
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

Cog Isolated Lending Platform

Veridise Inc.
August 24, 2023

▶ Prepared For:

Cog-Finance
https://www.cog.finance

▶ Prepared By:

Ajinkya D. Rajput
Timothy Hoffman

▶ Contact Us: contact@veridise.com

▶ Version History:

Thu. 24, Aug 2023 V1
Mon. 14, Aug 2023 Initial Draft

© 2023 Veridise Inc. All Rights Reserved.

https://www.cog.finance
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 5
3.4 Detailed Description of Issues . 8

3.4.1 V-COG-VUL-001: Attacker may steal all assets of cog_pair 8
3.4.2 V-COG-VUL-002: Attacker can steal collateral from arbitrary user 10
3.4.3 V-COG-VUL-003: Interest rate surge Protection are not implemented . . 12
3.4.4 V-COG-VUL-004: Redeem returns wrong number of assets transferred . 14
3.4.5 V-COG-VUL-005: Protocol transfers in fewer funds in repay() 15
3.4.6 V-COG-VUL-006: Protocol transfers in fewer funds in liquidate() 17
3.4.7 V-COG-VUL-007: Wrong amount returns as shares from withdraw . . . 19
3.4.8 V-COG-VUL-008: Comparison of shares and ERC20 tokens 21
3.4.9 V-COG-VUL-009: Possible overflow while calculating mean price 22
3.4.10 V-COG-VUL-010: Consider using ‘mul_div’ in more locations 24
3.4.11 V-COG-VUL-011: Subtracting values of different units 27
3.4.12 V-COG-VUL-012: Check if atleast one oracle is active in fuse_box 29
3.4.13 V-COG-VUL-013: Unnecessary memory copy 31
3.4.14 V-COG-VUL-014: Divide before multiply can give incorrect 0 result . . . 33
3.4.15 V-COG-VUL-015: _isPaused() function name is confusing 35
3.4.16 V-COG-VUL-016: Unused variable or dead code 36
3.4.17 V-COG-VUL-017: Use of magic number 38
3.4.18 V-COG-VUL-018: Inconsistent or missing documentation 39

Veridise Audit Report: Cog-Finance © 2023 Veridise Inc.

Executive Summary 1
From July. 31, 2023 to Aug. 7, 2023, Cog-Finance engaged Veridise to review the security of
their Cog Isolated Lending Platform. Cog is an isolated lending protocol, focused towards
decentralization and capital efficiency. Cog allows users to deploy permissionless isolated
lending/borrowing pools. This is the first audit of Cog Isolated Lending Platform performed by
Veridise. Veridise conducted the assessment over 12 person-days, with 2 engineers reviewing
code over 6 days from commit 7ca2a6a. The auditing strategy involved manual auditing by
engineers.

Code assessment. The Cog Isolated Lending Platform developers provided the source code
of the Cog Isolated Lending Platform contracts for review. To facilitate the Veridise auditors’
understanding of the code, the Cog Isolated Lending Platform developers also provided link to
their documentation. The source code also contained detailed documentation in the form of
READMEs and documentation comments on functions and storage variables.

The source code contained a test suite, which the Veridise auditors noted had tests for some use
cases. However, test cases were missing for some use cases like withdrawal and borrowing. The
test suite also included stateful tests to check if the protocol maintains a consistent internal state
throughout a series of transactions. Stateful tests are useful for modeling real-world scenarios
and ensuring that the protocol behaves as expected on both valid and invalid inputs.

Summary of issues detected. The audit uncovered 18 issues, 6 of which are assessed to be
of high or critical severity by the Veridise auditors. Specifically, V-COG-VUL-001 and V-COG-
VUL-002 are critical logic issues that allow an attacker to steal assets from borrowing pool
and collateral from users respectively. V-COG-VUL-003 is a high severity issue which finds
that the surge protection described in the documentation is partially implemented in code.
V-COG-VUL-004 is another high severity issue where the redeem function transfers tokens to
the caller but the return value and log give an incorrect number of assets. V-COG-VUL-005
and V-COG-VUL-006 are other high severity issues where the protocol transfer fewer tokens
than needed in repay and liquidate functions respectively. The Veridise auditors also identified
several medium-severity issues, including V-COG-VUL-006 where the withdraw function
transfers correct amount of tokens but reports a lesser number of tokens as transferred. Also,
V-COG-VUL-007 finds a comparison between quantities of different units. There were also a
number of low severity issues and warnings. The Cog Isolated Lending Platform developers
acknowledged all of the reported issues and fixed 16 out of 18 issues.

Recommendations. After auditing the protocol, the auditors had a few suggestions to improve
the Cog Isolated Lending Platform.
Interaction of units The protocol deals with two different units for asset tokens deposited in the
liquidity pool, i.e. the absolute number of tokens and shares. Correct inter-conversion of these
quantities is critical and needs to be tested thoroughly.
Testing The test suite was missing test cases for a few use cases and we recommend to add

Veridise Audit Report: Cog-Finance © 2023 Veridise Inc.

2 1 Executive Summary

test cases for missing use cases. We also recommend testing scenarios where longer sequences
of user actions are performed therefore testing interaction of different use cases, especially
sequences that trigger interest calculation.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

© 2023 Veridise Inc. Veridise Audit Report: Cog-Finance

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
Cog Isolated Lending Platform 7ca2a6a Vyper Ethereum

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
July. 31 - Aug. 7, 2023 Manual 2 12 person-days

Table 2.3: Vulnerability Summary.

Name Number Resolved
Critical-Severity Issues 2 2
High-Severity Issues 4 4
Medium-Severity Issues 2 2
Low-Severity Issues 3 3
Warning-Severity Issues 6 6
Informational-Severity Issues 1 1
TOTAL 18 18

Table 2.4: Category Breakdown.

Name Number
Logic Error 11
Maintainability 5
Data Validation 1
Gas Optimization 1

Veridise Audit Report: Cog-Finance © 2023 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of Cog Isolated Lending Platform’s
smart contracts. In our audit, we sought to answer the following questions:

▶ Can attacker steal asset tokens from liquidity pool?
▶ Can attacker steal collateral tokens from users?
▶ Are arithmetic operations safe?
▶ Does protocol transfer right amount of tokens?
▶ Does protocol report right amount of tokens transferred?
▶ Does the protocol employ right access control?
▶ Does the protocol interact correctly with oracles?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved human experts
manually auditing issues.
Scope. The scope of this audit is limited to the src folder of the source code provided by the
Cog Isolated Lending Platform developers, which contains the smart contract implementation
of the Cog Isolated Lending Platform, specifically,

▶ src/cog_factory.vy

▶ src/cog_pair.vy

▶ src/fuse_box.vy

▶ src/loan_router.vy

Methodology. Veridise auditors read the Cog Isolated Lending Platform documentation and
inspected the provided tests. They then performed a manual audit of the code. During the audit,
the Veridise auditors regularly met with the Cog Isolated Lending Platform developers to ask
questions about the code.

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

In this case, we judge the likelihood of a vulnerability as follows in Table 3.2:

In addition, we judge the impact of a vulnerability as follows in Table 3.3:

Veridise Audit Report: Cog-Finance © 2023 Veridise Inc.

6 3 Audit Goals and Scope

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

Table 3.2: Likelihood Breakdown

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

Table 3.3: Impact Breakdown

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2023 Veridise Inc. Veridise Audit Report: Cog-Finance

3.3 Classification of Vulnerabilities 7

Table 3.4: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-COG-VUL-001 Attacker may steal all assets of cog_pair Critical Fixed
V-COG-VUL-002 Attacker can steal collateral from arbitrary user Critical Fixed
V-COG-VUL-003 Interest rate surge Protection are not implemented High Fixed
V-COG-VUL-004 Redeem returns wrong number of assets transferred High Fixed
V-COG-VUL-005 Protocol transfers in fewer funds in repay() High Fixed
V-COG-VUL-006 Protocol transfers in fewer funds in liquidate() High Fixed
V-COG-VUL-007 Wrong amount returns as shares from withdraw Medium Fixed
V-COG-VUL-008 Comparison of shares and ERC20 tokens Medium Fixed
V-COG-VUL-009 Possible overflow while calculating mean price Low Fixed
V-COG-VUL-010 Consider using ‘mul_div’ in more locations Low Won’t Fix
V-COG-VUL-011 Subtracting values of different units Low Fixed
V-COG-VUL-012 Check if atleast one oracle is active in fuse_box Warning Fixed
V-COG-VUL-013 Unnecessary memory copy Warning Won’t Fix
V-COG-VUL-014 Divide before multiply can give incorrect 0 result Warning Fixed
V-COG-VUL-015 _isPaused() function name is confusing Warning Fixed
V-COG-VUL-016 Unused variable or dead code Warning Fixed
V-COG-VUL-017 Use of magic number Warning Fixed
V-COG-VUL-018 Inconsistent or missing documentation Info Fixed

Veridise Audit Report: Cog-Finance © 2023 Veridise Inc.

8 3 Audit Goals and Scope

3.4 Detailed Description of Issues

3.4.1 V-COG-VUL-001: Attacker may steal all assets of cog_pair

Severity Critical Commit 7ca2a6a
Type Logic Error Status Fixed

File(s) src/cog_pair.vy

Location(s) borrow()

The protocol allows users to borrow asset tokens against the collateral deposited by them by
calling the borrow() external function. The protocol also provides a borrow_approvalsmechanism
for users to set allowances for other users to borrow on their behalf against the collateral

deposited by them.

1 @external
2 def approve_borrow(borrower: address, amount: uint256) -> bool:
3 self.borrow_approvals[msg.sender][borrower] = amount
4 log Approval(msg.sender, borrower, amount)
5 return True

Figure 3.1: approve_borrow() in cog_pair.vy

A user A can allow another user B to borrow amount funds on behalf of A against collateral
deposited by A by calling approve_borrow(B, amount)

1 def borrow(
2 amount: uint256, _from: address = msg.sender, to: address = msg.sender
3) -> uint256:
4 """
5 @param to The address to send the borrowed tokens to
6 @param amount The amount of asset to borrow, in tokens
7 @return The amount of tokens borrowed
8 """
9 self._isPaused()

10 self.efficient_accrue()
11 if _from != msg.sender:
12 self.borrow_approvals[_from][msg.sender] -= amount
13 borrowed: uint256 = self._borrow(amount, _from, to)
14 assert self._is_solvent(
15 msg.sender, self.exchange_rate
16), "Insufficient Collateral"
17 accrue_info: AccrueInfo = self.accrue_info
18 # Now that utilization has changed, interest must be accrued to trigger any surge

which now may be occuring
19 self._accrue(self.accrue_info, 0)
20 return borrowed

Figure 3.2: borrow() in cog_pair.vy

The borrow() function takes 3 arguments:

▶ amount: The amount to be borrowed.

© 2023 Veridise Inc. Veridise Audit Report: Cog-Finance

3.4 Detailed Description of Issues 9

▶ _from = msg.sender: The address on behalf of which the borrow is requested (default
value is msg.sender).

▶ _to = msg.sender: The address to which the borrowed tokens are to be transferred.

The borrow() function performs the following:

1. Accrue interest by calling self.efficient_accrue().
2. Checks if _from is not the default value of msg.sender, and if so, reduces approval for _from

provided by msg.sender represented by self.borrow_approvals[_from][msg.sender].
3. Call internal _borrow() function.
4. Assert if the account is solvent: self._is_solvent(msg.sender, self.exchange_rate).
5. Accrue interest by calling _accrue().
6. Return borrowed tokens.

The borrow is performed on behalf of _from and solvency is checked for the msg.sender. When
_from is not equal to default value of msg.sender, the protocol will allow an attacker to borrow
funds on behalf of an insolvent account.

Impact An attacker can steal all the assets in the liquidity pool of the pair.

Consider the following attack scenario:

1. Attacker uses two addresses Driver and Borrower.
2. Attacker calls approve_borrow(Borrower, max_value(uint256)) from Driver address.
3. Attack calls borrow(<all_assets>, Driver) from Borrower address.

a) This call will go through because
i. The borrow will be made from Driver account.

ii. Solvency will be checked for Borrower account.
iii. Since Borrower has zero borrow at this point, it will be assessed to be solvent

and the assert will pass.
b) This would transfer all assets in the pair liquidity pool to Borrower.

4. The attacker does not have any collateral invested in the protocol so the attacker has no
compulsion to repay the borrow.

Recommendation The _is_solvent assertion at cog_pair.vy:1166 should check _from instead
of msg.sender.

Developer Response Developers have acknowledged and fixed this issue.

Veridise Audit Report: Cog-Finance © 2023 Veridise Inc.

10 3 Audit Goals and Scope

3.4.2 V-COG-VUL-002: Attacker can steal collateral from arbitrary user

Severity Critical Commit 7ca2a6a
Type Logic Error Status Fixed

File(s) src/cog_pair.vy

Location(s) _remove_collateral()

The protocol allows users to deposit and withdraw collateral and borrow the asset tokens
against the deposited collateral. The protocol maintains the balance of deposited collateral
of an user in self.user_collateral_share map. Users can withdraw their collateral using
remove_collateral() function. These functions call an internal function _remove_collateral()

which implements the steps for bookkeeping and transferring the tokens to the withdrawer.

1 @internal
2 def _remove_collateral(to: address, amount: uint256):
3 """
4 @param to The address to remove collateral for
5 @param amount The amount of collateral to remove, in tokens
6 """
7 new_collateral_share: uint256 = self.user_collateral_share[to] - amount
8 self.user_collateral_share[msg.sender] = new_collateral_share
9 self.total_collateral_share = self.total_collateral_share - amount

10 assert ERC20(collateral).transfer(
11 to, amount, default_return_value=True
12) # dev: Transfer Failed
13

14 log RemoveCollateral(to, amount, new_collateral_share)

Figure 3.3: _remove_collateral() in cog_pair.vy

The function takes two arguments:

▶ to: the destination address for token transfer
▶ amount: the number of shares to be withdrawn

In the first step, the function calculates the new collateral balance of the user in new_collateral_share

after withdrawing amount by subtracting amount from self.user_collateral_share[to] and
updating the balance of msg.sender with new_collateral_share.

1 new_collateral_share: uint256 = self.user_collateral_share[to] - amount

This calculates an incorrect balance of the user after collateral withdrawal because it takes
the old collateral balance of to instead of msg.sender and updates the collateral balance of
msg.sender with the incorrect balance.

Impact An attacker can withdraw funds from any arbitrary account.

Attack scenario:

1. Consider victims initial collateral balance to be B
2. An attacker deposits a small amount, X, of collateral in the protocol.

© 2023 Veridise Inc. Veridise Audit Report: Cog-Finance

3.4 Detailed Description of Issues 11

3. An attacker the requests to withdraw X collateral with address to set to victim. This will
update the attacker’s balance to B-X.

4. Now attacker can perform another call to remove_collateral() for amount B-X with to

set to himself. This will remove all of the victims collateral to the attacker and this call will
be successful because the attacker is solvent as he does not have any outstanding borrow.

Recommendation new_collateral_share should be calculated as

1 self.user_collateral_share[msg.sender] - amount

Developer Response Developers have acknowledged and fixed this issue.

Veridise Audit Report: Cog-Finance © 2023 Veridise Inc.

12 3 Audit Goals and Scope

3.4.3 V-COG-VUL-003: Interest rate surge Protection are not implemented

Severity High Commit 7ca2a6a
Type Logic Error Status Fixed

File(s) src/cog_pair.vy

Location(s) _accrue()

The protocol allows for a dynamic interest rate based on utilization of the liquidity pool. The
protocol decreases the interest rate within a reasonable limit rate when utilization goes down
to encourage borrowing and vice versa. This makes the protocol vulnerable to interest rate
manipulation economic attacks where attacker can borrow large sums to increase interest rates
for users.

The documentation states that the protocol implements protection against such attacks when
there is a surge in interest rates by increasing the protocol fee to 100% for 3 days. Thus, attackers
cannot collect the fee from interest earned in liquidity pools to minimize the losses to attackers.
This makes the attack economically infeasible for the attacker.

This protection is partially implemented in the _accrue() function in cog_pair.vy.

1 if dt > 86400:
2 # if interest rate is increasing
3 if (
4 _accrue_info.interest_per_second
5 > self.surge_info.last_interest_per_second
6):
7 # If daily change in interest rate is greater than Surge threshold, trigger

surge breaker
8 dr: uint64 = (
9 _accrue_info.interest_per_second

10 - self.surge_info.last_interest_per_second
11)
12 if dr > PROTOCOL_SURGE_THRESHOLD:
13 self.surge_info.last_elapsed_time = convert(
14 block.timestamp, uint64
15)
16 self.surge_info.last_interest_per_second = (
17 _accrue_info.interest_per_second
18)
19 # PoL Should accrue here, instead of to lenders, to discourage pid

attacks as described in https://gauntlet.network/reports/pid
20 self.protocol_fee = PROTOCOL_FEE_DIVISOR # 100% Protocol Fee
21 else:
22 # Reset protocol fee elsewise
23 self.protocol_fee = self.DEFAULT_PROTOCOL_FEE # 10% Protocol Fee
24 self.accrue_info = _accrue_info

Figure 3.4: Snippet for _accrue() in cog_pair.vy

The stated protection is not implemented in the _accrue() function. The increased protocol fee
is not held up for 3 days.

Also, the protocol checks for surge at the most once per day. This makes the protocol vulnerable
to interest rate manipulation attacks for one day.

© 2023 Veridise Inc. Veridise Audit Report: Cog-Finance

3.4 Detailed Description of Issues 13

Impact This makes protocol vulnerable to interest manipulation attacks stated above.

Recommendation

▶ The protocol should implement the stated protection.
▶ The protocol should check if surge happens more frequently.

Developer Response Developers acknowledged the issue. They’ve introduced a safeguard
against interest rate spikes, rendering the attacks financially unfeasible within the reasonable
limits they’ve set.

Veridise Audit Report: Cog-Finance © 2023 Veridise Inc.

14 3 Audit Goals and Scope

3.4.4 V-COG-VUL-004: Redeem returns wrong number of assets transferred

Severity High Commit 7ca2a6a
Type Logic Error Status Fixed

File(s) src/cog_pair.vy

Location(s) redeem()

The protocol allows liquidity providers to redeem their shares to withdraw deposited asset
tokens via the redeem() function. The redeem() function takes the the number of shares the
users wishes to withdraw and returns the number of assets transferred to the withdrawer.

1 @external
2 def redeem(
3 shares: uint256, receiver: address = msg.sender, owner: address = msg.sender
4) -> uint256:
5 """
6 @param shares - The amount of shares to redeem
7 @param receiver - The address of the receiver
8 @param owner - The address of the owner
9

10 @return - The amount of assets returned
11 """
12 self.efficient_accrue()
13 assets_out: uint256 = self._convertToAssets(
14 self._remove_asset(receiver, owner, shares)
15)
16 log Withdraw(msg.sender, receiver, owner, assets_out, shares)
17

18 return assets_out

Figure 3.5: redeem() in cog_pair.vy

The redeem() function performs following steps:

1. Accrues interest.
2. Calls the internal implementation self._remove_asset() to perform the required book

keeping and transfer the tokens to withdrawer. It returns the number of assets transferred
to user.

3. Erroneously, calls self._convertToAssets() to convert the returned quantity to assets.
4. Returns the self._convertToAssets() result.

Impact The redeem() function returns the inconsistent quantity returned by self._convertToAssets

() which is not equal to the actual assets transferred and might lead to withdrawer operating
under the assumption that larger number of assets returned than actually returned. This might
lead to financial losses and loss of credibility for protocol.

Recommendation Remove the call to self._convertToAssets() in redeem().

Developer Response Developers have acknowledged and fixed this issue.

© 2023 Veridise Inc. Veridise Audit Report: Cog-Finance

3.4 Detailed Description of Issues 15

3.4.5 V-COG-VUL-005: Protocol transfers in fewer funds in repay()

Severity High Commit 7ca2a6a
Type Logic Error Status Fixed

File(s) cog_pair.vy

Location(s) liquidate()

The protocol allows users to deposit collateral and borrow loans against the deposited collateral.
The users can then repay the loan by calling the repay() function which just accrues interest
and calls to internal implementation in _repay().

1 @internal
2 def _repay(to: address, payment: uint256) -> uint256:
3 """
4 @param to: The address to repay the tokens for
5 @param payment: The amount of asset to repay, in tokens
6 @return: The amount of tokens repaid in shares
7 """
8 temp_total_borrow: Rebase = Rebase(
9 {

10 elastic: 0,
11 base: 0,
12 }
13)
14 amount: uint256 = 0
15

16 temp_total_borrow, amount = self.sub(self.total_borrow, payment, True)
17 self.total_borrow = temp_total_borrow
18

19 self.user_borrow_part[to] = self.user_borrow_part[to] - payment
20 total_share: uint128 = self.total_asset.elastic
21 assert ERC20(asset).transferFrom(
22 msg.sender, self, payment, default_return_value=True
23) # dev: Transfer Failed
24

25 self.total_asset.elastic = total_share + convert(amount, uint128)
26 return amount

Figure 3.6: repay() in cog_pair.vy

The repay() function takes 2 arguments:

▶ to: The user whose loan is repaid
▶ payment: The shares of loans that are being repaid

The relevant steps in the function are:

1. Calculates the new total_borrow after repayment in temp_total_borrow by calling:

1 temp_total_borrow, amount = self.sub(self.total_borrow, payment, True)

a) The self.sub() function takes in a total: Rebase struct and shares as arguments
and returns new Rebase struct after reducing shares from total.

b) Note: This indicates payment is in units of shares.

Veridise Audit Report: Cog-Finance © 2023 Veridise Inc.

16 3 Audit Goals and Scope

c) The self.sub() function also returns amount which is in number of asset tokens
equivalent to payment.

2. Update self.total_borrow with temp_total_borrow.
3. Reduce self.user_borrow_part[to] with payment.
4. Load self.total_asset.elastic in total_share.
5. Transfer in payment amount of asset tokens from msg.sender by calling asset.transferFrom

().

As noted above, payment is in units of shares but this is the quantity of tokens transferred in
from borrower.

Impact As the number of shares is less than or equal to the number of tokens, the protocol
transfers in less number of tokens than what is owed to the protocol by the borrower.

Recommendation Transfer in amount instead of payment tokens.

Developer Response Developers have acknowledged and fixed this issue.

© 2023 Veridise Inc. Veridise Audit Report: Cog-Finance

3.4 Detailed Description of Issues 17

3.4.6 V-COG-VUL-006: Protocol transfers in fewer funds in liquidate()

Severity High Commit 7ca2a6a
Type Logic Error Status Fixed

File(s) cog_pair.vy

Location(s) liquidate()

The protocol allows users to buy the collateral deposited by the borrowers when the borrowers
become insolvent by repaying the loans. The protocol implements this in liquidate() function.

Relevant snippets from liquidate() in cog_pair

1 @external

2 def liquidate(user: address, max_borrow_parts: uint256, to: address):

3 """

4 @param user The user to liquidate

5 @param max_borrow_parts The parts to liquidate

6 @param to The address to send the liquidated tokens to

7 """

8 exchange_rate: uint256 = 0

9 updated: bool = False # Never used

10 updated, exchange_rate = self._update_exchange_rate()

11 self.efficient_accrue()

1 if not self._is_solvent(user, exchange_rate):

2 available_borrow_part: uint256 = self.user_borrow_part[user]

3 borrow_part: uint256 = min(max_borrow_parts, available_borrow_part)

4 self.user_borrow_part[user] = available_borrow_part - borrow_part

5

6 borrow_amount: uint256 = self.to_elastic(

7 _total_borrow, borrow_part, False

8)

1 all_collateral_share += collateral_share

2 all_borrow_amount += borrow_amount

3 all_borrow_part += borrow_part

4

5 ...

6

7 assert ERC20(collateral).transfer(

8 to, all_collateral_share, default_return_value=True

9) # dev: Transfer failed

10

11 assert ERC20(asset).transferFrom(

12 msg.sender, self, all_borrow_part, default_return_value=True

13) # dev: Transfer failed

14

15 self.total_asset.elastic = self.total_asset.elastic + convert(

16 all_borrow_part, uint128

17)

The liquidate() function takes 3 arguments:

▶ user: The user that is to be liquidated

Veridise Audit Report: Cog-Finance © 2023 Veridise Inc.

18 3 Audit Goals and Scope

▶ max_borrow_parts: The shares of loan that liquidators want to liquidate
▶ to: The destination address for transferring the collateral

The relevant steps in the function are:

1. Check if the user is insolvent.
2. Calculate the shares borrowed by user and calculate the min of the borrowed parts and

the max_borrow_parts and stores it in borrow_part.
3. Update self.user_borrow_parts[user] with self.user_borrow_parts[user]-borrow_part

.
4. Calculate the borrow_part shares to elastic and stored in borrow_amount.
5. Then protocol then checks if user has asked to buy out the whole loan but does not have

enough collateral, in which case the protocol marks all of the borrower’s collateral to be
transferred to liquidator. Among other things stores borrow_part in all_borrow_part.

6. Performs internal bookkeeping to reflect liquidation.
7. Transfers the calculated collateral to liquidator.
8. Transfers in all_borrow_part from the liquidator by calling in asset.transferFrom().

borrow_part is in units of shares as indicated by the line below which is a call to self.to_elastic

(), which takes in shares:

1 borrow_amount: uint256 = self.to_elastic(

2 _total_borrow, borrow_part, False

3)

Therefore, all_borrow_part is in units of shares as well but this is the number of assets that are
transferred in by the protocol.

Impact As the number of shares is less than or equal to the number of tokens, the protocol
transfers in less number of tokens than what is owed to the protocol by the liquidator.

Recommendation Transfer in borrow_amount instead of all_borrow_part tokens.

Developer Response Developers have acknowledged and fixed this issue.

© 2023 Veridise Inc. Veridise Audit Report: Cog-Finance

3.4 Detailed Description of Issues 19

3.4.7 V-COG-VUL-007: Wrong amount returns as shares from withdraw

Severity Medium Commit 7ca2a6a
Type Logic Error Status Fixed

File(s) src/cog_pair.vy

Location(s) withdraw()

The protocol allows liquidity providers to withdraw asset tokens using withdraw() and redeem

() external functions. The withdraw() function takes as argument, the number of assets to
withdraw.

1 @external
2 def withdraw(
3 assets: uint256, receiver: address = msg.sender, owner: address = msg.sender
4) -> uint256:
5 """
6 @param assets - The amount of assets to withdraw
7 @param receiver - Reciever of the assets withdrawn
8 @param owner - The owners whose assets should be withdrawn
9

10 @return - The amount of shares burned
11 """
12 self.efficient_accrue()
13 shares_to_withdraw: uint256 = self._convertToShares(assets)
14 shares: uint256 = self._remove_asset(receiver, owner, shares_to_withdraw)
15 log Withdraw(msg.sender, receiver, owner, assets, shares)
16

17 return shares

Figure 3.7: withdraw() in cog_pair.vy

This function performs following steps:

1. Accrue interest.
2. Calculate the number of shares equivalent to number of assets.
3. Call internal implementation self._remove_asset(). This returns the number of asset

tokens returned to the withdrawer and stores this in shares.
4. Return shares.

The documentation states that the withdraw() function should return the amount of shares that
are redeemed equivalent to assets.

Impact

▶ The withdraw() function returns the amount of tokens withdrawn while, according to
documentation, the function should return number of shares. Since the actual number of
tokens will be either greater than or equal to equivalent number of shares, the function
will report higher number of shares as redeemed than actually redeemed. This may cause
a user to operate on inflated values of shares burned which may lead to financial losses
for the user.

Veridise Audit Report: Cog-Finance © 2023 Veridise Inc.

20 3 Audit Goals and Scope

▶ The name of the variable shares is inconsistent with the quantity returned by self.

_remove_assets() (i.e. assets).

Recommendation

▶ Return shares_to_withdraw.
▶ Rename the variable shares to assets.

Developer Response Developers have acknowledged and fixed this issue.

© 2023 Veridise Inc. Veridise Audit Report: Cog-Finance

3.4 Detailed Description of Issues 21

3.4.8 V-COG-VUL-008: Comparison of shares and ERC20 tokens

Severity Medium Commit 7ca2a6a
Type Logic Error Status Fixed

File(s) src/cog_pair.vy

Location(s) previewWithdraw()

The cog_pair contract provides a external function previewWithdraw() for users to get the
number of shares that will be withdrawn from the protocol for a given number of assets.

1 @view
2 @external
3 def previewWithdraw(assets: uint256) -> uint256:
4 """
5 @param assets - The amount of assets to withdraw
6 @return - The amount of shares worth withdrawn
7 @notice - Will revert if you try to preview withdrawing more assets than

available currently in the vault’s balance
8 """
9 return min(self._convertToShares(assets), ERC20(asset).balanceOf(self))

Figure 3.8: previewWithdraw() in cog_pair.vy

The function calculates minimum of the following:

▶ The number of shares equivalent to number of assets requested to withdraw as given by
self._convertToShares(assets)

▶ The balance of the cog_pair in the asset contract in case the pair does not have enough
assets to successfully process the withdrawal request

This compares two inconsistent quantities, shares and number of assets.

Impact ERC20(asset).balanceOf(self) will be greater than or equal to the correct quantity of
shares that will be withdrawn. Therefore the min() function might return self._convertToShares

() and protocol might not have enough assets to fulfill the return request.

Recommendation The function should return

1 min(self._convertToShares(assets), self._convertToShares(ERC20(asset).balanceOf(self)

))

Developer Response Developers have acknowledged and fixed this issue.

Veridise Audit Report: Cog-Finance © 2023 Veridise Inc.

22 3 Audit Goals and Scope

3.4.9 V-COG-VUL-009: Possible overflow while calculating mean price

Severity Low Commit 7ca2a6a
Type Logic Error Status Fixed

File(s) src/fuse_box.vy

Location(s) get()

The protocol uses oracles to get price feeds of asset tokens and collateral tokens. The protocol
uses the fuse_box contract to aggregate price feeds from up to four (4) oracles. The fuse_box

calculates the mean price of active oracles in the get() function.

This function first calculates the sum of all the active oracles in total_price and divides it by
active_oracles.

Impact This way of calculating mean is prone to overflow if one of the token prices has very
high absolute values.

Recommendation Store all prices in uint256[4] and calculate the mean at the end using:

𝑆𝑈𝑀_𝑖(𝑥_𝑖/𝑐𝑜𝑢𝑛𝑡) + 𝑆𝑈𝑀_𝑖(𝑥_𝑖%𝑐𝑜𝑢𝑛𝑡)/𝑐𝑜𝑢𝑛𝑡{}∀𝑖 ∈ [0, 4)

Developer Response Developers have acknowledged and fixed this issue.

© 2023 Veridise Inc. Veridise Audit Report: Cog-Finance

3.4 Detailed Description of Issues 23

1 @external
2 def get() -> (bool, uint256):
3 """
4 @return bool Whether or not the oracle updated
5 @return uint256 the price of the asset
6 """
7 fuses: DataSource[4] = self.fuse_box
8

9 total_price: uint256 = 0
10 active_oracles: uint256 = 0
11 updated: bool = False
12

13 if fuses[0].active:
14 updated_0: bool = False
15 price: uint256 = 0
16 (updated_0, price) = IOracle(fuses[0].oracle_address).get()
17 updated = updated or updated_0
18 total_price += price
19 active_oracles += 1
20

21 if fuses[1].active:
22 updated_1: bool = False
23 price: uint256 = 0
24 (updated_1, price) = IOracle(fuses[1].oracle_address).get()
25 updated = updated or updated_1
26 total_price += price
27 active_oracles += 1
28

29 if fuses[2].active:
30 updated_2: bool = False
31 price: uint256 = 0
32 (updated_2, price) = IOracle(fuses[2].oracle_address).get()
33 updated = updated or updated_2
34 total_price += price
35 active_oracles += 1
36

37 if fuses[3].active:
38 updated_3: bool = False
39 price: uint256 = 0
40 (updated_3, price) = IOracle(fuses[3].oracle_address).get()
41 updated = updated or updated_3
42 total_price += price
43 active_oracles += 1
44

45 return (updated, (total_price / active_oracles))

Figure 3.9: get() in fuse_box.vy

Veridise Audit Report: Cog-Finance © 2023 Veridise Inc.

24 3 Audit Goals and Scope

3.4.10 V-COG-VUL-010: Consider using ‘mul_div’ in more locations

Severity Low Commit 7ca2a6a
Type Logic Error Status Won’t Fix

File(s) src/cog_pair.vy

Location(s) See description

The number of bits required to hold the result of a multiplication is at least max(n, m) and most
(m+n) where m and n are the number of bits required to hold the value of the two operands.
When (m+n) > 256 the result could overflow the uint256 data type. When the multiplication is
immediately followed by a division (i.e. statements of the form a * b / c), the final result may
not overflow the uint256 data type even though the intermediate result would.

The following locations have these operations that are prone to intermediate value overflow:

Impact Vyper protects from overflows by reverting the transaction. Hence, transactions may
revert unnecessarily.

Recommendation Consider using mul_div function from cog_pair.vy or restricting the inputs
to smaller data types such as uint128 (if applicable).

Developer Response Developers acknowledged this issue, but they don’t intend fix the issue
because they believe the issue can occur only on very high values but the variables in protocol
are limited at maximum value of uint128 therefore, the issue may not arise.

© 2023 Veridise Inc. Veridise Audit Report: Cog-Finance

3.4 Detailed Description of Issues 25

1 # src/cog_pair.vy:36
2 base: uint256 = (elastic * convert(total.base, uint256)) / convert(
3 total.elastic, uint256
4)
5

6 # src/cog_pair.vy:42
7 (base * convert(total.elastic, uint256))
8 / convert(total.base, uint256)
9

10 # src/cog_pair.vy:63
11 elastic: uint256 = (base * convert(total.elastic, uint256)) / convert(
12 total.base, uint256
13)
14

15 # src/cog_pair.vy:70
16 (elastic * convert(total.base, uint256))
17 / convert(total.elastic, uint256)
18

19 # src/cog_pair.vy:520
20 return shareAmount * all_share / convert(_total_asset.base, uint256)
21

22 # src/cog_pair.vy:543
23 return assetAmount * total_asset_base / all_share
24

25 # src/cog_pair.vy:748
26 convert(_total_borrow.elastic, uint256)
27 * convert(_accrue_info.interest_per_second, uint256)
28 * elapsed_time
29 / 1000000000000000000
30

31 # src/cog_pair.vy:768
32 fee_amount * convert(_total_asset.base, uint256) / full_asset_amount
33

34 # src/cog_pair.vy:782
35 convert(_total_borrow.elastic, uint256)
36 * UTILIZATION_PRECISION
37 / full_asset_amount
38

39 # src/cog_pair.vy:789
40 (MINIMUM_TARGET_UTILIZATION - utilization)
41 * FACTOR_PRECISION
42 / MINIMUM_TARGET_UTILIZATION

Figure 3.10: Locations vulnerable to arithmetic overflow

Veridise Audit Report: Cog-Finance © 2023 Veridise Inc.

26 3 Audit Goals and Scope

1 # src/cog_pair.vy:797
2 convert(_accrue_info.interest_per_second, uint256)
3 * INTEREST_ELASTICITY
4 / scale,
5

6 # src/cog_pair.vy:816
7 convert(_accrue_info.interest_per_second, uint256)
8 * scale
9 / INTEREST_ELASTICITY,

10

11 # src/cog_pair.vy:903
12 fraction = (amount * convert(_total_asset.base, uint256)) / all_share
13

14 # src/cog_pair.vy:941
15 amount: uint256 = (share * all_share) / convert(_total_asset.base, uint256)
16

17 # src/cog_pair.vy:985
18 fee_amount: uint256 = (
19 amount * self.BORROW_OPENING_FEE
20) / BORROW_OPENING_FEE_PRECISION
21

22 # src/cog_pair.vy:1060
23 collateral_share
24 * (EXCHANGE_RATE_PRECISION / COLLATERIZATION_RATE_PRECISION)
25

26 # src/cog_pair.vy:1223
27 (borrow_amount * LIQUIDATION_MULTIPLIER * exchange_rate)
28 / (LIQUIDATION_MULTIPLIER_PRECISION * EXCHANGE_RATE_PRECISION)

Figure 3.11: Locations vulnerable to arithmetic overflow

© 2023 Veridise Inc. Veridise Audit Report: Cog-Finance

3.4 Detailed Description of Issues 27

3.4.11 V-COG-VUL-011: Subtracting values of different units

Severity Low Commit 7ca2a6a
Type Logic Error Status Fixed

File(s) src/cog_pair.vy

Location(s) totalAssets()

The protocol allows users to act as liquidity providers by depositing asset tokens. Liquidity
providers can earn interest on deposited assets. The protocol distributes collected interest among
the liquidity providers via a mechanism of shares. Each liquidity provider is provided shares
against the deposited asset tokens. The value of shares goes on increasing as the protocol collects
interest. The protocol uses the Rebase struct to maintain the assets deposited and borrowed by
users.

1 struct Rebase:
2 elastic: uint128
3 base: uint128

Figure 3.12: Rebase struct

The field elastic tracks the absolute number of asset tokens and the field base tracks the current
shares minted by the pair. These two fields tracks quantities in different units.

The protocol provides a function totalAssets() to get the total assets available with the
protocol.

1 def totalAssets() -> uint256:
2 """
3 @return - Returns the total amount of assets owned by the vault
4 """
5 total_elastic: uint256 = convert(self.total_asset.elastic, uint256)
6 _total_borrow: Rebase = self.total_borrow
7 # This could maybe revert in the case of bad debt, is that desired?
8 total_interest: uint256 = convert(
9 _total_borrow.elastic - _total_borrow.base, uint256

10) # Interest is the difference between elastic and base, since they start at 1:1
11 return total_interest + total_elastic

Figure 3.13: totalAssets() in cog_pair.vy

The function totalAssets() calculates total_interest by subtracting _total_borrow.base from
_total_borrow.elastic. As noted above, _total_borrow.base is in units of shares while _total_borrow
.elastic is in units of absolute number of asset tokens. This subtraction will return an inconsistent
quantity.

Impact As base will be less than or equal to the elastic, this would lead to interest being
calculated to be higher than the actual interest accumulated with the protocol. In turn this will
inflate the total assets present within the protocol.

Veridise Audit Report: Cog-Finance © 2023 Veridise Inc.

28 3 Audit Goals and Scope

Recommendation Convert _total_borrow.base to elastic first and then subtract from _total_borrow

.elastic.

Developer Response Developers have acknowledged and fixed this issue.

© 2023 Veridise Inc. Veridise Audit Report: Cog-Finance

3.4 Detailed Description of Issues 29

3.4.12 V-COG-VUL-012: Check if atleast one oracle is active in fuse_box

Severity Warning Commit 7ca2a6a
Type Data Validation Status Fixed

File(s) src/fuse_box.vy

Location(s) get()

The protocol uses oracles to get price feeds of asset tokens and collateral tokens. The protocol
uses the fuse_box contract to aggregate price feeds from up to four (4) oracles. The fuse_box

calculates the mean price of active oracles in the get() function.

The protocol calculates mean price by adding the prices of all active oracles and then dividing
the total by the number of active oracles.

In the initial state of the protocol, none of the protocol may be active so total number of active
oracles might be zero.

Impact This will cause the get() function to revert due to a divide by zero error.

Recommendation The protocol must assert that there is at least one active oracle when the
cog_pair is initialized.

Developer Response Developers have acknowledged and fixed this issue.

Veridise Audit Report: Cog-Finance © 2023 Veridise Inc.

30 3 Audit Goals and Scope

1 @external
2 def get() -> (bool, uint256):
3 """
4 @return bool Whether or not the oracle updated
5 @return uint256 the price of the asset
6 """
7 fuses: DataSource[4] = self.fuse_box
8

9 total_price: uint256 = 0
10 active_oracles: uint256 = 0
11 updated: bool = False
12

13 if fuses[0].active:
14 updated_0: bool = False
15 price: uint256 = 0
16 (updated_0, price) = IOracle(fuses[0].oracle_address).get()
17 updated = updated or updated_0
18 total_price += price
19 active_oracles += 1
20

21 if fuses[1].active:
22 updated_1: bool = False
23 price: uint256 = 0
24 (updated_1, price) = IOracle(fuses[1].oracle_address).get()
25 updated = updated or updated_1
26 total_price += price
27 active_oracles += 1
28

29 if fuses[2].active:
30 updated_2: bool = False
31 price: uint256 = 0
32 (updated_2, price) = IOracle(fuses[2].oracle_address).get()
33 updated = updated or updated_2
34 total_price += price
35 active_oracles += 1
36

37 if fuses[3].active:
38 updated_3: bool = False
39 price: uint256 = 0
40 (updated_3, price) = IOracle(fuses[3].oracle_address).get()
41 updated = updated or updated_3
42 total_price += price
43 active_oracles += 1
44

45 return (updated, (total_price / active_oracles))

Figure 3.14: get() in fuse_box.vy

© 2023 Veridise Inc. Veridise Audit Report: Cog-Finance

3.4 Detailed Description of Issues 31

3.4.13 V-COG-VUL-013: Unnecessary memory copy

Severity Warning Commit 7ca2a6a
Type Gas Optimization Status Won’t Fix

File(s) src/cog_pair.vy

Location(s) See description

Copying of a storage struct to a memory struct is commonly observed pattern across the code
base. For example, in function _remove_asset() the storage struct

1 @internal
2 def _remove_asset(to: address, owner: address, share: uint256) -> uint256:
3 """
4 @param to The address to remove asset for
5 @param share The amount of asset to remove, in shares
6 @return The amount of assets removed
7 """
8 if owner != msg.sender:
9 assert (

10 self.allowance[owner][msg.sender] >= share
11), "Insufficient Allowance"
12 self.allowance[owner][msg.sender] -= share
13

14 _total_asset: Rebase = self.total_asset
15 all_share: uint256 = convert(
16 _total_asset.elastic + self.total_borrow.elastic, uint256
17)
18 amount: uint256 = (share * all_share) / convert(_total_asset.base, uint256)

Figure 3.15: _remove_asset() in cog_pair.vy

In the function above, the storage struct self.total_asset is copied into memory struct
total_asset.

We have observed that such copy triggers copying of whole struct into memory and vice versa.
It is possible to directly use fields of storage structs instead of copying it into memory structs.
This leads to wastage of gas due to memory expansion and unnecessary reads and write to and
from memory.

In the cases listed below, there are no writes to the copy and there are no intervening writes to
the original struct before all uses of the copy. Therefore, the copy is unnecessary and all uses
can be replaced with the original struct reference.

Impact Gas is wasted while copying the structs into memory, copying structs back to storage
and memory expansion. This is loss of funds for the protocol.

Recommendation Read/Write the fields directly from the storage structs instead of copying
them to memory and write back to storage.

Veridise Audit Report: Cog-Finance © 2023 Veridise Inc.

32 3 Audit Goals and Scope

1 # cog_pair.vy:92
2 total: Rebase = _total # parameter passing already creates a copy
3

4 # cog_pair.vy:109
5 total: Rebase = _total # parameter passing already creates a copy
6

7 # cog_pair.vy:492
8 _total_borrow: Rebase = self.total_borrow
9

10 # cog_pair.vy:513
11 _total_asset: Rebase = self.total_asset
12

13 # cog_pair.vy:717
14 _accrue_info: AccrueInfo = self.accrue_info
15

16 # cog_pair.vy:730
17 _accrue_info: AccrueInfo = accrue_info
18

19 # cog_pair.vy:744
20 _total_asset: Rebase = self.total_asset
21

22 # cog_pair.vy:894
23 _total_asset: Rebase = self.total_asset
24

25 # cog_pair.vy:937
26 _total_asset: Rebase = self.total_asset
27

28 # cog_pair.vy:1003
29 _total_asset: Rebase = self.total_asset
30

31 # cog_pair.vy:1057
32 _total_borrow: Rebase = self.total_borrow
33

34 # cog_pair.vy:1211
35 _total_borrow: Rebase = self.total_borrow
36

37 # cog_pair.vy:1308
38 _accrue_info: AccrueInfo = self.accrue_info

Figure 3.16: Code locations where unnecessary memory copy is performed

Developer Response Developers acknowledged this issue but they determine they are okay
with gas expenditure.

© 2023 Veridise Inc. Veridise Audit Report: Cog-Finance

3.4 Detailed Description of Issues 33

3.4.14 V-COG-VUL-014: Divide before multiply can give incorrect 0 result

Severity Warning Commit 7ca2a6a
Type Maintainability Status Fixed

File(s) src/cog_pair.vy

Location(s) _is_solvent()

The protocol allows users to deposit collateral tokens and borrow asset tokens against the
deposited collateral. During borrowing, the protocol checks if the borrower has deposited
enough collateral to borrow. The protocol checks the solvency in _is_solvent() function.

1 @internal
2 def _is_solvent(user: address, exchange_rate: uint256) -> bool:
3 """
4 @param user: The user to check
5 @param exchange_rate: The exchange rate to use
6 @return: Whether the user is solvent
7 """
8 borrow_part: uint256 = self.user_borrow_part[user]
9 if borrow_part == 0:

10 return True
11 collateral_share: uint256 = self.user_collateral_share[user]
12 if collateral_share == 0:
13 return False
14

15 _total_borrow: Rebase = self.total_borrow
16 collateral_amt: uint256 = (
17 (
18 collateral_share
19 * (EXCHANGE_RATE_PRECISION / COLLATERIZATION_RATE_PRECISION)
20)
21 * COLLATERIZATION_RATE
22)
23

24 borrow_part = self.user_borrow_part[user]
25 borrow_part = self.mul_div(
26 (borrow_part * convert(_total_borrow.elastic, uint256)),
27 exchange_rate,
28 convert(_total_borrow.base, uint256),
29 False,
30)

Figure 3.17: _is_solvent() in cog_pair.vy

While calculating collateral_amt

There is a divide before multiply, where EXCHANGE_RATE_PRECISION is divided COLLATERIZATION_RATE_PRECISION

before multiplying it with collateral_share. The integer division would truncate the result to
zero (0) when EXCHANGE_RATE_PRECISION is less than COLLATERIZATION_RATE_PRECISION, reducing
the whole RHS expression to zero (0).

Impact In future updates of the code base these constants may change. If EXCHANGE_RATE_PRECISION
is set to less than COLLATERIZATION_RATE_PRECISION, it will cause the integer division to truncate

Veridise Audit Report: Cog-Finance © 2023 Veridise Inc.

34 3 Audit Goals and Scope

1 collateral_amt: uint256 = (
2 (
3 collateral_share
4 * (EXCHANGE_RATE_PRECISION / COLLATERIZATION_RATE_PRECISION)
5)
6 * COLLATERIZATION_RATE
7)

Figure 3.18: snippet from _is_solvent() in cog_pair.vy()

to zero (0).

Recommendation

▶ Add a comment near definition of these constants about the constraints on the value.
▶ Assert that EXCHANGE_RATE_PRECISION > COLLATERIZATION_RATE_PRECISION at the begin-

ning of the protocol.

Developer Response Developers acknowledged and fixed this issue by adding the recom-
mended comment.

© 2023 Veridise Inc. Veridise Audit Report: Cog-Finance

3.4 Detailed Description of Issues 35

3.4.15 V-COG-VUL-015: _isPaused() function name is confusing

Severity Warning Commit 7ca2a6a
Type Maintainability Status Fixed

File(s) src/cog_pair.vy

Location(s) _isPaused()

In the cog_pair.vy contract, the protocol checks if pair is paused using a boolean state variable,
self.paused. Various external functions in the protocol check if the protocol is paused using an
internal function _isPaused().

1 @internal
2 def _isPaused():
3 assert (not self.paused)

Figure 3.19: Definition of _isPaused() in cog_pair.vy

The function _isPaused() reverts if self.paused is set (i.e if the pair is paused). Else, the function
returns normally if the protocol is not paused. Therefore, the name of the function is inconsistent
with the implementation.

Also, the assert statement does not have a revert message.

Impact The inconsistent naming might lead to confusion as the code base grows.

Recommendation Rename the function to _notPaused().

Add a revert message to the assert statement.

Developer Response Developers have acknowledged and fixed this issue.

Veridise Audit Report: Cog-Finance © 2023 Veridise Inc.

36 3 Audit Goals and Scope

3.4.16 V-COG-VUL-016: Unused variable or dead code

Severity Warning Commit 7ca2a6a
Type Maintainability Status Fixed

File(s) src/cog_pair.vy

Location(s) _add_asset()

Function _add_asset() implements the steps for book keeping and transfer of asset tokens from
user to the protocol.

1 total_asset_share: uint256 = convert(_total_asset.elastic, uint256)

Figure 3.20: cog_pair.vy:895

The implementation defines a variable total_asset_share which is not used anywhere in
function.

Function borrow() implements borrowing of assets tokens from the liquidity pool.

1 accrue_info: AccrueInfo = self.accrue_info

Figure 3.21: cog_pair.vy:1169

The implementation defines a variable accrue_info that is not used anywhere in the function.

The __init__() function in cog_pair sets up various constants and storage variables.

During the initialization, the storage variable self.protocol_fee is assigned twice. It is first
assigned the value 100000 and later it is assigned self.DEFAULT_PROTOCOL_FEE. Therefore, the
first assignment is dead code.

Impact This leads to minor wastage of gas due to unused variable and dead code.

Recommendation Remove the dead code and unused variable.

Developer Response Developers have acknowledged and fixed this issue.

© 2023 Veridise Inc. Veridise Audit Report: Cog-Finance

3.4 Detailed Description of Issues 37

1 @external
2 def __init__(
3 _asset: address,
4 _collateral: address,
5 _oracle: address,
6 min_target_utilization: uint256,
7 max_target_utilization: uint256,
8 starting_interest_per_second: uint64,
9 min_interest: uint64,

10 max_interest: uint64,
11 elasticity: uint256,
12):
13 assert (
14 _collateral != 0x00
15), "Invalid Collateral"
16 collateral = _collateral
17 asset = _asset
18 oracle = _oracle
19 self.DEFAULT_PROTOCOL_FEE = 100000
20 self.protocol_fee = 100000 # 10%
21 MINIMUM_TARGET_UTILIZATION = min_target_utilization
22 MAXIMUM_TARGET_UTILIZATION = max_target_utilization
23 STARTING_INTEREST_PER_SECOND = starting_interest_per_second
24 MINIMUM_INTEREST_PER_SECOND = min_interest
25 MAXIMUM_INTEREST_PER_SECOND = max_interest
26 INTEREST_ELASTICITY = elasticity
27 self.protocol_fee = self.DEFAULT_PROTOCOL_FEE # 10%
28 self.BORROW_OPENING_FEE = 50
29 factory = msg.sender

Figure 3.22: __init__() in cog_pair.vy

Veridise Audit Report: Cog-Finance © 2023 Veridise Inc.

38 3 Audit Goals and Scope

3.4.17 V-COG-VUL-017: Use of magic number

Severity Warning Commit 7ca2a6a
Type Maintainability Status Fixed

File(s) src/cog_pair.vy

Location(s) _accrue()

The protocol uses various constants like UTILIZATION_PRECISION, FACTOR_PRECISION etc. In the
following code locations, the protocol uses integer literals for constant values instead of defining
and using constants.

1 interest_accrued = (
2 convert(_total_borrow.elastic, uint256)
3 * convert(_accrue_info.interest_per_second, uint256)
4 * elapsed_time
5 / 1000000000000000000
6) # 1e18, or the divisor for interest per second

Figure 3.23: _accrue() at cog_pair.vy:751

1 dt: uint64 = (
2 convert(block.timestamp, uint64) - self.surge_info.last_elapsed_time
3)
4 if dt > 86400:

Figure 3.24: _accrue() at cog_pair.vy:828

Impact If these constants are updated in future, this implementation is prone to missing out
on updating the constant literals.

Recommendation Use the defined constants instead of constant literals.

Developer Response Developers have acknowledged and fixed this issue.

© 2023 Veridise Inc. Veridise Audit Report: Cog-Finance

3.4 Detailed Description of Issues 39

3.4.18 V-COG-VUL-018: Inconsistent or missing documentation

Severity Info Commit 7ca2a6a
Type Maintainability Status Fixed

File(s) See Description
Location(s) See description

Documentation is incorrect at the following locations:

1 # src/cog_factory.vy:173
2 @dev Sets the status of a priviledged user
3 # does not describe the current function accurately
4

5 # src/cog_factory.vy:195
6 def change_fee_to(new_owner: address):
7 # the variable name ’new_owner’ is misleading, perhaps ’new_recipient’ is better
8

9 # src/cog_factory.vy:197
10 @dev Returns the address to which protocol fees are sent.
11 # does not describe the current function accurately (i.e. there is no return value)
12

13 # src/cog_pair.vy:383
14 PROTOCOL_FEE_DIVISOR: constant(uint256) = 1000000
15 # inconsistent naming: divisor used here, precision used for similar constants
16

17 # src/cog_pair.vy:655
18 shares: uint256 = self._remove_asset(receiver, owner, shares_to_withdraw)
19 # inconsistent: ’_remove_asset’ documentation states it returns asset value, but

variable here is named ’shares’
20

21 # src/cog_pair.vy:978
22 def _borrow(amount: uint256, _from: address, to: address) -> uint256:
23 """
24 @param to: The address to send the borrowed tokens to
25 @param amount: The amount of asset to borrow, in tokens
26 @return: The amount of tokens borrowed
27 """
28 # missing documentation for ’_from’ parameter
29

30 # src/cog_pair.vy:1153
31 def borrow(
32 amount: uint256, _from: address = msg.sender, to: address = msg.sender
33) -> uint256:
34 """
35 @param to The address to send the borrowed tokens to
36 @param amount The amount of asset to borrow, in tokens
37 @return The amount of tokens borrowed
38 """
39 # missing documentation for ’_from’ parameter

Figure 3.25: Snippets where documentation is incorrect

Impact Makes the code more difficult to understand and maintain.

Veridise Audit Report: Cog-Finance © 2023 Veridise Inc.

40 3 Audit Goals and Scope

Recommendation Recommendations inline above.

Developer Response Developers have acknowledged and fixed this issue.

© 2023 Veridise Inc. Veridise Audit Report: Cog-Finance

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Detailed Description of Issues

	Detailed Description of Issues
	V-COG-VUL-001: Attacker may steal all assets of cog_pair
	V-COG-VUL-002: Attacker can steal collateral from arbitrary user
	V-COG-VUL-003: Interest rate surge Protection are not implemented
	V-COG-VUL-004: Redeem returns wrong number of assets transferred
	V-COG-VUL-005: Protocol transfers in fewer funds in repay()
	V-COG-VUL-006: Protocol transfers in fewer funds in liquidate()
	V-COG-VUL-007: Wrong amount returns as shares from withdraw
	V-COG-VUL-008: Comparison of shares and ERC20 tokens
	V-COG-VUL-009: Possible overflow while calculating mean price
	V-COG-VUL-010: Consider using ‘mul_div’ in more locations
	V-COG-VUL-011: Subtracting values of different units
	V-COG-VUL-012: Check if atleast one oracle is active in fuse_box
	V-COG-VUL-013: Unnecessary memory copy
	V-COG-VUL-014: Divide before multiply can give incorrect 0 result
	V-COG-VUL-015: _isPaused() function name is confusing
	V-COG-VUL-016: Unused variable or dead code
	V-COG-VUL-017: Use of magic number
	V-COG-VUL-018: Inconsistent or missing documentation

