
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

Ribbon

Aevo OTC

Veridise Inc.
March 27, 2023

▶ Prepared For:

Ribbon Finance
https://www.ribbon.finance/

▶ Prepared By:

Jon Stephens
Kostas Ferles
▶ Contact Us: contact@veridise.com

▶ Version History:

Mar 27, 2023 V1

© 2023 Veridise Inc. All Rights Reserved.

https://www.ribbon.finance/
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 6

4 Vulnerability Report 7
4.1 Detailed Description of Bugs . 8

4.1.1 V-RAO-VUL-001: Market Maker can Steal Funds to Pay Collateral 8
4.1.2 V-RAO-VUL-002: Missing Validation allows Uncollatoralized Order . . 10
4.1.3 V-RAO-VUL-003: Reputation Risk for Well-Behaved Market Makers . . 12
4.1.4 V-RAO-VUL-004: Market Maker can use Permit to Fill Undesirable Order 13
4.1.5 V-RAO-VUL-005: Positions can be Opened outside of OTCWrapper . . . 14
4.1.6 V-RAO-VUL-006: Market Makers can Front-run Order Execution 15
4.1.7 V-RAO-VUL-007: Use Constant instead of Magic Number 16
4.1.8 V-RAO-VUL-008: No Constraints on Premium Fee 17
4.1.9 V-RAO-VUL-009: SafeMath Unnecessary in Solidity 0.8 18
4.1.10 V-RAO-VUL-010: Order Premium must Equal Signature Amount 19

Veridise Audit Report: Ribbon © 2023 Veridise Inc.

Executive Summary 1
From Mar. 20 to Mar. 26, Ribbon engaged Veridise to review the security of their Aevo OTC
protocol. The review covered the additions to the on-chain contracts of Rysk Finance’s Gamma
Protocol. Veridise conducted the assessment over 2 person-weeks, with 2 engineers reviewing
code over 1 weeks on commit 4a230df. The auditing strategy involved a tool-assisted analysis of
the source code performed by Veridise engineers as well as extensive manual auditing.

Code assessment. The Aevo OTC protocol is a fork of Rysk Finance’s Gamma Protocol that
allows whitelisted market makers to execute user option orders. To do so, a user first places an
options order for some asset with a given strike price, expiry and premium. Such an order is not
executed until a whitelisted market maker accepts the order. When the order is accepted and
executed, the market maker deposits sufficient collateral to cover a percentage of the order’s
nominal value which is stored in a naked vault in the Gamma protocol backend. Additionally,
the market maker submits a permit signature from the user to pay the premium for the order
and, in return, options tokens are minted to the user. As orders are only partially collateralized,
at times it may be determined that the order margin is insufficient, requiring market makers
to deposit additional collateral. Upon expiry, users can choose to exercise their options by
redeeming their tokens. Market makers, on the other hand, can settle their vault to receive any
remaining collateral or proceeds.

Ribbon provided the source code for the Aevo OTC protocol, for review. In addition, they
provided documentation describing the intended behavior of the protocol and a collection of
tests built on top of the truffle testing framework.

Summary of issues detected. The audit uncovered 10 issues, 3 of which are assessed to
be of high or critical severity by the Veridise auditors. Specifically, V-RAO-VUL-001 allows
market makers to steal funds to pay collateral, V-RAO-VUL-002 identifies the potential for
uncollateralized orders and V-RAO-VUL-003 identifies risks to the reputation of well-behaved
market makers. In addition, the auditors identified 3 moderate-severity issues, including the
potential for market makers to front-run order execution (V-RAO-VUL-006) and the possibility
that market makers could use permit signatures to fill undesired orders (V-RAO-VUL-004).
Finally, the auditors identified several other security concerns, including no validation on the
protocol’s premium fee (V-RAO-VUL-008).

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

Veridise Audit Report: Ribbon © 2023 Veridise Inc.

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
Aevo OTC 4a230df Solidity Ethereum

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
Mar. 20 - Mar. 26, 2023 Manual & Tools 2 2 person-weeks

Table 2.3: Vulnerability Summary.

Name Number Resolved
Critical-Severity Issues 1 1
High-Severity Issues 2 2
Medium-Severity Issues 3 2
Low-Severity Issues 0 0
Warning-Severity Issues 2 2
Informational-Severity Issues 2 2
TOTAL 10 9

Table 2.4: Category Breakdown.

Name Number
Data Validation 3
Usability Issue 2
Configuration Error 1
Logic Error 1
Frontrunning 1
Maintainability 1
Gas Optimization 1

Veridise Audit Report: Ribbon © 2023 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment Ribbon’s additions to the on-chain
contracts of Rysk Finance’s Gamma Protocol. In our audit, we sought to answer the following
questions:

▶ Can market makers avoid providing the required initial margin when executing an order?
▶ Can funds be mis-appropriated from users?
▶ Can a shortfall occur even if a market maker is well-behaved?
▶ Can users identify the source of potential shortfalls?
▶ Can users control which market maker executes their order?
▶ Can users avoid paying premiums?
▶ Can a user pay a larger premium than what was specified when placing an order?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a combination of
human experts and automated program analysis & testing tools. In particular, we conducted
our audit with the aid of the following techniques:

▶ Static analysis. To identify potential common vulnerabilities, we leveraged our custom
smart contract analysis tool Vanguard, as well as other open-source tools. These tools are
designed to find instances of common smart contract vulnerabilities, such as reentrancy
and uninitialized variables.

▶ Fuzzing/Property-based Testing. We also leverage fuzz testing to determine if the protocol
may deviate from the expected behavior. To do this, we formalize the desired behavior of
the protocol as [V] specifications and then use our fuzzing framework OrCa to determine
if a violation of the specification can be found.

Scope. The audit reviewed the additions that Ribbon made to the fork of Rysk Finance’s Gamma
Protocol for their Ribbon protocol. This included behaviors corresponding to order placement,
order execution, collateral management and vault settlement. When conducting the audit,
Veridise engineers first reviewed the provided documentation and test cases to understand
the high-level design and intended behavior of the protocol. The auditors then performed a
week-long security audit of the code with the assistance of both static analyzers and automated
testing. In terms of the audit, the following files were in-scope:

▶ contracts/core/OTCWrapper.sol

▶ contracts/core/MarginRequirements.sol

▶ contracts/lib/SupportsNonCompliantERC20.sol

Veridise Audit Report: Ribbon © 2023 Veridise Inc.

6 3 Audit Goals and Scope

In addition, the changes made to the following files in Rysk Finance’s Gamma Protocol were
in-scope:

▶ contracts/core/AddressBook.sol

▶ contracts/core/Controller.sol

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

In this case, we judge the likelihood of a vulnerability as follows:

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows:

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2023 Veridise Inc. Veridise Audit Report: Ribbon

Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowleged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-RAO-VUL-001 Market Maker can Steal Funds to Pay Collateral Critical Fixed
V-RAO-VUL-002 Potential for Uncollatoralized Order High Fixed
V-RAO-VUL-003 Well-Behaved Market Makers face Risk High Fixed
V-RAO-VUL-004 Market Maker fan Fill Undesirable Order Medium Fixed
V-RAO-VUL-005 Positions can be Opened without OTCWrapper Medium Fixed
V-RAO-VUL-006 Market Makers can Front-run Order Execution Medium Acknowledged
V-RAO-VUL-007 Use Constant instead of Magic Number Warning Fixed
V-RAO-VUL-008 No Constraints on Premium Fee Warning Fixed
V-RAO-VUL-009 SafeMath Unnecessary in Solidity 0.8 Info Fixed
V-RAO-VUL-010 Order Premium must Equal Signature Amount Info Fixed

Veridise Audit Report: Ribbon © 2023 Veridise Inc.

8 4 Vulnerability Report

4.1 Detailed Description of Bugs

4.1.1 V-RAO-VUL-001: Market Maker can Steal Funds to Pay Collateral

Severity Critical Commit 4a230df
Type Data Validation Status Fixed
Files OTCWrapper.sol

Functions executeOrder, _settleFunds, _deposit

When a Market Maker executes an order, they must provide collateral funds proportionate to
the size of the order. They do so by providing a permit to the protocol so that it may transfer the
required funds. As shown below, when an execute order is received, the permit for the user is
validated to ensure the funds are from the requested user, but there is no similar validation for
the owner of the Market Maker’s permit.

1 function executeOrder(

2 uint256 _orderID,

3 Permit calldata _userSignature,

4 Permit calldata _mmSignature,

5 uint256 _premium,

6 address _collateralAsset,

7 uint256 _collateralAmount

8) external nonReentrant {

9 require(orderStatus[_orderID] == OrderStatus.Pending, "...");

10 require(isWhitelistedMarketMaker[_msgSender()], "...");

11 require(_userSignature.amount >= _premium, "...");

12

13 Order memory order = orders[_orderID];

14

15 require(_userSignature.acct == order.buyer, "...");

16 require(block.timestamp <= order.openedAt.add(fillDeadline), "...");

17 require(whitelist.isWhitelistedCollateral(_collateralAsset), "...");

18

19 ...

20 }

The permit is later used by the protocol to transfer funds from the user who created the permit,
to the protocol itself as shown below.

1 function _settleFunds(

2 Order memory _order,

3 Permit calldata _userSignature,

4 Permit calldata _mmSignature,

5 uint256 _premium,

6 address _collateralAsset,

7 uint256 _collateralAmount

8) private {

9 ...

10

11 // market maker inflow

12 _deposit(

13 _mmSignature.acct,

© 2023 Veridise Inc. Veridise Audit Report: Ribbon

4.1 Detailed Description of Bugs 9

14 _collateralAsset,

15 _collateralAmount,

16 _mmSignature.deadline,

17 _mmSignature.v,

18 _mmSignature.r,

19 _mmSignature.s

20);

21

22 ...

23 }

As a result, the collateral paid by the market maker can come from any user for which the
market maker has a signature. In addition, as shown below, this signature is only used in cases
where the user pays with USDC.

1 function _deposit(

2 address _acct,

3 address _asset,

4 uint256 _amount,

5 uint256 _deadline,

6 uint8 _v,

7 bytes32 _r,

8 bytes32 _s

9) private {

10 require(_amount > 0, "OTCWrapper: amount cannot be 0");

11

12 if (_asset == USDC) {

13 // Sign for transfer approval

14 IERC20Permit(USDC).permit(_acct, address(this), _amount, _deadline, _v, _r,
_s);

15 }

16

17 // An approve() or permit() by the _msgSender() is required beforehand

18 IERC20(_asset).safeTransferFrom(_acct, address(this), _amount);

19 }

As a result, a Market Maker can execute an order using funds from any user that has granted
the OTCWrapper approval over their funds.

Impact Due to the lack of validation on the collateral payment account, a malicious market
maker could steal funds from users to pay the collateral for executed orders by using permit
signatures that users have provided them. In addition, since the only token that uses the permit
is USDC, a market maker could also steal funds from any user that has granted approval
to the OTCWrapper, such as a competing market maker. While this would likely come with
repetitional risk, it can also provide significant financial gain as the protocol could claim user
premiums without incurring any financial risk.

Recommendation Validate that _mmSignature.acct is msg.sender.

Veridise Audit Report: Ribbon © 2023 Veridise Inc.

10 4 Vulnerability Report

4.1.2 V-RAO-VUL-002: Missing Validation allows Uncollatoralized Order

Severity High Commit 4a230df
Type Data Validation Status Fixed
Files MarginRequirements.sol

Functions checkMintCollateral, _getInitialMargin

When a market maker executes an order, they must provide sufficient collateral to cover a
percentage of the order’s notational value. This percentage is set by the owner and is unique to
the order asset, the collateral asset and the market maker that is executing the order. Doing
so allows the protocol to customize the required collateral to the perceived risk of the assets
and market maker itself. As it stands, however, if the margin has not been set, a market
maker can execute an order while providing essentially no collateral. This is because in the
checkMintCollateral function, no validation is performed when retrieving a value from the
initialMargin mapping. Since mappings return zero by default if an entry in the mapping does
not exist, effectively this causes the required margin to be 0%.

1 function checkMintCollateral(

2 address _account,

3 uint256 _notional,

4 address _underlying,

5 bool _isPut,

6 uint256 _collateralAmount,

7 address _collateralAsset

8) external view returns (bool) {

9 // retrieve collateral decimals

10 uint256 collateralDecimals = uint256(ERC20Interface(_collateralAsset).decimals())

;

11

12 // retrieve initial margin

13 uint256 initialMarginRequired = initialMargin[keccak256(abi.encode(_underlying,
_collateralAsset, _isPut))][

14 _account

15];

16

17 return

18 _notional.mul(initialMarginRequired).mul(10**collateralDecimals).mul(10**
ORACLE_DECIMALS) <=

19 _collateralAmount.mul(oracle.getPrice(_collateralAsset)).mul(

MAX_INITIAL_MARGIN).mul(10**NOTIONAL_DECIMALS);

20 }

Snippet 4.1: Location in checkMintCollateral where initialMarginRequired is not validated

Similarly, when checking how much collateral may be withdrawn a similar check is performed.
As with checkMintCollateral no validation is performed either when the value is retrieved
from the mapping in _getInitialMargin or when it is used in checkWithdrawCollateral.

© 2023 Veridise Inc. Veridise Audit Report: Ribbon

4.1 Detailed Description of Bugs 11

1 function _getInitialMargin(address _otoken, address _account) internal view returns (

uint256) {

2 OtokenInterface otoken = OtokenInterface(_otoken);

3

4 return

5 initialMargin[keccak256(abi.encode(otoken.underlyingAsset(), otoken.

collateralAsset(), otoken.isPut()))][

6 _account

7];

8 }

Snippet 4.2: Location in _getInitialMargin where the value retrieved from initialMargin is
not validated

Impact This allows a market maker to accept an order while providing essentially no collateral
(as eventually there is a check that collateral is not 0) to back their position in the order. A
greedy market maker could therefore accept many orders to receive the order premium while
incurring no financial risk.

Recommendation Add a check that initialMargin[x][y] != 0.

Veridise Audit Report: Ribbon © 2023 Veridise Inc.

12 4 Vulnerability Report

4.1.3 V-RAO-VUL-003: Reputation Risk for Well-Behaved Market Makers

Severity High Commit 4a230df
Type Logic Error Status Fixed
Files OTCWrapper.sol

Functions depositCollateral

The protocol allows Market Makers to execute options trades without requiring full collateral-
ization. Rather, for a market maker to accept an order, they must partially collateralize the order
based on the perceived risk. In addition, keepers of the protocol can request that additional
collateral be provided. Since the order is already active, however, a market maker doesn’t have
to deposit the additional requested collateral, but this comes with risks to the reputation of
the market maker if the order cannot be filled at expiry. However, this mechanism also places
well-behaved market makers at risk as all funds are collected in a single pool. Additionally,
when OTokens are redeemed, funds are paid out of the pool regardless of the collateral that
backs those tokens. As a result, an option that is not properly collateralized will still be paid out
using pool funds.

Impact A collateral shortfall from a single market maker may not directly impact users as the
option trade may still proceed, but can have an indirect impact as it could cause option trades
executed by well-behaved Market Makers to fail. Additionally, as mentioned in another issue
the underlying OTC protocol and therefore the pool is accessible to other users allowing similar
shortfalls to occur. It therefore seems difficult for the user to accurately determine where the
blame for a shortfall should be placed which disincentives Market Makers to be well-behaved.

Recommendation If reputational risk is intended to ensure Market Makers are properly
collateralizing executed trades, provide a mechanism that allows users to more accurately
determine when one is to blame for a shortfall. For example, one could provide a pool for each
individual market maker so that a shortfall from one cannot impact another.

© 2023 Veridise Inc. Veridise Audit Report: Ribbon

4.1 Detailed Description of Bugs 13

4.1.4 V-RAO-VUL-004: Market Maker can use Permit to Fill Undesirable Order

Severity Medium Commit 4a230df
Type Usability Issue Status Fixed
Files OTCWrapper.sol

Functions executeOrder

When an order is executed, the market maker provides information about the premium and
collateral for the order in addition to a permit signature from the user allowing the premium
funds to be transferred from the user to the protocol. When the user provides the market
maker with their signature, however, there is no guarantee that the market maker will use it as
intended by the user. For example, consider a user that has two pending orders o1 and o2. If
a user provides their permit signature for order o1, nothing prevents the market maker from
using that signature to instead execute o2.

1 function executeOrder(

2 uint256 _orderID,

3 Permit calldata _userSignature,

4 Permit calldata _mmSignature,

5 uint256 _premium,

6 address _collateralAsset,

7 uint256 _collateralAmount

8) external nonReentrant {

9 require(orderStatus[_orderID] == OrderStatus.Pending, "...");

10 require(isWhitelistedMarketMaker[_msgSender()], "...");

11 require(_userSignature.amount >= _premium, "...");

12

13 Order memory order = orders[_orderID];

14

15 require(_userSignature.acct == order.buyer, "...");

16 require(block.timestamp <= order.openedAt.add(fillDeadline), "...");

17 require(whitelist.isWhitelistedCollateral(_collateralAsset), "...");

18

19 ...

20 }

Snippet 4.3: The executeOrder function where market makers provide user signatures to
execute orders

Impact As the market maker is the one responsible for executing the order and providing the
user’s permit signature, it is possible for the market maker to execute orders on undesirable
terms (e.g. execute an order with a large premium) without a user’s consent.

Recommendation To prevent such cases, it may be useful to either restrict users such that
they may only have one pending order or to have a user approval stage where the user provides
their approval after a market maker proposes the terms (after which the order is executed).

Veridise Audit Report: Ribbon © 2023 Veridise Inc.

14 4 Vulnerability Report

4.1.5 V-RAO-VUL-005: Positions can be Opened outside of OTCWrapper

Severity Medium Commit 4a230df
Type Usability Issue Status Fixed
Files Controller.sol

Functions operate

This protocol builds on top of Rysk Finance’s Gamma Protocol to track the executed option
trades. It does so by creating naked vaults to store the collateral that is provided by market
makers. Users, however, are not restricted to interacting with Ribbon’s OTCWrapper to create
these vaults as no restrictions were added to the Gamma Protocol other than to restrict access to
liquidations.

1 function operate(Actions.ActionArgs[] memory _actions) external nonReentrant

notFullyPaused {

2 (bool vaultUpdated, address vaultOwner, uint256 vaultId) = _runActions(
_actions);

3 if (vaultUpdated) {

4 _verifyFinalState(vaultOwner, vaultId);

5 vaultLatestUpdate[vaultOwner][vaultId] = now;

6 }

7 }

Snippet 4.4: The unprotected operate function in the Controller

Impact The additional fees and restrictions enforced by the OTCWrapper can be bypassed
by interacting directly with Controller and these liabilities are inherited by users of Ribbon’s
OTC protocol as all funds are located in a single pool. In addition, since liquidations have
been restricted such that they can only be performed by the liquidation manager, Ribbon must
ensure that they are capable of liquidating positions from users that did not interact with the
OTCWrapper.

Recommendation Consider restricting access to the Controller so that only approved users
can interact with the controller.

© 2023 Veridise Inc. Veridise Audit Report: Ribbon

4.1 Detailed Description of Bugs 15

4.1.6 V-RAO-VUL-006: Market Makers can Front-run Order Execution

Severity Medium Commit 4a230df
Type Frontrunning Status Acknowledged
Files OTCWrapper.sol

Functions executeOrder

For a market maker to execute an order, the user must provide them with their permit signature
to pay the requested premium. The market maker then submits a transaction to execute the
order. While the transaction is in the mempool, though, information about the order execution
is exposed, including the user’s signature.

1 function executeOrder(

2 uint256 _orderID,

3 Permit calldata _userSignature,

4 Permit calldata _mmSignature,

5 uint256 _premium,

6 address _collateralAsset,

7 uint256 _collateralAmount

8) external nonReentrant {

9 require(orderStatus[_orderID] == OrderStatus.Pending, "...");

10 require(isWhitelistedMarketMaker[_msgSender()], "...");

11 require(_userSignature.amount >= _premium, "...");

12

13 Order memory order = orders[_orderID];

14

15 require(_userSignature.acct == order.buyer, "...");

16 require(block.timestamp <= order.openedAt.add(fillDeadline), "...");

17 require(whitelist.isWhitelistedCollateral(_collateralAsset), "...");

18

19 ...

20 }

Snippet 4.5: The executeOrder function that can be front-run

Impact With this information, another market maker can front-run the transaction to execute
the order themselves. As the user could have provided the same signature to multiple market
makers and many users likely only care that their order is executed, it’s possible that this could
go unnoticed. In addition, it could let less reputable market-makers out compete others and
increase the likelihood of a shortfall.

Recommendation Include a step where the user approves the execution of an order

Developer Response While this is a possibility, we believe users will not be as concerned with
the identity of the market maker that executes their order as with the fact that their order has
been executed. We always trust our partners/market makers to be on their best behaviour. As
frontrunning another market maker is highly visible, such behaviour may incur in reputation
risk or potential loss of whitelist status to operate in the protocol.

Veridise Audit Report: Ribbon © 2023 Veridise Inc.

16 4 Vulnerability Report

4.1.7 V-RAO-VUL-007: Use Constant instead of Magic Number

Severity Warning Commit 4a230df
Type Maintainability Status Fixed
Files MarginRequirements.sol

Functions setInitialMargin

The MarginRequirements contract defines the constant MAX_INITIAL_MARGIN to represent 100%
when computing the percentage of the nominal value that must be collateralized. However
there are locations where a magic number equivalent to the constant is used rather than the
constant itself.

1 function setInitialMargin(

2 address _underlying,

3 address _collateralAsset,

4 bool _isPut,

5 address _account,

6 uint256 _initialMargin

7) external onlyOwner {

8 require(

9 _initialMargin > 0 && _initialMargin <= 100 * 10**2,

10 "MarginRequirements: initial margin cannot be 0 or higher than 100%"

11);

12

13 ...

14 }

Snippet 4.6: Location where a magic number is used over the constant

Impact If the developers change the value of this constant, some checks that use a magic
number may be incorrect.

Recommendation Replace uses of magic numbers with appropriate constants.

© 2023 Veridise Inc. Veridise Audit Report: Ribbon

4.1 Detailed Description of Bugs 17

4.1.8 V-RAO-VUL-008: No Constraints on Premium Fee

Severity Warning Commit 4a230df
Type Configuration Status Fixed
Files OTCWrapper.sol

Functions setFee

Market makers charge a premium to users as compensation for executing their order. From this
premium, the protocol takes a fee which is sent to the beneficiary. As it stands, when this fee is
set by the contract owner, no validation is performed on the new fee.

1 function setFee(address _underlying, uint256 _fee) external onlyOwner {

2 require(_underlying != address(0), "OTCWrapper: asset address cannot be 0");

3

4 fee[_underlying] = _fee;

5 }

Snippet 4.7: Location where the fee is set by the owner

Impact As no validation is performed, it is possible that a configuration error could set the fee
to an undesirable value. For example, if a fee is set to > 1e6 valid executeOrder transactions will
revert.

Recommendation To reduce the possibility of configuration errors, place restrictions on the
values to which fee can be set.

Veridise Audit Report: Ribbon © 2023 Veridise Inc.

18 4 Vulnerability Report

4.1.9 V-RAO-VUL-009: SafeMath Unnecessary in Solidity 0.8

Severity Info Commit 4a230df
Type Gas Optimization Status Fixed
Files OTCWrapper.sol

Functions N/A

The OTCWrapper uses solidity version 0.8.10 which checks for overflows/underflows by
default. As a result, the SafeMath library is no longer needed to prevent such issues but is still
used by this contract.

Impact Using the SafeMath library in Solidity 0.8 wastes gas as it simply performs the
requested operation.

© 2023 Veridise Inc. Veridise Audit Report: Ribbon

4.1 Detailed Description of Bugs 19

4.1.10 V-RAO-VUL-010: Order Premium must Equal Signature Amount

Severity Info Commit 4a230df
Type Data Validation Status Fixed
Files OTCWrapper.sol

Functions executeOrder

When validating the user’s permit signature in executeOrder the protocol checks that _userSignature
.amount >= _premium. When processing the permit, though, _premium is passed in as the permit
amount causing the permit function to revert if _premium does not match the permit amount.

1 function executeOrder(

2 uint256 _orderID,

3 Permit calldata _userSignature,

4 Permit calldata _mmSignature,

5 uint256 _premium,

6 address _collateralAsset,

7 uint256 _collateralAmount

8) external nonReentrant {

9 require(orderStatus[_orderID] == OrderStatus.Pending, "...");

10 require(isWhitelistedMarketMaker[_msgSender()], "...");

11 require(_userSignature.amount >= _premium, "...");

12

13 ...

14 }

Snippet 4.8: The check in executeOrder that doesn’t enforce
_userSignature.amount == _premium

Recommendation Check that _userSignature.amount == _premium

Veridise Audit Report: Ribbon © 2023 Veridise Inc.

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Bugs

	Detailed Description of Bugs
	V-RAO-VUL-001: Market Maker can Steal Funds to Pay Collateral
	V-RAO-VUL-002: Missing Validation allows Uncollatoralized Order
	V-RAO-VUL-003: Reputation Risk for Well-Behaved Market Makers
	V-RAO-VUL-004: Market Maker can use Permit to Fill Undesirable Order
	V-RAO-VUL-005: Positions can be Opened outside of OTCWrapper
	V-RAO-VUL-006: Market Makers can Front-run Order Execution
	V-RAO-VUL-007: Use Constant instead of Magic Number
	V-RAO-VUL-008: No Constraints on Premium Fee
	V-RAO-VUL-009: SafeMath Unnecessary in Solidity 0.8
	V-RAO-VUL-010: Order Premium must Equal Signature Amount

