Keridise. Auditing Report

Hardening Blockchain Security with Formal Methods

FOR

Partisia Blockchain Me

Veridise Inc.
June 25, 2023

» Prepared For:
Partisia
» Prepared By:

Benjamin Mariano
Nicholas Brown

» Contact Us: contact@veridise.com
» Version History:
June 25, 2023 Vi

© 2023 Veridise Inc. All Rights Reserved.

contact@veridise.com

Contents

Contents iii
1 Executive Summary 1
2 Project Dashboard 3
3 Audit Goals and Scope 5
31 AuditGoals. e 5
3.2 Audit Methodology & Scope L 5
3.3 Classification of Vulnerabilities, 5

4 Vulnerability Report 7
41 Detailed Descriptionof Issues 8
411 V-PAR-VUL-001: Lack of transaction payload validation 8

412 V-PAR-VUL-002: Unnecessary use of privatekey 9

41.3 V-PAR-VUL-003: Opaque user confirmation message 10

Veridise Audit Report: Partisia © 2023 Veridise Inc.

& Executive Summary

From June 14, 2023 to June 16, 2023, Partisia engaged Veridise to review the security of the
Partisia Blockchain Metamask Snap, a MetaMask snap application that allows users to retrieve
Partisia Blockchain addresses and sign transactions for the Partisia Blockchain. The auditing
strategy involved extensive manual analysis/auditing of the source code performed by Veridise
engineers.

Code assessment. The Partisia developers provided the source code of the Partisia Blockchain
Metamask Snap project for review. The code includes a number of tests that were useful for
auditors to better understand the code. The code does not currently have significant external
documentation; however, the codebase is small, consisting of less than 200 lines of total code,
including significant comments within the code itself.

Summary of issues detected. The audit uncovered 3 total issues. These issues included a
lack of transaction payload validation (V-PAR-VUL-001), unnecessary private key use (V-PAR-
VUL-002), and an unclear user message that could be vulnerable to social engineering attacks
(V-PAR-VUL-003).

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

Veridise Audit Report: Partisia © 2023 Veridise Inc.

2

%5 Project Dashboard

Table 2.1: Application Summary.

Platform

Partisia Metamask Snap 487032cc Typescript MetaMask

Table 2.2: Engagement Summary.

Method Consultants Engaged Level of Effort

June 14 - June 16, 2023 Manual 2 person-weeks

Table 2.3: Vulnerability Summary.

Critical-Severity Issues 0 0
High-Severity Issues
Medium-Severity Issues
Low-Severity Issues
Warning-Severity Issues
Informational-Severity Issues
TOTAL

W N = OO O
W N = O OO

Table 2.4: Category Breakdown.

Data Validation 1
Logic Error 1
Usability Issue 1

Veridise Audit Report: Partisia © 2023 Veridise Inc.

& Audit Goals and Scope

3.1 Audit Goals

The engagement was scoped to provide a security assessment of Partisia’s source code.

In our audit, we sought to answer the following questions:

» Can a user’s private key be stolen?

» Can a malformed transaction be signed?

» Are best practices around private key usage followed (e.g., are private keys only requested
when necessary? Are private keys ever exposed to public channels? etc.)

» Is a transaction properly signed according to the expectations of the blockchain?

» Is the correct address retrieved on a address retrieval request?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a detailed manual
analysis of the code by human experts.

Scope. The scope of this audit is limited to the source code of the Snap in the snap/packages/
snap/src folder.

Methodology. Veridise auditors inspected provided tests, and read the Partisia Blockchain
Metamask Snap documentation. They then began a manual audit of the code.

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking

Not Likely I MESREM I Low i Medium
Likely [0 Wasing | Low. | Medium [0 High
Very Likely [BoWe o Medium [g IR

In this case, we judge the likelihood of a vulnerability as follows in Table 3.2:

In addition, we judge the impact of a vulnerability as follows in Table 3.3:

Veridise Audit Report: Partisia © 2023 Veridise Inc.

3 Audit Goals and Scope

Table 3.2: Likelihood Breakdown

Not Likely | A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)
Likely | - OR -

Requires a small set of users to perform an action

Very Likely | Can be easily performed by almost anyone

Table 3.3: Impact Breakdown

Somewhat Bad | Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad | -OR-

Affects a very small number of people and requires aid to fix

Affects a large number of people and requires aid to fix

Very Bad | - OR -

Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking | Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2023 Veridise Inc. Veridise Audit Report: Partisia

%5 Vulnerability Report

In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowleged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

V-PAR-VUL-001 Lack of transaction payload validation Warning Acknowledged
V-PAR-VUL-002 Unnecessary use of private key Info Acknowledged
V-PAR-VUL-003 Opaque user confirmation message Info Acknowledged

Veridise Audit Report: Partisia © 2023 Veridise Inc.

4 Vulnerability Report

4.1 Detailed Description of Issues

4.1.1 V-PAR-VUL-001: Lack of transaction payload validation

ST37S5 3’ Warning 487032c

#4408 Data Validation Acknowledged
File(s) index.ts

Location(s) onRpcRequest()
Fix Commit N/A

The sign_transaction RPC request only validates the length of the payload to ensure that the
necessary header info is present. There is no validation of the rest of the transaction payload.
This can result in the user signing malformed transactions which may fail or result in unexpected
behavior.

Impact A malformed transaction will be presented to the user the same way as any other
transaction, so if the transaction doesn’t fail when sent to the blockchain, unexpected behavior
can occur. Depending on how these transactions are handled, this could cause problems.

Recommendation Validate transaction content before sending transaction to the blockchain,
unless any transaction with invalid parameters will revert when being executed on the
blockchain.

Developer Response At this time, additional transaction validation would require expensive
and/or complicated logic to retrieve additional information. Therefore, no additional validation
will be added into the current version. However, the plan is to add more validation on future
iterations of the snap.

© 2023 Veridise Inc. Veridise Audit Report: Partisia

© 00 N O U B W N =

4.1 Detailed Description of Issues

4.1.2 V-PAR-VUL-002: Unnecessary use of private key

Info 187002c
Logic Error Acknowledged
index.ts
onRpcRequest()

Fix Commit N/A

The get_address request retrieves an account address from a private key. It does this by getting
the private key from the user, recovering the associated public key, taking the hash of this public
key, and retrieving the first 24 bytes of that hash (prepended with 00). As the private key is only
used to retrieve the public key; it is safer to only request the public key.

Impact The private key of a user is sensitive and any use creates the potential risk of it being
stolen. Therefore, the private key should only be requested when necessary.

Recommendation Request the public key instead of the private key for retrieving the address.
This should be possible by using the snap_getBip32PublicKey function.

const publicKey = await snap.request({
method: 'snap_getBip32PublicKey’,
params: {
// The path and curve must be specified in the initial permissions.
path: ['m’, "44'", "3757'", "0'", '0', '0'],

curve: ’'secp256kl’,
compressed: false,
+
1)

Developer Response On experimentation with the suggested API, it does not appear to
function as expected in this context. To avoid potential errors, the developers have opted to keep
the current APIL.

Veridise Audit Report: Partisia © 2023 Veridise Inc.

10

4 Vulnerability Report

4.1.3 V-PAR-VUL-003: Opaque user confirmation message

Info 187002c
Usability Issue Acknowledged
index.ts
onRpcRequest()

Fix Commit N/A

When a user is asked to sign a transaction, the confirmation message is structured in the
following way:

Signing transaction with nonce [nonce] and cost [gasCost] towards contract [target]

This doesn’t contain any information about the effects or parameters of the transaction, so users
won’t be aware of the full details of the transaction they are being asked to sign.

Impact This limited information can make users more susceptible to social engineering attacks
because they can be told a transaction will do one thing, when in reality it will do something
else, and the user will have no way to know the effects of signing the transaction. Also, since the
parameters of the transaction are not visible, a malicious party could modify the parameters of
a transaction that a user wants to execute and the user wouldn’t notice the change when being
asked to sign the modified transaction.

Recommendation Make all parameters of a transaction visible in the confirmation message,
so the user can verify that the values are correct. If possible, include a brief description of the
effects of the type of transaction the user is signing so they can fully understand what they are
signing. Ideally, this description would be part of the snap itself, so there is no opportunity for a
malicious modification of the description.

Developer Response Similar to the “Lack of transaction payload validation” issue, extracting
additional information about the transaction would be complicated and potentially expensive.
Future versions of the code will include more transaction validation and will have more detailed
information to share with the user in confirmation messages.

© 2023 Veridise Inc. Veridise Audit Report: Partisia

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	V-PAR-VUL-001: Lack of transaction payload validation
	V-PAR-VUL-002: Unnecessary use of private key
	V-PAR-VUL-003: Opaque user confirmation message

