
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

Rate Limiting Nullifier

Veridise Inc.

September 1, 2023

▶ Prepared For:

Privacy and Scaling Exploration

https://appliedzkp.org

▶ Prepared By:

Benjamin Sepanski

Kostas Ferles

Hanzhi Liu

Jacob Van Geffen

▶ Contact Us: contact@veridise.com

▶ Version History:

May 29, 2023 V1

May 17, 2023 Initial Draft

© 2023 Veridise Inc. All Rights Reserved.

https://appliedzkp.org
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5

3.2 Audit Methodology & Scope . 5

3.3 Classification of Vulnerabilities . 6

4 Vulnerability Report 7
4.1 Detailed Description of Issues . 8

4.1.1 RLN-001: Spammers may slash themselves 8

4.1.2 RLN-002: Unregistered users can be slashed 10

4.1.3 RLN-003: Correctness of IsInInterval is based on implicit assumptions . 11

4.1.4 RLN-004: identitySecret Naming Inconsistency 13

5 Formal Verification 15
5.1 Formal Verification Procedure . 15

5.2 Properties Verified . 15

5.3 Detailed Description of Formal Verification Results 15

5.3.1 V-RLN-SPEC-001: Surpassing the Voting Limit in an Epoch Reveals Identity 16

5.3.2 V-RLN-SPEC-002: Internal Nullifier Links Messages with the Same ID . 18

5.3.3 V-RLN-SPEC-003: Computed Merkle Root Functional Correctness . . . 20

5.3.4 V-RLN-SPEC-004: messageID is in [0, limit) 21

5.3.5 V-RLN-SPEC-005: RangeCheck Functional Correctness 22

Glossary 23

Veridise Audit Report: Privacy and Scaling Exploration © 2023 Veridise Inc.

Executive Summary 1
From May 1, 2023 to May 12, 2023, Privacy and Scaling Exploration engaged Veridise to review

the security of the circuits for Rate Limiting Nullifier. The review covered their Zero Knowledge

Circuit (ZK-circuits), written in Circom. Veridise conducted the assessment over 8 person-weeks,

with 4 engineers reviewing code over 2 weeks on commits 0x022b690b-0xb40dfa63. In response

to issues raised by Veridise auditors (RLN-003), the circuits were modified before formal

verification. As a result, formal verification was performed on commit 0x10437bc2. The auditing

strategy involved a tool-assisted analysis of the source code performed by Veridise engineers as

well as extensive manual auditing. In parallel, the auditors wrote specifications of several key

correctness properties. Following the manual audit, the Veridise engineers formally verified

these properties.

Code assessment. The Privacy and Scaling Exploration developers provided the source code of

the Rate Limiting Nullifier circuits for review. Rate Limiting Nullifier is a set of ZK-circuits which

can be used by anonymous systems which need to prevent spam, perform votes, or otherwise

limit the number of actions performed by anonymous participants. This is implemented using

Shamir’s Secret Sharing scheme, and verified using zero knowledge proofs.

To facilitate the Veridise auditors’ understanding of the code, the Privacy and Scaling Exploration

developers shared two RFCs
*†

detailing the protocol, extensive documentation
‡
, along with

the circuits themselves
§
. The source code also contained some documentation in the form of

READMEs.

The source code contained a test suite, which the Veridise auditors noted covered most of the

basic correctness criteria. Their tests verify correct output and verification success on random

inputs, as well as verification failure for incorrect input-output pairs.

Veridise auditors feel that the circuits are well thought-out and carefully designed. Their design

enables many checks to be performed outside of the ZK-circuits, minimizing the chance of

issues such as under-constrained bugs. The code is written in an accessible fashion, and its

intent and implementation are clear.

RFC V1 notes that there are some algebraic attacks which use polynomial GCDs to lower

the security from 256 bits to 160 bits. We investigated these attacks, and did not find any

improvements beyond the 160 bit margin. While this is still a sufficient margin of security

for most applications, users of RLN should take note of this fact when performing their own

security assessments. We have also recommended a line of inquiry which may address this

issue.

*
RFC-V1: https://rfc.vac.dev/spec/32/

†
RFC-V2: https://rfc.vac.dev/spec/58/

‡ https://rate-limiting-nullifier.github.io/rln-docs/
§ https://github.com/Rate-Limiting-Nullifier/circom-rln/

Veridise Audit Report: Privacy and Scaling Exploration © 2023 Veridise Inc.

https://rfc.vac.dev/spec/32/#sss-security-assumptions
https://rfc.vac.dev/spec/32/
https://rfc.vac.dev/spec/58/
https://rate-limiting-nullifier.github.io/rln-docs/
https://github.com/Rate-Limiting-Nullifier/circom-rln/

2 1 Executive Summary

Summary of issues detected. The audit uncovered 4 issues, 0 of which are assessed to be

of high or critical severity by the Veridise auditors. 1 issue was determined to be of medium

severity (RLN-001), which describes the possible consequences of self-slashing. The Veridise

auditors also identified additional minor issues. The Privacy and Scaling Exploration developers

identified two of these issues as intended, both due to an upcoming change in documentation

(RLN-002) and (RLN-004).

Recommendations. After auditing the protocol, the auditors had a few suggestions to improve

Rate Limiting Nullifier. Primarily, this involves adding additional documentation (RLN-003)

and supplying suggestions on how to handle slasher fees (RLN-001).

Disclaimer. We hope that this report is informative but provide no warranty of any kind,

explicit or implied. The contents of this report should not be construed as a complete guarantee

that the system is secure in all dimensions. In no event shall Veridise or any of its employees be

liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,

arising from, out of or in connection with the results reported here.

© 2023 Veridise Inc. Veridise Audit Report: Privacy and Scaling Exploration

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
Rate Limiting Nullifier 0x022b690b-0xb40dfa63 Circom N/A

Table 2.2: Engagement Summary.

Dates Method Consultants
Engaged

Level of Effort

May 1 - May 12, 2023 Manual Auditing,

Automated Tools, &

Formal Verification

4 8 person-weeks

Table 2.3: Vulnerability Summary.

Name Number Resolved

Critical-Severity Issues 0 0

High-Severity Issues 0 0

Medium-Severity Issues 1 1

Low-Severity Issues 0 0

Warning-Severity Issues 2 2

Informational-Severity Issues 1 1

TOTAL 4 4

Table 2.4: Verification Summary.

Type Number
Functional Correctness 6

Table 2.5: Category Breakdown.

Name Number
Maintainability 2

Frontrunning 1

Data Validation 1

Veridise Audit Report: Privacy and Scaling Exploration © 2023 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of Privacy and Scaling Exploration’s

Rate Limiting Nullifier smart contracts. In our audit, we sought to answer the following

questions:

▶ Can registered users submit a message ID outside of the allowed range?

▶ Can malicious users abuse the ability to slash themselves?

▶ Are any of the circuits under-constrained?

▶ How do algebraic attacks against Poseidon modify the security of the Shamir secret

sharing scheme?

▶ Can any user’s identity be revealed when following the protocol correctly?

▶ Do any of the slashing actions provide additional spamming opportunities?

▶ Are all necessary checks on proof input/output properly documented?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a combination

of human experts, automated program analysis, and formal verification. In particular, we

conducted our audit with the aid of the following techniques:

▶ Static analysis. To identify potential common vulnerabilities, we leveraged our custom

circuit-analysis tool ZK-Solid. This tool is designed to find instances of common circuit

vulnerabilities, such as under-constrained bugs or missing range checks. Rate Limiting

Nullifier had no vulnerabilities identified by ZK-Solid.

▶ Fuzzing/Property-based Testing. We also leveraged fuzz testing to determine if the protocol

may deviate from the expected behavior. To do this, we used our fuzzing framework

zkOrCa to identify under-constrained bugs, in which a false witness is able to pass the

constraints. We fuzzed the protocol for 24 hours, and found no under-constrained circuits.

▶ Formal Verification. To prove the correctness of the ZK circuits we used Coda, our formal

verification project based on the Coq interactive theorem prover. To do this, we formalized

the intended behavior of the Circom templates and then proved the correctness of the

implementation with respect to the formalized specifications.

Scope. The scope of this audit is limited to the circuits/ folder of the source code provided by

the Privacy and Scaling Exploration developer. In particular, the following files were audited:

▶ rln-diff.circom

▶ rln-same.circom

▶ utils.circom

▶ withdraw.circom

Veridise Audit Report: Privacy and Scaling Exploration © 2023 Veridise Inc.

6 3 Audit Goals and Scope

Methodology. Veridise auditors inspected the provided tests and read the Rate Limiting Nullifier

documentation. They then began a manual audit of the code assisted by both static analyzers

and automated testing. During the audit, the Veridise auditors regularly met with the Privacy

and Scaling Exploration developers to ask questions about the code.

During the manual audit, Veridise auditors prepared specifications for formal verification and

discussed them with the Privacy and Scaling Exploration team to ensure they were happy

with the specifications. Following the manual audit, Veridise auditors formally verified these

specifications.

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity

by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows

how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking

Not Likely Info Warning Low Medium

Likely Warning Low Medium High

Very Likely Low Medium High Critical

In this case, we judge the likelihood of a vulnerability as follows in Table 3.2:

Table 3.2: Likelihood Breakdown

Not Likely A small set of users must make a specific mistake

Requires a complex series of steps by almost any user(s)

Likely - OR -

Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows in Table 3.3:

Table 3.3: Impact Breakdown

Somewhat Bad Inconveniences a small number of users and can be fixed by the user

Affects a large number of people and can be fixed by the user

Bad - OR -

Affects a very small number of people and requires aid to fix

Affects a large number of people and requires aid to fix

Very Bad - OR -

Disrupts the intended behavior of the protocol for a small group of

users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of

users through no fault of their own

© 2023 Veridise Inc. Veridise Audit Report: Privacy and Scaling Exploration

Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,

we log the type of the issue, its severity, location in the code base, and its current status (i.e.,

acknowleged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
RLN-001 Spammers may slash themselves Medium Acknowledged

RLN-002 Unregistered users can be slashed Warning Intended Behavior

RLN-003 Undocumented lack of range checks in IsInInterval Warning Fixed

RLN-004 identitySecret Naming Inconsistency Info Intended Behavior

Veridise Audit Report: Privacy and Scaling Exploration © 2023 Veridise Inc.

8 4 Vulnerability Report

4.1 Detailed Description of Issues

4.1.1 RLN-001: Spammers may slash themselves

Severity Medium Commit 022b690

Type Frontrunning Status Acknowledged

File(s) withdraw.circom

Location(s) Withdraw

The RLN documentation describes the purpose of withdraw.circom

withdraw.circom is a template that’s used for the withdrawal/slashing and is needed

to prevent front run while withdrawing the stake from the smart-contract/registry.

The Withdraw template consists of a proof of knowledge of an identityCommitment’s pre-image,

i.e. the identity_secret_hash (referred to as identitySecret in the implementation).

1 template Withdraw() {
2 signal input identitySecret;
3 signal input addressHash;
4

5 signal output identityCommitment <== Poseidon(1)([identitySecret]);
6 }

Snippet 4.1: The Withdraw template.

While this does prevent frontrunners from simply replaying a transaction with an address

they own as the beneficiary, it does not prevent front-running from the user targeted by the

slashing.

For instance, suppose Alice is intending to spam a permissionless chat application which is

using RLN for spam filtering via an economic stake.

1. Alice deposits 1 coin to register.

2. Alice sends as many messages as possible until she sees someone submit a slash request

on her identityCommitment.

3. Alice front-runs the request, slashing herself (since she knows her own identitySecret)

and recovering her 1 coin.

Note that Alice is not required to front-run. She could instead preemptively slash herself after

sending some number of pre-determined messages.

Impact Applications using RLN and economic stake to implement spam resistance may suffer

from adversaries with large collateral.

Spammers who are able to slash themselves before others (or successfully front-run others) will

be able to recover their economic stake.

© 2023 Veridise Inc. Veridise Audit Report: Privacy and Scaling Exploration

https://rate-limiting-nullifier.github.io/rln-docs/formal_spec.html#withdrawal
https://github.com/Rate-Limiting-Nullifier/rln-circuits-v2/blob/022b690b5615d1e26874013cf216136875d8f3ab/circuits/withdraw.circom

4.1 Detailed Description of Issues 9

Recommendation One simple fix is to add documentation describing the potential issue,

and recommend that applications only give a portion of the staked amount to the slasher. For

instance, half of the stake could be given to the slasher, and the remaining half split amongst all

non-malicious protocol participants.

A second approach is to disallow self-slashing by requiring Withdraws to provide evidence

of two identity_secret_hashes, one identity which is the slasher (along with a proof of tree

membership) and one identity to be slashed. This doubles the stake required to self-slash.

Developer Response We plan to take a fee as part of money laundering prevention. The gas

fees are also part of the cost, which are not always cheap due to snark verification.

Since some applications will be a relayer, gas costs may not always prevent this attack.

Updated Recommendation The developers asked us about how to allocate the portion of a

slashing reward not reserved for the slasher. We considered three main approaches: burning

the reward, providing the reward to a random slasher, or providing the reward to a random

registrant.

Burning the reward provides the surest guarantee, and from a security perspective is most

likely to not be abused. However, if this is not feasible, we recommend providing the reward

to a random registrant—weighted by stake. By making the expected value proportional to

stake, a malicious user must be willing to stake a large amount into the protocol in order to

not lose money at an exponential rate when self-slashing. Note, however, that this solution is

still context-dependent and should be heavily analyzed on a case-by-case basis to determine

appropriate pricing.

We do not recommend providing the reward to a random slasher. For instance, providing the

fee to a random user chosen from the most recent 𝑁 slashers has an expected cost of 0 for

self-slashers.

Updated Developer Response We will add documentation in an upcoming RFC to recommend

a reward system which takes a fee from the slashing reward.

For slashing, transfer happens immediately and the fee is taken. Since the fee is taken, it is not

economically efficient to slash yourself. For withdrawing, fees are not taken, but we check if this

user can be slashed too. We first freeze the stake and wait for possible slashing. If there’s no

slasher after 𝑛 blocks, then the user can take the frozen money.

We have decided to burn fees, but not directly. We intend to make Fee-Receiver a contract with

a function to swap an ERC20 to ETH, and then burn this ETH (gas expenses for this function

call should be compensated).

Veridise Audit Report: Privacy and Scaling Exploration © 2023 Veridise Inc.

10 4 Vulnerability Report

4.1.2 RLN-002: Unregistered users can be slashed

Severity Warning Commit 022b690

Type Data Validation Status Intended Behavior

File(s) withdraw.circom

Location(s) Withdraw

The Withdraw template is used for slashing. It records the identitySecret to be hashed and the

hash of the slasher’s address.

1 template Withdraw() {
2 signal input identitySecret;
3 signal input addressHash;
4

5 signal output identityCommitment <== Poseidon(1)([identitySecret]);
6 }

Snippet 4.2: The Withdraw template.

There is no check performed that the slashed identity is registered with the protocol.

Impact A malicious user may produce a large number of slash requests in an attempt to deny

service to the protocol by either taking up network bandwidth or storage space.

Recommendation Add documentation to the verification procedure for slashing requiring

slashed users to be registered.

For rln-diff, this may require publishing user message limits for each identityCommitment.

Developer Response The check is in the application layer for rln-same. A map from

idCommitment to user message limit is stored for rln-diff.

© 2023 Veridise Inc. Veridise Audit Report: Privacy and Scaling Exploration

4.1 Detailed Description of Issues 11

4.1.3 RLN-003: Correctness of IsInInterval is based on implicit assumptions

Severity Warning Commit 022b690

Type Maintainability Status Fixed

File(s) circuits/utils.circom

Location(s) IsInInterval

The IsInInterval template (see attached snippet) is correct for its current instantiations based

on the following two assumptions:

▶ Adversarial users can only control in[1]. This is true for both rln-same and rln-diff in

the current version of the protocol, since in[0] is hardcoded to 1 and altering in[2] would

prevent users from using the protocol.

▶ It uses two instances of LessEqThan, where in[1] is the second argument of the first

instance and the first argument of the second instance.

Our team has formally proven that, based on these assumptions, the IsInterval template is

correct.

1 template IsInInterval(LIMIT_BIT_SIZE) {
2 signal input in[3];
3

4 signal output out;
5

6 signal firstCmp <== LessEqThan(LIMIT_BIT_SIZE)([in[0], in[1]]);
7 signal secondCmp <== LessEqThan(LIMIT_BIT_SIZE)([in[1], in[2]]);
8

9 out <== firstCmp * secondCmp;
10 }

Snippet 4.3: The IsInInterval template

If either of the above two assumptions is violated, attackers can prove false statements by

tricking the LessEqThan template. This is because the LessEqThan template works as expected

only if its inputs fit within LIMIT_BIT_SIZE bits. However, the current implementation does not

enforce this constraint.

Impact Although the current version of the circuit is not exploitable, future modifications

could open the door to attackers. For instance, if someone attempts to simplify the circuit

by removing the first LessEqThan and proving that in[1] belongs to the interval [0, n), then

attackers could prove statements for values of in[1] that are greater than n.

Recommendation As the reasons for correctness of IsInInterval are fairly complex, we

recommend properly documenting the above assumptions in the code to prevent developers

from introducing bugs in the future. Alternatively, the template can be simplified as mentioned

above. This involves using a single instance of LessEqThan to prove that the message is in the

interval [0,n), and performing appropriate range checks on the inputs of LessEqThan.

Veridise Audit Report: Privacy and Scaling Exploration © 2023 Veridise Inc.

12 4 Vulnerability Report

Developer Response We have implemented the recommended fix of using a range check and

restricting the message to be in the half-open interval [0,n).

© 2023 Veridise Inc. Veridise Audit Report: Privacy and Scaling Exploration

4.1 Detailed Description of Issues 13

4.1.4 RLN-004: identitySecret Naming Inconsistency

Severity Info Commit 022b690

Type Maintainability Status Intended Behavior

File(s) rln-same.circom,rln-diff.circom

Location(s) RLN

In the RFC-V1, the following terms are defined for user identification:

1 identity_secret = [identity_nullifier, identity_trapdoor]
2 identity_secret_hash = poseidonHash(identity_secret)
3 identity_commitment = poseidonHash([identity_secret_hash])

Snippet 4.4: Excerpt from RFC

In the RLN templates defined in rln-same.circom and rln-diff.circom, the term identitySecret

is used to refer to the identity_secret_hash.

1 signal identityCommitment <== Poseidon(1)([identitySecret]);

Snippet 4.5: Excerpt from rln-same.circom.

Impact Protocol users may be confused about which value to supply as identitySecret.

Recommendation Rename identitySecret to identitySecretHash.

Developer Response RFC for V1 is out-of-date relative to V2. The identitySecret will come

from Semaphore. This is just something that needs to be updated in the RFC.

Veridise Audit Report: Privacy and Scaling Exploration © 2023 Veridise Inc.

https://rfc.vac.dev/spec/32/#identity-credentials-generation

Formal Verification 5
5.1 Formal Verification Procedure

Our team verified several properties of the code at commit 0x10437bc2. See Table 5.1 for a

complete list. See Section 5.3 for a detailed description of each property.

We formally verified the code using Veridise’s tool Coda. Coda is an open-source library that

can be used to prove the functional correctness of circom circuits by leveraging the Coq proof

assistant. These properties were verified by first rewriting the circuits in ML, then proving the

properties using Coq.

The only property which must be assumed in the proof is that the messageLimit for users is

within bounds. This value is public during registration, and checking that it is in bounds is

included in the documentation for running Rate Limiting Nullifier.

5.2 Properties Verified

A complete list of the properties verified is shown in Table 5.1. Each row displays a natural

language description of the property proved, and its current status (i.e. verified, not verified).

Section 5.3 provides a detailed description of each property, along with formal circuit definitions

and property specifications.

Table 5.1: Formally verified properties.

ID Property Status
V-RLN-SPEC-001 Surpassing the voting limit in an epoch reveals identity. Verified

V-RLN-SPEC-002 The internal nullifier links messages with the same ID. Verified

V-RLN-SPEC-003 The computed Merkle root is correct, and uses the correct leaf. Verified

V-RLN-SPEC-004 messageID is in the range [0, limit). Verified

V-RLN-SPEC-005 RangeCheck returns true exactly when the signal is in [0, limit). Verified

V-RLN-SPEC-006 The circuit is not underconstrained. Verified

Note that V-RLN-SPEC-006 is a consequence of the functional correctness proofs in the prior 5

specifications.

5.3 Detailed Description of Formal Verification Results

In the following section, we outline each formally verified property in detail. Note that due to

the size and complexity of the proofs, we will not include them in the official report, the circuit

definitions
*

and proofs
†

can be found at the provided URLs.

* https://github.com/Veridise/Coda/tree/39ebd33767924fab127cc0ade561043217e685a4/dsl/circuits/
circom_rln

† https://github.com/Veridise/Coda/blob/39ebd33767924fab127cc0ade561043217e685a4/BigInt/src/
Benchmarks/CircomRLN/Proof.v

Veridise Audit Report: Privacy and Scaling Exploration © 2023 Veridise Inc.

https://github.com/Veridise/Coda
https://github.com/Veridise/Coda/tree/39ebd33767924fab127cc0ade561043217e685a4/dsl/circuits/circom_rln
https://github.com/Veridise/Coda/tree/39ebd33767924fab127cc0ade561043217e685a4/dsl/circuits/circom_rln
https://github.com/Veridise/Coda/blob/39ebd33767924fab127cc0ade561043217e685a4/BigInt/src/Benchmarks/CircomRLN/Proof.v
https://github.com/Veridise/Coda/blob/39ebd33767924fab127cc0ade561043217e685a4/BigInt/src/Benchmarks/CircomRLN/Proof.v

16 5 Formal Verification

In the header of each specification, RLN refers to both the implementations in rln-same.circom

and rln-diff.circom.

5.3.1 V-RLN-SPEC-001: Surpassing the Voting Limit in an Epoch Reveals Identity

Commit 0x10437bc2 Status Verified

Files rln-same.circom, rln-diff.circom

Circuits RLN

Description Once someone reaches the message limit, they have revealed two points on the

same line, with their secret identity at the 𝑦-intercept.

Formal Definition Listing 5.1 shows the formal definition for the RLN template fromrln-same.circom.

See Listing 5.2 for the formal definition of the RLN template from rln-diff.circom.

Listing 5.1: RLN template from rln-same.circom

1 let rln =

2 Circuit

3 { name= "RLN_same"

4 ; inputs=

5 [("DEPTH", tnat)

6 ; ("LIMIT_BIT_SIZE", attaches [lift (nu <. zn 253)] tnat)

7 ; ("identitySecret", tf)

8 ; ("messageId", tf)

9 ; ("pathElements", tarr_t_k tf (v "DEPTH"))

10 ; ("identityPathIndex", tarr_t_k tf (v "DEPTH"))

11 ; ("x", tf)

12 ; ("externalNullifier", tf)

13 ; ("messageLimit", tf)]

14 ; outputs=

15 [("y", t_y identity_secret message_id x external_nullifier)

16 ; ("root", t_root identity_secret path_elements identity_path_index)

17 ; ("nullifier"

18 , t_nullifier identity_secret message_id external_nullifier)]

19 ; dep= None

20 ; body=

21 elet "identityCommitment"

22 (call "Poseidon" [z1; const_array tf [identity_secret]])

23 (elet "root"

24 (call "MerkleTreeInclusionProof"

25 [v "DEPTH"

26 ; v "identityCommitment"

27 ; v "identityPathIndex"

28 ; v "pathElements"])

29 (elet "rangeCheck"

30 (call "RangeCheck"

31 [v "LIMIT_BIT_SIZE"; v "messageId"; v "messageLimit"])

32 (elet "a1"

33 (call "Poseidon"

© 2023 Veridise Inc. Veridise Audit Report: Privacy and Scaling Exploration

5.3 Detailed Description of Formal Verification Results 17

34 [z3

35 ; const_array tf

36 [v "identitySecret"

37 ; v "externalNullifier"

38 ; v "messageId"]])

39 (elet "y"

40 (fadd (v "identitySecret") (fmul (v "a1") (v "x")))

41 (elet "nullifier"

42 (call "Poseidon" [z1; const_array tf [v "a1"]])

43 (make [v "y"; v "root"; v "nullifier"])))))) }

Formal Specification The following shows the formal specification for the desired property

for rln-same.circom. The specification for rln-diff.circom is similar, and included at the

listed URL.

1 let t_y identity_secret message_id x external_nullifier =

2 tfq

3 (qeq nu

4 (fadds

5 [identity_secret

6 ; fmul

7 (u_poseidon z3

8 (const_array tf

9 [identity_secret; external_nullifier; message_id]))

10 x]))

Veridise Audit Report: Privacy and Scaling Exploration © 2023 Veridise Inc.

18 5 Formal Verification

5.3.2 V-RLN-SPEC-002: Internal Nullifier Links Messages with the Same ID

Commit 0x10437bc2 Status Verified

Files rln-same.circom, rln-diff.circom

Circuits RLN

Description The internal nullifier is the same for two different messages from the same user

using the same message ID.

Formal Definition Listings 5.1 and 5.2 show the formal definition for the RLN template from

rln-same.circom and rln-diff.circom, respectively.

Listing 5.2: RLN template from rln-diff.circom

1 let rln =

2 Circuit

3 { name= "RLN"

4 ; inputs=

5 [("DEPTH", tnat)

6 ; ("LIMIT_BIT_SIZE", attaches [lift (nu <. zn 253)] tnat)

7 ; ("identitySecret", tf)

8 ; ("userMessageLimit", tf)

9 ; ("messageId", tf)

10 ; ("pathElements", tarr_t_k tf (v "DEPTH"))

11 ; ("identityPathIndex", tarr_t_k tf (v "DEPTH"))

12 ; ("x", tf)

13 ; ("externalNullifier", tf)]

14 ; outputs=

15 [("y", t_y identity_secret message_id x external_nullifier)

16 ; ("root"

17 , t_root identity_secret user_message_limit path_elements

18 identity_path_index)

19 ; ("nullifier"

20 , t_nullifier identity_secret message_id external_nullifier)]

21 ; dep= None

22 ; body=

23 elet "identityCommitment"

24 (call "Poseidon" [z1; const_array tf [identity_secret]])

25 (elet "rateCommitment"

26 (call "Poseidon"

27 [z2

28 ; const_array tf [v "identityCommitment"; v "userMessageLimit"]

29])

30 (elet "root"

31 (call "MerkleTreeInclusionProof"

32 [v "DEPTH"

33 ; v "rateCommitment"

34 ; v "identityPathIndex"

35 ; v "pathElements"])

36 (elet "rangeCheck"

37 (call "RangeCheck"

© 2023 Veridise Inc. Veridise Audit Report: Privacy and Scaling Exploration

5.3 Detailed Description of Formal Verification Results 19

38 [v "LIMIT_BIT_SIZE"; v "messageId"; v "userMessageLimit"])

39 (elet "a1"

40 (call "Poseidon"

41 [z3

42 ; const_array tf

43 [v "identitySecret"

44 ; v "externalNullifier"

45 ; v "messageId"]])

46 (elet "y"

47 (fadd (v "identitySecret") (fmul (v "a1") (v "x")))

48 (elet "nullifier"

49 (call "Poseidon" [z1; const_array tf [v "a1"]])

50 (make [v "y"; v "root"; v "nullifier"])))))))

51 }

Formal Specification The following shows the formal specification for the desired property

for rln-same.circom. The specification for rln-diff.circom is similar, and included at the

listed URL.

1 let t_nullifier identity_secret message_id external_nullifier =

2 tfq

3 (qeq nu

4 (u_poseidon z1

5 (const_array tf

6 [u_poseidon z3

7 (const_array tf

8 [identity_secret; external_nullifier; message_id])])))

Veridise Audit Report: Privacy and Scaling Exploration © 2023 Veridise Inc.

20 5 Formal Verification

5.3.3 V-RLN-SPEC-003: Computed Merkle Root Functional Correctness

Commit 0x10437bc2 Status Verified

Files utils.circom

Circuits MerkleTreeInclusionProof

Description The Merkle root is computed correctly.

Formal Definition The following shows the formal definition for the MerkleTreeInclusionProof

template:

1 let lam_mtip z =

2 lama "_i" tint

3 (lama "x" tf

4 (elet "u0"

5 (* path_index[i] binary *)

6 (assert_eq (fmul (z_i_0 z) (fsub f1 (z_i_0 z))) f0)

7 (elet "c"

8 (const_array (tarr_tf z2)

9 [const_array tf [x; z_i_1 z]; const_array tf [z_i_1 z; x]])

10 (elet "m"

11 (call "MultiMux1" [z2; c; z_i_0 z])

12 (call "Poseidon" [z2; m])))))

13

14 let hasher z len init =

15 iter z0 len (lam_mtip z) ~init ~inv:(fun i ->

16 tfq (qeq nu (u_hasher (u_take i z) init)))

17

18 let mrkl_tree_incl_pf =

19 Circuit

20 { name= "MerkleTreeInclusionProof"

21 ; inputs=

22 [("DEPTH", tnat)

23 ; ("leaf", tf)

24 ; ("pathIndex", tarr_tf depth)

25 ; ("pathElements", tarr_tf depth)]

26 ; outputs= [("root", t_r)]

27 ; dep= None

28 ; body= elet "z" (zip path_index path_elements) (hasher z depth leaf) }

Formal Specification The following shows the formal specification for the desired property.

1 let t_r = tfq (qeq nu (u_hasher (u_zip path_index path_elements) leaf))

© 2023 Veridise Inc. Veridise Audit Report: Privacy and Scaling Exploration

5.3 Detailed Description of Formal Verification Results 21

5.3.4 V-RLN-SPEC-004: messageID is in [0, limit)

Commit 0x10437bc2 Status Verified

Files rln-same.circom, rln-diff.circom

Circuits RLN

Description The used messageID is guaranteed to be in the range [0, limit).

Formal Definition See Listings 5.1 and 5.2 for the definitions of RLN.

Formal Specification This property is proven via the usage of RangeCheck in the definition of

RLN. and the property proved in 5.3.5.

Veridise Audit Report: Privacy and Scaling Exploration © 2023 Veridise Inc.

22 5 Formal Verification

5.3.5 V-RLN-SPEC-005: RangeCheck Functional Correctness

Commit 0x10437bc2 Status Verified

Files utils.circom

Circuits RangeCheck

Description RangeCheck outputs 1 exactly when the messageID is in the [0, limit) range, under

the assumption that limit is representable within LIMIT_BIT_SIZE bits. This assumption is

necessary. However, Privacy and Scaling Exploration indicated that they will document the

necessity of this check in an upcoming to RFC.

Formal Definition The following shows the formal definition for the RangeCheck template.

1 let range_check =

2 Circuit

3 { name= "RangeCheck"

4 ; inputs=

5 [("LIMIT_BIT_SIZE", attaches [lift (nu <. zn 253)] tnat)

6 ; ("messageId", tf)

7 ; ("limit", tf)]

8 ; outputs= [("rangeCheck", t_lt messageId limit)]

9 ; dep= None

10 ; body=

11 elet "bitCheck"

12 (call "Num2Bits" [limit_bit_size; messageId])

13 (call "LessThan" [limit_bit_size; messageId; limit]) }

Formal Specification The following shows the formal specification for the desired property.

1 let t_lt a b = tfq (ind_dec nu (toUZ a <. toUZ b))

© 2023 Veridise Inc. Veridise Audit Report: Privacy and Scaling Exploration

Glossary

Circom a programming language used to express both a witness computation and constraints

for ZK-circuit generation. To learn more, visit https://docs.circom.io. 1

Coq A system/programming language for formal proofs. Read more at https://coq.inria.fr

. 15

ML A Haskell-like programming language. Seehttps://en.wikipedia.org/wiki/ML_(programming_

language) for more details . 15

Shamir’s Secret Sharing A method which breaks a piece of secret information into several

parts, requiring some minimum number of parts to recover the secret. For more info, see

https://en.wikipedia.org/wiki/Shamir%27s_secret_sharing. 1

Zero Knowledge Circuit An encoding of a computation which allows verification that third-

parties have performed a certain computation, without revealing anything else about the

inputs to that computation. 1, 23

ZK-circuits Zero Knowledge Circuit. 1

Veridise Audit Report: Privacy and Scaling Exploration © 2023 Veridise Inc.

https://docs.circom.io
https://coq.inria.fr
https://en.wikipedia.org/wiki/ML_(programming_language)
https://en.wikipedia.org/wiki/ML_(programming_language)
https://en.wikipedia.org/wiki/Shamir%27s_secret_sharing

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	RLN-001: Spammers may slash themselves
	RLN-002: Unregistered users can be slashed
	RLN-003: Correctness of IsInInterval is based on implicit assumptions
	RLN-004: identitySecret Naming Inconsistency
	Formal Verification
	Formal Verification Procedure

	Formal Verification Procedure
	Properties Verified

	Properties Verified
	Detailed Description of Formal Verification Results

	Detailed Description of Formal Verification Results
	V-RLN-SPEC-001: Surpassing the Voting Limit in an Epoch Reveals Identity
	V-RLN-SPEC-002: Internal Nullifier Links Messages with the Same ID
	V-RLN-SPEC-003: Computed Merkle Root Functional Correctness
	V-RLN-SPEC-004: messageID is in [0, limit)
	V-RLN-SPEC-005: RangeCheck Functional Correctness
	Glossary

