
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

Poolshark Cover

Veridise Inc.
September 1, 2023

▶ Prepared For:

Poolshark Labs
https://www.poolshark.fi/

▶ Prepared By:

Xiangan He
Ben Mariano
Andreea Buterchi

▶ Contact Us: contact@veridise.com

▶ Version History:

Apr. 06, 2023 Initial Draft
Apr. 12, 2023 V1
Apr. 19, 2023 V2
Apr. 27, 2023 V3

© 2023 Veridise Inc. All Rights Reserved.

https://www.poolshark.fi/
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 6

4 Vulnerability Report 7
4.1 Detailed Description of Bugs . 8

4.1.1 V-ALL-PSH-001: Incorrect delta calculation on transfer 8
4.1.2 V-ALL-PSH-002: Swap amount incorrectly calculated 9
4.1.3 V-ALL-PSH-003: Incorrect delta calculation on delta-tick transfer 12
4.1.4 V-ALL-PSH-004: Potential overflow on average tick calculation 13
4.1.5 V-ALL-PSH-005: Vulnerability to oracle manipulation 14
4.1.6 V-ALL-PSH-006: Stashed amount ignored in tick removal 15
4.1.7 V-ALL-PSH-007: Liquidity not recalculated after partial mints 17
4.1.8 V-ALL-PSH-008: Bogus burn event . 19
4.1.9 V-ALL-PSH-009: Missing input validation in Positions.validate() 21
4.1.10 V-ALL-PSH-010: Linked list manipulation 23
4.1.11 V-ALL-PSH-011: Lack of validation on mint 24
4.1.12 V-ALL-PSH-012: Potentially unsafe typecast in Ticks.quote 25
4.1.13 V-ALL-PSH-013: No tick node deletion 26
4.1.14 V-ALL-PSH-014: Potential Denial of Service 27
4.1.15 V-ALL-PSH-015: No revert on cPL > 0 . 29
4.1.16 V-ALL-PSH-016: Improvements to initialization of CoverPool 30
4.1.17 V-ALL-PSH-017: Unnecessary typecasts 31
4.1.18 V-ALL-PSH-018: Unimplemented ownership transfer 32
4.1.19 V-ALL-PSH-019: Unnecessary Return Values 33
4.1.20 V-ALL-PSH-020: Add option to burn percentage of position 34
4.1.21 V-ALL-PSH-021: Validate functions should not update state 35

Veridise Audit Report: Poolshark Labs © 2023 Veridise Inc.

Executive Summary 1
From Mar. 13, 2023 to Apr. 10, 2023, Poolshark Labs engaged Veridise to review the security
of the Poolshark Protocol, an Automated Market Maker (AMM) which supports directional
liquidity. The review covered the Cover Pool component which enables liquidity providers (LPs)
to "cover" or "hedge" their positions. Veridise conducted the assessment over 12 person-weeks,
with 3 engineers reviewing code over 4 weeks on commit 0xf8d337b. The auditing strategy
involved a tool-assisted analysis of the source code performed by Veridise engineers as well as
extensive manual auditing.

Code assessment. The Poolshark Labs developers provided the source code of the Poolshark
Protocol contracts for review. To facilitate the Veridise auditors’ understanding of the code,
the Poolshark Labs developers shared a whitepaper and documentation about the Cover
Pool and its mechanisms. In general, the documentation was somewhat scant. In particular,
the documentation currently does not have a clear description of the user-facing APIs and
their intended behavior (i.e., what parameters are expected, what do they represent, etc.).
Furthermore, documentation/comments within their code is limited, which is challenging as
the core logic is quite complicated and there are many variables with similar names. Developers
have done a good job testing their codebase, including tests that achieve almost 100% code
coverage. During the audit, the Poolshark Labs developers made several functional changes
to the code. This is because the Poolshark Labs developers were simultaneously performing a
code refactor and internally reviewing the code while collaborating with external auditors. Due
to this, Veridise auditors had to re-acquaint themselves with the modified code over-time and
review subsequent bug-fix commits that were different from the original code. All auditing was
performed on commit 0xf8d337b with the exception of any bug fixes that were verified.

Summary of issues detected. The audit uncovered 21 issues, 3 of which are assessed to be of
high or critical severity by the Veridise auditors. Specifically, several logic errors were found for
functionality used to calculate swap amounts (V-ALL-PSH-001 - V-ALL-PSH-003). The Veridise
auditors also identified several medium-severity issues, including losses induced by TWAP
Oracle attacks (V-ALL-PSH-005), potential overflows on Tick calculations (V-ALL-PSH-004),
and liquidity not being handled correctly in partial mints (V-ALL-PSH-007) as well as a number
of minor issues. The Poolshark Labs developers fixed most of the issues reported in the audit
(including all major ones) and acknowledged the remaining minor issues.

Recommendations. After auditing the protocol, the auditors had a few suggestions to improve
the Poolshark Protocol. Our first suggestion is to increase the modularity of the code. There
are multiple functions which comprise hundreds of lines of code – for clarity and future
extension, we suggest splitting these into smaller functions with clearly defined tasks. Our
second suggestion is to split some of the logic associated with token0 and token1; one common
source of confusion in the code for auditors was understanding functions that needed to handle
both, usually resulting in ITE statements over a boolean, where the true and false branches

Veridise Audit Report: Poolshark Labs © 2023 Veridise Inc.

2 1 Executive Summary

were almost identical modulo a few small changes. We suspect that some of the logic can
be separated, which could actually allow more code-reuse by abstracting away the shared
behaviors. Finally, we suggest improving naming of variables and functions. As an example,
currently the protocol has a function called validate that both validates the user inputs and (in
our opinion non-intuitively) updates them if they are incorrect. To improve the readability and
maintainability of the code, we suggest function and variable names carefully reflect expected
behavior. For a full list of recommendations made by the Veridise auditors, check out the
detailed issue report.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

© 2023 Veridise Inc. Veridise Audit Report: Poolshark Labs

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
Poolshark Protocol 0xf8d337b Solidity Ethereum

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
Mar. 13 - Apr. 10, 2023 Manual & Tools 3 12 person-weeks

Table 2.3: Vulnerability Summary.

Name Number Resolved
Critical-Severity Issues 0 0
High-Severity Issues 3 3
Medium-Severity Issues 7 7
Low-Severity Issues 4 4
Warning-Severity Issues 1 1
Informational-Severity Issues 6 5
TOTAL 21 20

Table 2.4: Category Breakdown.

Name Number
Logic Error 8
Locked Funds 0
Denial of Service 1
Data Validation 6
Maintainability 5
Missing/Incorrect Events 0
Usability Issue 1

Veridise Audit Report: Poolshark Labs © 2023 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of Poolshark Labs’s smart
contracts.

In our audit, we sought to answer the following questions:

▶ Does the Poolshark protocol maintain all positions correctly, including when users mint
multiple positions in overlapping ranges or when prices move between different ranges?

▶ Can a malicious user manipulate the value of another user’s position?
▶ Can a malicious user game the system to steal funds from the protocol?
▶ Can a user always retrieve their funds after a mint by burning?
▶ Are mints allowed only when there are enough observations?
▶ Can the protocol be vulnerable to oracle manipulation?
▶ Are swaps calculated correctly? Do all swap transactions stay under slippage limits?
▶ Do the AMM math libraries function as expected?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a combination of
human experts and automated program analysis & testing tools. In particular, we conducted
our audit with the aid of the following technique:

▶ Fuzzing/Property-based Testing. We also leverage fuzz testing to determine if the protocol
may deviate from the expected behavior. To do this, we formalize the desired behavior of
the protocol as [V] specifications and then use our fuzzing framework OrCa to determine
if a violation of the specification can be found.

Scope. The scope of this audit is limited to the (/cover/contracts) folder of the source code
provided by the Poolshark Labs developers, which contains the smart contract implementation
of the Poolshark Protocol.

Methodology. Veridise auditors inspected provided tests, and read the Poolshark Protocol
documentation. They then began a manual audit of the code assisted by tooling. During the
audit, the Veridise auditors regularly met with the Poolshark Labs developers to ask questions
about the code.

Veridise Audit Report: Poolshark Labs © 2023 Veridise Inc.

6 3 Audit Goals and Scope

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

In this case, we judge the likelihood of a vulnerability as follows in Table 3.2:

Table 3.2: Likelihood Breakdown

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows in Table 3.3:

Table 3.3: Impact Breakdown

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2023 Veridise Inc. Veridise Audit Report: Poolshark Labs

Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowleged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-ALL-PSH-001 Incorrect delta calculation on transfer High Fixed
V-ALL-PSH-002 Swap amount incorrectly calculated High Fixed
V-ALL-PSH-003 Incorrect delta calculation on delta-tick exchange High Fixed
V-ALL-PSH-004 Potential overflow on average tick calculation Medium Fixed
V-ALL-PSH-005 Vulnerability to oracle manipulation Medium Fixed
V-ALL-PSH-006 Stashed amount ignored in tick removal Medium Fixed
V-ALL-PSH-007 Liquidity not recalculated after partial mints Medium Intended
V-ALL-PSH-008 Bogus burn event Medium Fixed
V-ALL-PSH-009 Missing input validation in Positions.validate() Medium Invalid
V-ALL-PSH-010 Linked list manipulation Medium Fixed
V-ALL-PSH-011 Lack of validation on mint Low Acknowledged
V-ALL-PSH-012 Potentially unsafe typecast in Ticks.quote Low Fixed
V-ALL-PSH-013 No tick node deletion Low Fixed
V-ALL-PSH-014 Potential Denial of Service Low Fixed
V-ALL-PSH-015 No revert on cPL > 0 Warning Fixed
V-ALL-PSH-016 Improvements to initialization of CoverPool Info Fixed
V-ALL-PSH-017 Unnecessary typecasts Info Fixed
V-ALL-PSH-018 Unimplemented ownership transfer in CoverPool Info Fixed
V-ALL-PSH-019 Unnecessary return values Info Fixed
V-ALL-PSH-020 Add option to burn percentage of position Info Fixed
V-ALL-PSH-021 Validate functions should not update state Info Open

Veridise Audit Report: Poolshark Labs © 2023 Veridise Inc.

8 4 Vulnerability Report

4.1 Detailed Description of Bugs

4.1.1 V-ALL-PSH-001: Incorrect delta calculation on transfer

Severity High Commit f8d337b
Type Logic Error Status Fixed
Files libraries/Deltas.sol

Functions transferMax

In transferMax, the line fromDeltas.amountOutDeltaMax = 0; should instead set fromDeltas.

amountInDeltaMax.

1 {

2 uint128 amountInDeltaMaxChange = uint128(uint256(fromDeltas.

amountInDeltaMax) * percentInTransfer / 1e38);

3 if (fromDeltas.amountInDeltaMax > amountInDeltaMaxChange) {

4 fromDeltas.amountInDeltaMax -= amountInDeltaMaxChange;

5 toDeltas.amountInDeltaMax += amountInDeltaMaxChange;

6 } else {

7 toDeltas.amountInDeltaMax += fromDeltas.amountInDeltaMax;

8 fromDeltas.amountOutDeltaMax = 0;

9 }

10 }

11 {

12 uint128 amountOutDeltaMaxChange = uint128(uint256(fromDeltas.

amountOutDeltaMax) * percentOutTransfer / 1e38);

13 if (fromDeltas.amountOutDeltaMax > amountOutDeltaMaxChange) {

14 fromDeltas.amountOutDeltaMax -= amountOutDeltaMaxChange;

15 toDeltas.amountOutDeltaMax += amountOutDeltaMaxChange;

16 } else {

17 toDeltas.amountOutDeltaMax += fromDeltas.amountOutDeltaMax;

18 fromDeltas.amountOutDeltaMax = 0;

19 }

20 }

Recommendation Change fromDeltas.amountOutDeltaMax = 0; to fromDeltas.amountInDeltaMax

= 0;.

Developer Response Fixed in commit 79e2bb6.

© 2023 Veridise Inc. Veridise Audit Report: Poolshark Labs

4.1 Detailed Description of Bugs 9

4.1.2 V-ALL-PSH-002: Swap amount incorrectly calculated

Severity High Commit f8d337b
Type Logic Error Status Fixed
Files Ticks.sol

Functions quote

Ticks.quote is a key function for correctly calculating swap prices and the amount output,
returning the amountOut given a specific priceLimit : the way this priceLimit is handled is as
follows:

1 ...

2 uint256 nextTickPrice = state.latestPrice;

3 uint256 nextPrice = nextTickPrice;

4

5 // determine input boost from tick auction

6 cache.auctionBoost = ((cache.auctionDepth <= state.auctionLength) ? cache.

auctionDepth : state.auctionLength) * 1e14 / state.auctionLength * uint16(state.

tickSpread);

7 cache.inputBoosted = cache.input * (1e18 + cache.auctionBoost) / 1e18;

8

9 if (zeroForOne) {

10 // Trading token 0 (x) for token 1 (y).

11 // price is decreasing.

12 if (priceLimit > nextPrice) {

13 // stop at price limit

14 nextPrice = priceLimit;

15 }

16 ...

This nextPrice , which takes into account the priceLimit, is used in calculating the amountOut :
specifically, when there’s supposed to be some remaining amount remaining in cache.input

1 uint256 maxDx = DyDxMath.getDx(cache.liquidity, nextPrice, cache.price, false);

2 // check if we can increase input to account for auction

3 // if we can’t, subtract amount inputted at the end

4 // store amountInDelta in pool either way

5 // putting in less either way

6 if (cache.inputBoosted <= maxDx) {

7 // We can swap within the current range.

8 uint256 liquidityPadded = cache.liquidity << 96;

9 // calculate price after swap

10 uint256 newPrice = FullPrecisionMath.mulDivRoundingUp(

11 liquidityPadded,

12 cache.price,

13 liquidityPadded + cache.price * cache.inputBoosted

14);

15 /// @auditor - check tests to see if we need overflow handle

16 // if (!(nextTickPrice <= newPrice && newPrice < cache.price)) {

17 // console.log(’overflow check’);

18 // newPrice = uint160(FullPrecisionMath.divRoundingUp(

liquidityPadded, liquidityPadded / cache.price + cache.input));

19 // }

Veridise Audit Report: Poolshark Labs © 2023 Veridise Inc.

10 4 Vulnerability Report

20 amountOut = DyDxMath.getDy(cache.liquidity, newPrice, cache.price,

false);

21 cache.price = uint160(newPrice);

22 cache.amountInDelta = maxDx - maxDx * cache.input / cache.

inputBoosted;

23 cache.input = 0;

24 } else if (maxDx > 0) {

25 amountOut = DyDxMath.getDy(cache.liquidity, nextPrice, cache.price,

false);

26 cache.price = nextPrice;

27 cache.amountInDelta = maxDx - maxDx * cache.input / cache.

inputBoosted;

28 cache.input -= maxDx * cache.input / cache.inputBoosted; /// @dev -

convert back to input amount

29 }

30 } else {

31 // Price is increasing.

32 if (priceLimit < nextPrice) {

33 // stop at price limit

34 nextPrice = priceLimit;

35 }

36 uint256 maxDy = DyDxMath.getDy(cache.liquidity, cache.price, nextPrice,

false);

37 if (cache.inputBoosted <= maxDy) {

38 // We can swap within the current range.

39 // Calculate new price after swap: P = y /L.

40 uint256 newPrice = cache.price +

41 FullPrecisionMath.mulDiv(cache.inputBoosted, Q96, cache.liquidity

);

42 // Calculate output of swap

43 amountOut = DyDxMath.getDx(cache.liquidity, cache.price, newPrice,

false);

44 cache.price = newPrice;

45 cache.amountInDelta = cache.inputBoosted - cache.input;

46 cache.input = 0;

47 } else if (maxDy > 0) {

48 amountOut = DyDxMath.getDx(cache.liquidity, cache.price,

nextTickPrice, false);

49 cache.price = nextPrice;

50 cache.amountInDelta = maxDy - maxDy * cache.input / cache.

inputBoosted;

51 cache.input -= maxDy * cache.input / cache.inputBoosted + 1; /// @dev

- handles rounding errors with amountInDelta

52 }

53 }

The calculation of amountOut in the else if (maxDy > 0) clause does not use the intended
nextPrice, but instead uses nextTickPrice which doesn’t account for the priceLimit previously
indicated.

Impact This calculation ignores the desired price limit of the user, meaning more slippage
than intended could impact the user.

© 2023 Veridise Inc. Veridise Audit Report: Poolshark Labs

4.1 Detailed Description of Bugs 11

Recommendation Use nextPrice instead of nextTickPrice.

Developer Response Fixed in commit e633e42.

Veridise Audit Report: Poolshark Labs © 2023 Veridise Inc.

12 4 Vulnerability Report

4.1.3 V-ALL-PSH-003: Incorrect delta calculation on delta-tick transfer

Severity High Commit f8d337b
Type Logic Error Status Fixed
Files Deltas.sol

Functions to

to transfers delta-amounts from a delta to a tick. Here, however, it transfers the delta amount
incorrectly - toTick.deltas.amountOutDelta should increase by only fromDeltas.amountOutDelta,
not the max.

1 function to(

2 ICoverPoolStructs.Deltas memory fromDeltas,

3 ICoverPoolStructs.Tick memory toTick

4) external pure returns (

5 ICoverPoolStructs.Deltas memory,

6 ICoverPoolStructs.Tick memory

7) {

8 toTick.deltas.amountInDelta += fromDeltas.amountInDelta;

9 toTick.deltas.amountInDeltaMax += fromDeltas.amountInDeltaMax;

10 toTick.deltas.amountOutDelta += fromDeltas.amountOutDeltaMax;

11 toTick.deltas.amountOutDeltaMax += fromDeltas.amountOutDeltaMax;

12 fromDeltas = ICoverPoolStructs.Deltas(0,0,0,0);

13 return (fromDeltas, toTick);

14 }

Recommendation Change from toTick.deltas.amountOutDelta += fromDeltas.amountOutDeltaMax

to toTick.deltas.amountOutDelta += fromDeltas.amountOutDelta;.

Developer Response Fixed in commit 7632bec.

© 2023 Veridise Inc. Veridise Audit Report: Poolshark Labs

4.1 Detailed Description of Bugs 13

4.1.4 V-ALL-PSH-004: Potential overflow on average tick calculation

Severity Medium Commit f8d337b
Type Data Validation Status Fixed
Files TwapOracle.sol

Functions calculateAverageTick

Currently, the TWAP oracle calculates average tick based on the deployed chain’s blocktime and
an input uint16 twapLength. The result is stored in a uint32[] secondsAgos: however, there is a
cast to int32 that may potentially overflow

1 ...

2 averageTick = int24(((tickCumulatives[0] - tickCumulatives[1]) / (int32(secondsAgos

[1]))));

3 ...

Impact If the typecast overflows (which it can if twapLength * blocktime > type(int32).max),
it may pass the checks below which only checks for strict equality to TickMath.MAX_TICK and
TickMath.MIN_TICK. An inaccurate average tick calculation directly affects syncLatest, which is
performed before the execution of any of the major functions in CoverPool

Recommendation Place limits on the values of twapLength and blocktime to ensure no
overflow.

Developer Response Fixed in commit db9e57e.

Veridise Audit Report: Poolshark Labs © 2023 Veridise Inc.

14 4 Vulnerability Report

4.1.5 V-ALL-PSH-005: Vulnerability to oracle manipulation

Severity Medium Commit f8d337b
Type Logic Error Status Fixed
Files TwapOracle.sol

Functions N/A

The protocol relies on a price oracle to calculate the TWAP based on prices determined from the
underlying range pool. This appears to be the only source of prices, meaning that any attack
which compromises the prices reported by this oracle could severely manipulate the behavior
of the pool. As an an example, if the oracle is comprised, an incorrect change in prices could
force the cover pool to auction off liquidity when it should not.

Impact A property functioning TWAP oracle is imperative for the correct operation of the
protocol. Without a correctly functioning oracle, LP providers cannot appropriately hedge as
intended.

Recommendation To reduce the risk, it is suggested that multiple price oracles are queried
and averaged so that there is not a single point of failure.

Developer Response This issue is fixed by rate-limiting the price move as a function of
auctionLength and tickSpread in Epochs.syncLatest().

© 2023 Veridise Inc. Veridise Audit Report: Poolshark Labs

4.1 Detailed Description of Bugs 15

4.1.6 V-ALL-PSH-006: Stashed amount ignored in tick removal

Severity Medium Commit f8d337b
Type Logic Error Status Fixed
Files Ticks.sol

Functions remove

amountStashed is unused in Ticks.remove(). If amount stashed should be considered during
tick removal, this logic should be added. However, we suspect the argument should just be
removed from the function.

1 function remove(

2 mapping(int24 => ICoverPoolStructs.Tick) storage ticks,

3 mapping(int24 => ICoverPoolStructs.TickNode) storage tickNodes,

4 ICoverPoolStructs.GlobalState memory state,

5 int24 lower,

6 int24 upper,

7 uint128 amount,

8 uint128 amountStashed,

9 bool isPool0,

10 bool removeLower,

11 bool removeUpper

12) external {

13 {

14 ICoverPoolStructs.Tick memory tickLower = ticks[lower];

15 if (removeLower) {

16 if (isPool0) {

17 tickLower.liquidityDelta += int128(amount);

18 tickLower.liquidityDeltaMinus -= amount;

19 } else {

20 tickLower.liquidityDelta -= int128(amount);

21 }

22 }

23 /// @dev - not deleting ticks just yet

24 ticks[lower] = tickLower;

25 }

26

27 {

28 ICoverPoolStructs.Tick memory tickUpper = ticks[upper];

29 if (removeUpper) {

30 if (isPool0) {

31 tickUpper.liquidityDelta -= int128(amount);

32 } else {

33 tickUpper.liquidityDelta += int128(amount);

34 tickUpper.liquidityDeltaMinus -= amount;

35 }

36 }

37 ticks[upper] = tickUpper;

38 }

39 }

Recommendation Remove the amountStashed argument to Ticks.remove.

Veridise Audit Report: Poolshark Labs © 2023 Veridise Inc.

16 4 Vulnerability Report

Developer Response Fixed in commit 00dc9dd. Tick deletion added in commit 97047ff.

© 2023 Veridise Inc. Veridise Audit Report: Poolshark Labs

4.1 Detailed Description of Bugs 17

4.1.7 V-ALL-PSH-007: Liquidity not recalculated after partial mints

Severity Medium Commit f8d337b
Type Usability Issue Status Intended
Files Positions.sol

Functions validate

Inside of Positions.validate, the following logic handles cases of partial mints by setting
priceUpper and priceLower to their updated versions respectively. These parameter updates,
however, aren’t used since the actual calculation of liquidityMinted takes place before these
partial mint scenarios are handled.

1 liquidityMinted = DyDxMath.getLiquidityForAmounts(

2 priceLower,

3 priceUpper,

4 params.zeroForOne ? priceLower : priceUpper,

5 params.zeroForOne ? 0 : uint256(params.amount),

6 params.zeroForOne ? uint256(params.amount) : 0

7);

8

9 // handle partial mints

10 if (params.zeroForOne) {

11 if (params.upper >= params.state.latestTick) {

12 params.upper = params.state.latestTick - int24(params.state.

tickSpread);

13 params.upperOld = params.state.latestTick;

14 uint256 priceNewUpper = TickMath.getSqrtRatioAtTick(params.upper);

15 params.amount -= uint128(

16 DyDxMath.getDx(liquidityMinted, priceNewUpper, priceUpper, false)

17);

18 priceUpper = priceNewUpper;

19 }

20 } else {

21 if (params.lower <= params.state.latestTick) {

22 params.lower = params.state.latestTick + int24(params.state.

tickSpread);

23 params.lowerOld = params.state.latestTick;

24 uint256 priceNewLower = TickMath.getSqrtRatioAtTick(params.lower);

25 params.amount -= uint128(

26 DyDxMath.getDy(liquidityMinted, priceLower, priceNewLower, false)

27);

28 priceLower = priceNewLower;

29 }

30 }

Impact Due to the incorrect timing of the calculation, partial mint cases are not actually taken
into account. This may lead to sometimes incorrect calculations of liquidity positions.

Recommendation Move the calculations down after the if-else block.

Veridise Audit Report: Poolshark Labs © 2023 Veridise Inc.

18 4 Vulnerability Report

Developer Response This is intended behavior as params.amount is adjusted appropriately.
Based on this, auditors suggested removing the unecessary writes to priceLower and priceUpper,
however, developers stated that although these updated values are not used in this version of
the code, in a later commit they use these values so they will keep them in the code.

© 2023 Veridise Inc. Veridise Audit Report: Poolshark Labs

4.1 Detailed Description of Bugs 19

4.1.8 V-ALL-PSH-008: Bogus burn event

Severity Medium Commit f8d337b
Type Data Validation Status Fixed
Files CoverPool.sol

Functions burn

In CoverPool, core functions such as mint use Positions.validate to verify input parameters.

1 function mint(

2 int24 lowerOld,

3 int24 lower,

4 int24 claim,

5 int24 upper,

6 int24 upperOld,

7 uint128 amountDesired,

8 bool zeroForOne

9) external lock {

10 ...

11 (lowerOld, lower, upper, upperOld, amountDesired, liquidityMinted) =

Positions.validate(

12 ValidateParams(lowerOld, lower, upper, upperOld, zeroForOne,

amountDesired, globalState)

13);

Similar input validation should be present in burn; however, it is not as shown.

1 function burn(

2 int24 lower,

3 int24 claim,

4 int24 upper,

5 bool zeroForOne,

6 uint128 amount

7) external lock {

8 GlobalState memory state = globalState;

9 if (block.number != state.lastBlock) {

10 (state, pool0, pool1) = Epochs.syncLatest(

11 ticks0,

12 ticks1,

13 tickNodes,

14 pool0,

15 pool1,

16 state

17);

18 }

19 //TODO: burning liquidity should take liquidity out past the current auction

20

21 // Ensure no overflow happens when we cast from uint128 to int128.

22 if (amount > uint128(type(int128).max)) revert LiquidityOverflow();

23

24 if (claim != (zeroForOne ? upper : lower) || claim == state.latestTick) {

25 // update position and get new lower and upper

26 state = Positions.update(

Veridise Audit Report: Poolshark Labs © 2023 Veridise Inc.

20 4 Vulnerability Report

27 zeroForOne ? positions0 : positions1,

28 zeroForOne ? ticks0 : ticks1,

29 tickNodes,

30 state,

31 zeroForOne ? pool0 : pool1,

32 UpdateParams(msg.sender, lower, upper, claim, zeroForOne, amount)

33);

34 }

35 //TODO: add PositionUpdated event

36 // if position hasn’t changed remove liquidity

37 else {

38 (, state) = Positions.remove(

39 zeroForOne ? positions0 : positions1,

40 zeroForOne ? ticks0 : ticks1,

41 tickNodes,

42 state,

43 RemoveParams(msg.sender, lower, upper, zeroForOne, amount)

44);

45 }

46 //TODO: get token amounts from _updatePosition return values

47 //TODO: need to know old ticks and new ticks

48 emit Burn(msg.sender, lower, upper, claim, zeroForOne, amount);

49 globalState = state;

50 }

For many invalid inputs, the call to burn will essentially be a no-op. However, because there is
an event, a malicious user could use this to emit a bogus event indicating a burn completed that
was not really valid.

Impact This could be used to manipulate the event log for the protocol, which could cause
issues with external applications relying on that event log.

Recommendation Add in parameter validation to ensure all invalid burns revert.

Developer Response Fixed in commit c994b53.

© 2023 Veridise Inc. Veridise Audit Report: Poolshark Labs

4.1 Detailed Description of Bugs 21

4.1.9 V-ALL-PSH-009: Missing input validation in Positions.validate()

Severity Medium Commit f8d337b
Type Logic Error Status Invalid
Files Positions.sol

Functions validate

Inside of Positions.update, there is a comment regarding an invariant of the protocol:

1 // @auditor - user cannot add liquidity if auction is active; checked for in

Positions.validate()

The property is supposed to be checked for in Positions.validate; however, the check for this
property is not present

1 function validate(ICoverPoolStructs.ValidateParams memory params)

2 external

3 pure

4 returns (

5 int24,

6 int24,

7 int24,

8 int24,

9 uint128,

10 uint256 liquidityMinted

11)

12 {

13 if (params.lower < TickMath.MIN_TICK) revert InvalidLowerTick();

14 if (params.upper > TickMath.MAX_TICK) revert InvalidUpperTick();

15 if (params.lower % int24(params.state.tickSpread) != 0) revert

InvalidLowerTick();

16 if (params.upper % int24(params.state.tickSpread) != 0) revert

InvalidUpperTick();

17 if (params.amount == 0) revert InvalidPositionAmount();

18 if (params.lower >= params.upper || params.lowerOld >= params.upperOld)

19 revert InvalidPositionBoundsOrder();

20 if (params.zeroForOne) {

21 if (params.lower >= params.state.latestTick) revert

InvalidPositionBoundsTwap();

22 } else {

23 if (params.upper <= params.state.latestTick) revert

InvalidPositionBoundsTwap();

24 }

25 uint256 priceLower = uint256(TickMath.getSqrtRatioAtTick(params.lower));

26 uint256 priceUpper = uint256(TickMath.getSqrtRatioAtTick(params.upper));

27

28 liquidityMinted = DyDxMath.getLiquidityForAmounts(

29 priceLower,

30 priceUpper,

31 params.zeroForOne ? priceLower : priceUpper,

32 params.zeroForOne ? 0 : uint256(params.amount),

33 params.zeroForOne ? uint256(params.amount) : 0

34);

Veridise Audit Report: Poolshark Labs © 2023 Veridise Inc.

22 4 Vulnerability Report

35

36 // handle partial mints

37 if (params.zeroForOne) {

38 if (params.upper >= params.state.latestTick) {

39 params.upper = params.state.latestTick - int24(params.state.

tickSpread);

40 params.upperOld = params.state.latestTick;

41 uint256 priceNewUpper = TickMath.getSqrtRatioAtTick(params.upper);

42 params.amount -= uint128(

43 DyDxMath.getDx(liquidityMinted, priceNewUpper, priceUpper, false)

44);

45 priceUpper = priceNewUpper;

46 }

47 } else {

48 if (params.lower <= params.state.latestTick) {

49 params.lower = params.state.latestTick + int24(params.state.

tickSpread);

50 params.lowerOld = params.state.latestTick;

51 uint256 priceNewLower = TickMath.getSqrtRatioAtTick(params.lower);

52 params.amount -= uint128(

53 DyDxMath.getDy(liquidityMinted, priceLower, priceNewLower, false)

54);

55 priceLower = priceNewLower;

56 }

57 }

58

59 if (liquidityMinted > uint128(type(int128).max)) revert LiquidityOverflow();

60 if (params.lower == params.upper) revert InvalidPositionBoundsTwap();

61

62 return (

63 params.lowerOld,

64 params.lower,

65 params.upper,

66 params.upperOld,

67 params.amount,

68 liquidityMinted

69);

70 }

Developer Response This check is handled indirectly by the bounds checks for valid positions.
The relevant checks can be found in Positions.add. For clarity, auditors suggested making these
checks more explicit and well-documented for future maintainability.

© 2023 Veridise Inc. Veridise Audit Report: Poolshark Labs

4.1 Detailed Description of Bugs 23

4.1.10 V-ALL-PSH-010: Linked list manipulation

Severity Medium Commit f8d337b
Type Logic Error Status Fixed
Files CoverPool.sol

Functions mint

The mint function currently has the following interface:

1 function mint(

2 int24 lowerOld,

3 int24 lower,

4 int24 claim,

5 int24 upper,

6 int24 upperOld,

7 uint128 amountDesired,

8 bool zeroForOne

9) external

Two of the arguments lowerOld and upperOld are used to appropriately add the position in an
internal linked list maintaining positions. Some illegal settings of these values (such as having
lowerOld >= upperOld are pruned, however, it is still possible that a malicious could use these
values to mess with the internal tickNodes data structure.

Recommendation Calculate or store these values rather than rely on the external user
providing them.

Developer Response Fixed in commit 8163ea1. To fix this issue, developers introduced a Tick
bitmap to avoid linked list manipulation/breakage. Furthermore, they do not rely on the user
to provide inputs to maintain the bitmap.

Veridise Audit Report: Poolshark Labs © 2023 Veridise Inc.

24 4 Vulnerability Report

4.1.11 V-ALL-PSH-011: Lack of validation on mint

Severity Low Commit f8d337b
Type Data Validation Status Acknowledged
Files CoverPool.sol

Functions mint

The comments on mint indicate that mint should only be called from the CL pool manager
contract. No caller validation, however, is made anywhere inside the function.

1 /// @dev Mints LP tokens - should be called via the CL pool manager contract.

2 function mint(

3 int24 lowerOld,

4 int24 lower,

5 int24 claim,

6 int24 upper,

7 int24 upperOld,

8 uint128 amountDesired,

9 bool zeroForOne

10) external lock {

Recommendation Add input validation as suggested.

Developer Response Developer’s suggested this comment is no longer relevant, i.e., no caller
validation is required.

© 2023 Veridise Inc. Veridise Audit Report: Poolshark Labs

4.1 Detailed Description of Bugs 25

4.1.12 V-ALL-PSH-012: Potentially unsafe typecast in Ticks.quote

Severity Low Commit f8d337b
Type Data Validation Status Fixed
Files Ticks.sol

Functions quote

The following implementation of quote contains a typecast uint160(newPrice) that may be
unsafe because newPrice is a uint256.

1 if (cache.inputBoosted <= maxDx) {

2 // We can swap within the current range.

3 uint256 liquidityPadded = cache.liquidity << 96;

4 // calculate price after swap

5 uint256 newPrice = FullPrecisionMath.mulDivRoundingUp(

6 liquidityPadded,

7 cache.price,

8 liquidityPadded + cache.price * cache.inputBoosted

9);

10 /// @auditor - check tests to see if we need overflow handle

11 // if (!(nextTickPrice <= newPrice && newPrice < cache.price)) {

12 // console.log(’overflow check’);

13 // newPrice = uint160(FullPrecisionMath.divRoundingUp(

liquidityPadded, liquidityPadded / cache.price + cache.input));

14 // }

15 amountOut = DyDxMath.getDy(cache.liquidity, newPrice, cache.price,

false);

16 cache.price = uint160(newPrice);

17 cache.amountInDelta = maxDx - maxDx * cache.input / cache.

inputBoosted;

18 cache.input = 0;

19 } else if (maxDx > 0) {

20 amountOut = DyDxMath.getDy(cache.liquidity, nextPrice, cache.price,

false);

21 cache.price = nextPrice;

22 cache.amountInDelta = maxDx - maxDx * cache.input / cache.

inputBoosted;

23 cache.input -= maxDx * cache.input / cache.inputBoosted; /// @dev -

convert back to input amount

24 }

Impact If prices were such that this caused an overflow, it is possible the price would be unable
to update and the protocol could get stuck.

Recommendation To avoid any possibility of overflow, we recommend removing the typecast
as cache.price is also uint256.

Developer Response Fixed in commit 545e2d2.

Veridise Audit Report: Poolshark Labs © 2023 Veridise Inc.

26 4 Vulnerability Report

4.1.13 V-ALL-PSH-013: No tick node deletion

Severity Low Commit f8d337b
Type Maintainability Status Fixed
Files Ticks.sol

Functions remove

In remove there seems to be code regarding deleting various ticks that are intended to be
included, but is either not yet implemented or obsolete.

1 // if (deleteLowerTick) {

2 // // Delete lower tick.

3 // int24 previous = tickNodes[lower].previousTick;

4 // int24 next = tickNodes[lower].nextTick;

5 // if(next != upper || !deleteUpperTick) {

6 // tickNodes[previous].nextTick = next;

7 // tickNodes[next].previousTick = previous;

8 // } else {

9 // int24 upperNextTick = tickNodes[upper].nextTick;

10 // tickNodes[tickNodes[lower].previousTick].nextTick = upperNextTick;

11 // tickNodes[upperNextTick].previousTick = previous;

12 // }

13 // }

14 // if (deleteUpperTick) {

15 // // Delete upper tick.

16 // int24 previous = tickNodes[upper].previousTick;

17 // int24 next = tickNodes[upper].nextTick;

18

19 // if(previous != lower || !deleteLowerTick) {

20 // tickNodes[previous].nextTick = next;

21 // tickNodes[next].previousTick = previous;

22 // } else {

23 // int24 lowerPrevTick = tickNodes[lower].previousTick;

24 // tickNodes[lowerPrevTick].nextTick = next;

25 // tickNodes[next].previousTick = lowerPrevTick;

26 // }

27 // }

28 /// @dev - we can never delete ticks due to amount deltas

Without deleting ticks, it is possible for a malicious user to add a significant number of nodes to
the tickNodes linked list, causing updates to be slower and less gas efficient.

Impact This could allow a malicious user to increase the cost of syncing.

Recommendation Remove tick nodes on removal to improve update efficiency.

Developer Response Fixed in commit c9e3981.

© 2023 Veridise Inc. Veridise Audit Report: Poolshark Labs

4.1 Detailed Description of Bugs 27

4.1.14 V-ALL-PSH-014: Potential Denial of Service

Severity Low Commit f8d337b
Type Denial of Service Status Fixed
Files Epochs.sol

Functions syncLatest

The function syncLatest relies on multiple while(true) loops which iterate through ticks to
perform updates. Below is an example:

1 while (true) {

2 // rollover deltas from current auction

3 (cache, pool0) = _rollover(cache, pool0, true);

4 // accumulate to next tick

5 ICoverPoolStructs.AccumulateOutputs memory outputs;

6 outputs = _accumulate(

7 tickNodes[cache.nextTickToAccum0],

8 tickNodes[cache.nextTickToCross0],

9 ticks0[cache.nextTickToCross0],

10 ticks0[cache.nextTickToAccum0],

11 cache.deltas0,

12 state.accumEpoch,

13 true,

14 nextLatestTick > state.latestTick

15 ? cache.nextTickToAccum0 < cache.stopTick0

16 : cache.nextTickToAccum0 > cache.stopTick0

17);

18 cache.deltas0 = outputs.deltas;

19 tickNodes[cache.nextTickToAccum0] = outputs.accumTickNode;

20 tickNodes[cache.nextTickToCross0] = outputs.crossTickNode;

21 ticks0[cache.nextTickToCross0] = outputs.crossTick;

22 ticks0[cache.nextTickToAccum0] = outputs.accumTick;

23 //cross otherwise break

24 if (cache.nextTickToAccum0 > cache.stopTick0) {

25 (pool0.liquidity, cache.nextTickToCross0, cache.nextTickToAccum0) =
_cross(

26 tickNodes[cache.nextTickToAccum0],

27 ticks0[cache.nextTickToAccum0].liquidityDelta,

28 cache.nextTickToCross0,

29 cache.nextTickToAccum0,

30 pool0.liquidity,

31 true

32);

33 if (cache.nextTickToCross0 == cache.nextTickToAccum0) {

34 revert InfiniteTickLoop0(cache.nextTickToAccum0);

35 }

36 } else break;

37 }

syncLatest is called by almost every public facing function in the protocol — thus if these loops
are infinite or consume a significant amount of gas, almost every function of the protocol could
be impacted.

Veridise Audit Report: Poolshark Labs © 2023 Veridise Inc.

28 4 Vulnerability Report

Recommendation We suggest converting the logic to enable stronger guarantees that looping
will terminate in a reasonable amount of time. For instance, if ticks were stored in a map,
looping over the length of the map should be sufficient to guarantee termination. Another
possible approach is to cap iterations of the loop based on the maximum number of possible
ticks between the current prices.

Developer Resposne The developer fix is in commit f2319fa. This commit adds an params.sync

argument to burn which allows a user to skip the sync when desired. This does not necessarily
totally prevent a DoS attack, but provides the user a mechanism to withdraw their funds even
in the case of a DoS attack.

© 2023 Veridise Inc. Veridise Audit Report: Poolshark Labs

4.1 Detailed Description of Bugs 29

4.1.15 V-ALL-PSH-015: No revert on cPL > 0

Severity Warning Commit f8d337b
Type Data Validation Status Fixed
Files Positions.sol

Functions add

As per comments, add should revert if cPL > 0, but there are no checks to ensure that will
happen.

1 //TODO: if cPL is > 0, revert

Recommendation Add the checks as commented.

Developer Response Fixed in commit f66ed4e.

Veridise Audit Report: Poolshark Labs © 2023 Veridise Inc.

30 4 Vulnerability Report

4.1.16 V-ALL-PSH-016: Improvements to initialization of CoverPool

Severity Info Commit f8d337b
Type Data Validation Status Fixed
Files CoverPool.sol

Functions constructor

The constructor of CoverPool first initializes an empty state, then proceeds to set state as
follows:

1 // set global state

2 GlobalState memory state = GlobalState(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, IRangePool(

address(0)));

3 state.tickSpread = _tickSpread;

4 state.twapLength = _twapLength;

5 state.auctionLength = _auctionLength;

6 state.genesisBlock = uint32(block.number);

7 state.inputPool = IRangePool(_inputPool);

lastBlock and auctionStart remain unset, and the explicit write to 0 state is unnecessary since
Solidity sets variables to 0 by default.

Recommendation Set the input parameters in the same write to GlobalState memory state

and set lastBlock and auctionStart to the same block as genesisBlock (otherwise they get left
as 0).

Developer Response Fixed in commit b5d7f65.

© 2023 Veridise Inc. Veridise Audit Report: Poolshark Labs

4.1 Detailed Description of Bugs 31

4.1.17 V-ALL-PSH-017: Unnecessary typecasts

Severity Info Commit f8d337b
Type Logic Error Status Fixed
Files CoverPoolFactory.sol, Positions.sol

Functions createCoverPool

In the following event, tickSpread is already int16 , rendering a cast to int26 to be unnecessary.

1 // emit event for indexers

2 emit PoolCreated(token0, token1, uint24(feeTier), int16(tickSpread), twapLength,

auctionLength, pool);

Similarly, in Positions.add the casts of params.amount to uint128 are unnecessary as this value
is already a uint128

Recommendation Removing the unnecessary typecasts.

Developer Response Fixed in commit b5d7f65.

Veridise Audit Report: Poolshark Labs © 2023 Veridise Inc.

32 4 Vulnerability Report

4.1.18 V-ALL-PSH-018: Unimplemented ownership transfer

Severity Info Commit f8d337b
Type Maintainability Status Fixed
Files CoverPool

Functions n/a

Per comments, there is currently no implementation of a function to transfer ownership in
CoverPool.

1 //TODO: create transfer function to transfer ownership

Recommendation Create the function as described.

Developer Response Fixed in commit 061ee49.

© 2023 Veridise Inc. Veridise Audit Report: Poolshark Labs

4.1 Detailed Description of Bugs 33

4.1.19 V-ALL-PSH-019: Unnecessary Return Values

Severity Info Commit f8d337b
Type Maintainability Status Fixed
Files Ticks.sol, Positions.sol

Functions n/a

Ticks.insert and Positions.add both return the state as if it is modified even though neither
appears to actually modify the state.

Recommendation Adjust the functions such that they no longer return the state, since the
return is nowhere used.

Developer Response Fixed in commit 7b6812b.

Veridise Audit Report: Poolshark Labs © 2023 Veridise Inc.

34 4 Vulnerability Report

4.1.20 V-ALL-PSH-020: Add option to burn percentage of position

Severity Info Commit f8d337b
Type Maintainability Status Fixed
Files CoverPool.sol

Functions n/a

Currently, the burn function requires an LP to provide a “liquidity amount” to be burned.
However, calculating such an amount is somewhat non-intuitive.

Recommendation Add an addition function which supports burning a percentage of a
position.

Developer Response The developers introduced this feature in commit 30effa2. As of the time
of writing, this commit was not yet merged but will soon be merged according to developers.

© 2023 Veridise Inc. Veridise Audit Report: Poolshark Labs

4.1 Detailed Description of Bugs 35

4.1.21 V-ALL-PSH-021: Validate functions should not update state

Severity Info Commit f8d337b
Type Maintainability Status Open
Files Positions.sol

Functions n/a

While reviewing the code, auditors were confused by the convention that “validation” functions
were often used not only to perform validation but also update state. For instance, Positions.
validate will not only validate a position, but can update the range to a valid range.

Recommendation We suggest separating any validation logic from any logic that update state
to make the distinction clear.

Veridise Audit Report: Poolshark Labs © 2023 Veridise Inc.

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Bugs

	Detailed Description of Bugs
	V-ALL-PSH-001: Incorrect delta calculation on transfer
	V-ALL-PSH-002: Swap amount incorrectly calculated
	V-ALL-PSH-003: Incorrect delta calculation on delta-tick transfer
	V-ALL-PSH-004: Potential overflow on average tick calculation
	V-ALL-PSH-005: Vulnerability to oracle manipulation
	V-ALL-PSH-006: Stashed amount ignored in tick removal
	V-ALL-PSH-007: Liquidity not recalculated after partial mints
	V-ALL-PSH-008: Bogus burn event
	V-ALL-PSH-009: Missing input validation in Positions.validate()
	V-ALL-PSH-010: Linked list manipulation
	V-ALL-PSH-011: Lack of validation on mint
	V-ALL-PSH-012: Potentially unsafe typecast in Ticks.quote
	V-ALL-PSH-013: No tick node deletion
	V-ALL-PSH-014: Potential Denial of Service
	V-ALL-PSH-015: No revert on cPL > 0
	V-ALL-PSH-016: Improvements to initialization of CoverPool
	V-ALL-PSH-017: Unnecessary typecasts
	V-ALL-PSH-018: Unimplemented ownership transfer
	V-ALL-PSH-019: Unnecessary Return Values
	V-ALL-PSH-020: Add option to burn percentage of position
	V-ALL-PSH-021: Validate functions should not update state

