain
later than intended.

EOA transactions (which, unlike 4337 userops, don’t have a built-in validUntil

mechanism) are similarly delayable.

The auditors agree that the user op cannot be executed twice by the bundler or executed again
on a different chain. However, it is the submission to the mempool that is being replayed in the
scenario described in this issue.

© 2023 Veridise Inc. Veridise Audit Report: Daimo

https://github.com/daimo-eth/daimo/pull/270
https://eips.ethereum.org/EIPS/eip-4337#semi-abstracted-nonce-support

4.1 Detailed Description of Issues 19

4.1.8 V-DMO-VUL-008: Inconsistent doc comment on createEphemeralNote

Severity Warning Commit f0dc56d
Type Maintainability Status Fixed

File(s) daimo-userop/src/index.ts

Location(s) createEphemeralNote()
Confirmed Fix At https://github.com/daimo-eth/daimo/pull/276

A documentation comment on the DaimoOpSender.createEphemeralNote() function implies that
the method will send a transaction that includes a call to the approve() function of the ERC20
token of the note. However, the user operation constructed by createEphemeralNote() does not
include any such calls to approve().

1 /**
2 * Creates an ephemeral note with given value.
3 * Infinite-approves the notes contract first, if necessary.
4 * Returns userOpHash.
5 **/
6 public async createEphemeralNote(
7 ephemeralOwner: ‘0x${string}‘,
8 amount: ‘${number}‘,
9 opMetadata: DaimoOpMetadata

10) {

Snippet 4.9: The documentation comment on createEphemeralNote()

Impact If the comment is incorrect, it may mislead a developer into unintentionally inserting
excessive ERC20 approval calls. If the implementation is incorrect, the transaction may be
reverted due to missing approvals.

Recommendation Ensure that the comment and the implementation are consistent.

Developer Response The developers noted that the comment is outdated; the initial deploy-
ment of the account already includes an approve() call, so that the daimo-userop package can
assume that the ephemeral notes contract is already approved.

Veridise Audit Report: Daimo © 2023 Veridise Inc.

https://github.com/daimo-eth/daimo/pull/276

20 4 Vulnerability Report

4.1.9 V-DMO-VUL-009: DaimoNameRegistry does not disable initializers

Severity Warning Commit f0dc56d
Type Logic Error Status Fixed

File(s) DaimoNameRegistry.sol

Location(s) See description
Confirmed Fix At https://github.com/daimo-eth/daimo/pull/278

The DaimoNameRegistry contract does not declare a constructor. However, it subclasses from
OpenZeppelin’s Initializable contract, whose documentation mentions the following:

Avoid leaving a contract uninitialized.

An uninitialized contract can be taken over by an attacker. This applies to both a proxy
and its implementation contract, which may impact the proxy. To prevent the imple-
mentation contract from being used, you should invoke the _disableInitializers

function in the constructor to automatically lock it when it is deployed:

Recommendation Declare a constructor and have it call _disableInitializers().

© 2023 Veridise Inc. Veridise Audit Report: Daimo

https://github.com/daimo-eth/daimo/pull/278
https://docs.openzeppelin.com/contracts/4.x/api/proxy#Initializable

4.1 Detailed Description of Issues 21

4.1.10 V-DMO-VUL-010: Subclassing OpenZeppelin contracts with upgradable
proxies

Severity Warning Commit f0dc56d
Type Logic Error Status Fixed

File(s) DaimoNameRegistry.sol

Location(s) See description
Confirmed Fix At https://github.com/daimo-eth/daimo/pull/278

The DaimoNameRegistry contract is meant to be deployed through an upgradeable proxy. However,
it subclasses from the normal OpenZeppelin contracts rather than the upgradeable versions. This
may result in initialization problems when initializing or deploying the DaimoNameRegistry.

Impact Currently, this should have no impact. The DaimoNameRegistry subclasses from Ownable

and Initializable. The constructor of the Ownable contract will set the owner to the msg.sender

(i.e., the account deploying the contract). The init() method of DaimoNameRegistry will similarly
set the owner to the msg.sender. Consequently, the logic contract’s owner will be set to the
deployer of the logic contract, and the proxy contract’s owner will be set to the sender of the
init() call.

1 /**
2 * @dev Initializes the contract setting the deployer as the initial owner.
3 */
4 constructor() {
5 _transferOwnership(_msgSender());
6 }

Snippet 4.10: Constructor of Ownable in OpenZeppelin 4.8.1

1 function init() public initializer {
2 _transferOwnership(msg.sender);
3 }

Snippet 4.11: Definition of DaimoNameRegistry.init()

However, if the DaimoNameRegistry is modified to subclass additional OpenZeppelin contracts
that have constructor code, then the initialization code of those contracts may not be executed
correctly when the DaimoNameRegistry is deployed through a proxy.

Recommendation

▶ To avoid future bugs, subclass from the OwnableUpgradeable contract of https://github.
com/OpenZeppelin/openzeppelin-contracts-upgradeable instead of Ownable.

▶ In init(), invoke the __Ownable_init() (or __Ownable_init_unchained()) methods instead
of manually calling _transferOwnership().

Veridise Audit Report: Daimo © 2023 Veridise Inc.

https://github.com/daimo-eth/daimo/pull/278
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable

22 4 Vulnerability Report

4.1.11 V-DMO-VUL-011: Consider adding atomic approval change methods

Severity Warning Commit f0dc56d
Type Frontrunning Status Acknowledged

File(s) daimo-userop/src/index.ts

Location(s) DaimoOpSender
Confirmed Fix At N/A

The DaimoOpSender class contains a method erc20approve() that is used to construct and send a
user operation that will call the approve() method on the ERC20 token of the DaimoOpSender. In
scenarios where a user wishes to increase an existing allowance, the erc20approve() method
may be vulnerable to ERC20 approval frontrunning attacks. There are no functions or methods
on DaimoOpSender that allow a user to atomically increase or decrease an existing allowance.

Impact If a user sends a user operation that sets the approval amount with the intention of
increasing an existing allowance, then recipient of the approval can frontrun the transaction
to actually spend more tokens than they should be intended to. For example, suppose Alice
has already approved Bob to use X tokens, and then Alice sends an approve call to change the
approval to X+Y. If Bob sees the approve call, he can then spend the existing allowance X before
the approve is finalized. Afterwards, he will be approved for a new amount X+Y, which he can
then spend for a grand total of 2*X+Y tokens spent.

Recommendation If this issue is applicable, then DaimoOpSender should be extended with
functionality to create user operations that atomically increase/decrease allowance. This may
require the Daimo contracts to be modified to include methods that implement the allowance
increases/decreases.

Developer Response The developers noted that increasing/decreasing allowance is not within
their intended usage scenarios, but they will keep this issue in mind. Furthermore, they noted:

We’ve removed the erc20approve function altogether, it was unused.

DaimoOpSender constructs userops for each action supported in-app. The remaining
functions are all used.

© 2023 Veridise Inc. Veridise Audit Report: Daimo

4.1 Detailed Description of Issues 23

4.1.12 V-DMO-VUL-012: Undocumented assumption that notes contract uses the
same token

Severity Warning Commit f0dc56d
Type Maintainability Status Fixed

File(s) daimo-userop/src/index.ts

Location(s) DaimoOpSender
Confirmed Fix At https://github.com/daimo-eth/daimo/pull/283

The DaimoOpSender class stores the address of the on-chain DaimoEphemeralNotes contract
as well as the address of an ERC-20 token. Several methods on DaimoOpSender, such as
createEphemeralNote(), implicitly assume that this ERC-20 token is the same one used in
the DaimoEphemeralNotes. However, this assumption is not documented anywhere in the file.

Impact When ERC-20 token amounts are used as parameters of the methods of DaimoOpSender,
they are assumed to be in the units of the token and have to be converted to uint256 values for
EVM calls. If the ERC-20 token does not match that of the notes contract, then (1) the wrong
token will used for the note; and (2) a mismatch in the decimals may cause the wrong amount
to be sent.

1 public async createEphemeralNote(
2 ephemeralOwner: ‘0x${string}‘,
3 amount: ‘${number}‘,
4 opMetadata: DaimoOpMetadata
5) {
6 const parsedAmount = parseUnits(amount, this.tokenDecimals);
7 console.log(‘[OP] create ${parsedAmount} note for ${ephemeralOwner}‘);
8

9 const op = this.opBuilder.executeBatch(
10 [
11 {
12 dest: this.notesAddress,
13 value: 0n,
14 data: encodeFunctionData({
15 abi: Contracts.ephemeralNotesABI,
16 functionName: "createNote",
17 args: [ephemeralOwner, parsedAmount],
18 }),
19 },
20],
21 opMetadata
22);

Snippet 4.12: Example of how the token will be used.

Recommendation Clearly document this assumption in the code.

Veridise Audit Report: Daimo © 2023 Veridise Inc.

https://github.com/daimo-eth/daimo/pull/283

24 4 Vulnerability Report

4.1.13 V-DMO-VUL-013: fromHex does not validate nonceType

Severity Warning Commit f0dc56d
Type Data Validation Status Fixed

File(s) daimo-userop/src/nonce.ts

Location(s) DaimoNonceMetadata.fromHex()
Confirmed Fix At https://github.com/daimo-eth/daimo/pull/284

The DaimoNonceMetaData.fromHex() function parses a DaimoNonceMetadata from a hex string. The
first byte of the hex string corresponds to a nonceType, which corresponds to one of the entries in
the DaimoNonceType enum. However, the nonceType is not checked to be a valid DaimoNonceType

value.

1 public static fromHex(hexMetadata: Hex): DaimoNonceMetadata {
2 assert(hexMetadata.length === 16 + 2);
3 const nonceType = parseInt(hexMetadata.slice(2, 4), 16);
4 const identifier = BigInt("0x" + hexMetadata.slice(4)) as bigint;
5 return new DaimoNonceMetadata(nonceType, identifier);
6 }

Snippet 4.13: Implementation of fromHex()

1 export enum DaimoNonceType {
2 Send = 0,
3 CreateNote = 1,
4 ClaimNote = 2,
5 RequestResponse = 3,
6 AddKey = 4,
7 RemoveKey = 5,
8 MAX = 255, // At most one byte
9 }

Snippet 4.14: Definition of DaimoNonceType

Impact If fromHex() is given a hex string that has an invalid nonce type value as its first byte,
then fromHex() will still successfully return a DaimoNonceMetadata. This could potentially lead
to subtle errors in code that uses fromHex().

Recommendation Insert an assertion or other check that ensures that the nonceType is valid.

© 2023 Veridise Inc. Veridise Audit Report: Daimo

https://github.com/daimo-eth/daimo/pull/284

4.1 Detailed Description of Issues 25

4.1.14 V-DMO-VUL-014: Improve Swift code quality with guard

Severity Info Commit f0dc56d
Type Maintainability Status Fixed

File(s) SecureEnclaveKeyManager.swift, FallbackKeyManager.swift

Location(s) See description
Confirmed Fix At https://github.com/daimo-eth/daimo/pull/265

There are two nil checks and subsequent unwrapping in SecureEnclaveKeyManager.swift and
FallbackKeyManager.swift that could be replaced with a guard statement, as recommended for
readability and maintainability. The usage of guard clarifies intentions regarding the state of a
variable and places the exit conditions at the beginning of the function.

1 public func fetchPublicKey(accountName: String) throws -> String? {
2 let readSigningPrivkey: SecureEnclave.P256.Signing.PrivateKey? = try self.store.

readKey(account: accountName)
3 if readSigningPrivkey == nil {
4 return nil
5 }
6 let signingPrivkey = readSigningPrivkey!
7 return signingPrivkey.publicKey.derRepresentation.hexEncodedString()
8 }

Snippet 4.15: The check at the beginning of fetchPublicKey in SecureEnclaveKeyManager.swift

could be rewritten using a guard.

1 public func fetchPublicKey(accountName: String) throws -> String? {
2 let readSigningPrivkey: P256.Signing.PrivateKey? = try self.store.readKey(account

: accountName)
3 if readSigningPrivkey == nil {
4 return nil
5 }
6 let signingPrivkey = readSigningPrivkey!
7 return signingPrivkey.publicKey.derRepresentation.hexEncodedString()
8 }

Snippet 4.16: The check at the beginning of fetchPublicKey in FallbackKeyManager.swift

could be rewritten using a guard.

Impact There is no security impact.

Recommendation To improve maintainability, rewrite the highlighted functions using guard

statements.

Veridise Audit Report: Daimo © 2023 Veridise Inc.

https://github.com/daimo-eth/daimo/pull/265

26 4 Vulnerability Report

4.1.15 V-DMO-VUL-015: External call to register() can be safely replaced with
internal call

Severity Info Commit f0dc56d
Type Gas Optimization Status Fixed

File(s) DaimoNameRegistry.sol

Location(s) registerSelf()
Confirmed Fix At https://github.com/daimo-eth/daimo/pull/268

The DaimoNameRegistry contract that has a method registerSelf() that effectively serves as an
alias to the register() method but with the address argument set to msg.sender. Unexpectedly,
the registerSelf() method is implemented as an external call to the register() method rather
than as an internal call. As the register() method does not use any information from the
calling context, the external call can be safely replaced with an internal call to reduce gas
consumption.

1 function register(bytes32 name, address addr) public {
2 require(_addrs[name] == address(0), "NameRegistry: name taken");
3 require(_names[addr] == bytes32(0), "NameRegistry: addr taken");
4 _addrs[name] = addr;
5 _names[addr] = name;
6 emit Registered(name, addr);
7 }
8

9 /// Registers msg.sender under a given name.
10 function registerSelf(bytes32 name) external {
11 this.register(name, msg.sender);
12 }

Snippet 4.17: Definition of register() and registerSelf()

Recommendation Replace this.register(...)with register(...) in the definition of registerSelf
.

© 2023 Veridise Inc. Veridise Audit Report: Daimo

https://github.com/daimo-eth/daimo/pull/268

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	V-DMO-VUL-001: iOS FallbackKeyManager does not require user presence
	V-DMO-VUL-002: Android FallbackKeyManager does not require user presence
	V-DMO-VUL-003: Zero name/address can be registered
	V-DMO-VUL-004: Initial public key not validated
	V-DMO-VUL-005: addSigningKey does not check public key validity
	V-DMO-VUL-006: Unchecked ERC20 token transfer success status
	V-DMO-VUL-007: User operation signatures have no expiry
	V-DMO-VUL-008: Inconsistent doc comment on createEphemeralNote
	V-DMO-VUL-009: DaimoNameRegistry does not disable initializers
	V-DMO-VUL-010: Subclassing OpenZeppelin contracts with upgradable proxies
	V-DMO-VUL-011: Consider adding atomic approval change methods
	V-DMO-VUL-012: Undocumented assumption that notes contract uses the same token
	V-DMO-VUL-013: fromHex does not validate nonceType
	V-DMO-VUL-014: Improve Swift code quality with guard
	V-DMO-VUL-015: External call to register() can be safely replaced with internal call

