
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

Manta-ZK Lib

Veridise Inc.
September 1, 2023

▶ Prepared For:

Manta Network
https://manta.network/

▶ Prepared By:

Kostas Ferles
Benjamin Sepanski
Alp Bassa
Daniel Domínguez Álvarez
Shankara Pailoor

▶ Contact Us: contact@veridise.com

▶ Version History:

Mon. 1, 2023 V1
Wed. 19, 2023 Initial Draft

© 2023 Veridise Inc. All Rights Reserved.

https://manta.network/
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 6

4 Vulnerability Report 9
4.1 Detailed Description of Issues . 10

4.1.1 V-MANZ-VUL-001: Schnorr signature scheme is vulnerable to bad ran-
domness attacks . 10

4.1.2 V-MANZ-VUL-002: Repeated domain tags across Poseidon specs 11
4.1.3 V-MANZ-VUL-003: Hash Function Bias 12
4.1.4 V-MANZ-VUL-004: Public Asset of opaque UTXOs can have non-default

value . 14
4.1.5 V-MANZ-VUL-005: Unconstrained address_partition 15
4.1.6 V-MANZ-VUL-006: Use of RngCore trait without CryptoRng 17
4.1.7 V-MANZ-VUL-007: field_try_into! assumes field is larger than target

data-type . 18

Veridise Audit Report: Manta Network © 2023 Veridise Inc.

Executive Summary 1
From Feb. 27, 2023 to April. 18, 2023, Manta Network engaged Veridise to review the security of
their Manta-ZK Lib. The review covered several crucial arkworks circuits that implement Manta
Network’s L1 zero-knowledge protocol, whose goal is to enable on-chain privacy for applications.
Veridise conducted the assessment over 35 person-weeks, with 5 engineers reviewing code over
7 weeks on commit ba1a4b7. The auditing strategy involved a tool-assisted analysis of the source
code performed by Veridise engineers as well as extensive manual auditing.

Code assessment. The Manta Network developers provided the source code of the Manta-ZK
Lib contracts for review. To facilitate the Veridise auditors’ understanding of the code, the Manta
Network developers provided adequate documentation that formally specified the expected
behavior of the system. The documentation came in a multitude of forms such as web documents
with a high-level description of the system, Manta Network’s whitepaper, a paper with the
circuits formal specification, as well as READMEs and function comments in the codebase.

The source code contained a test suite, which covered all critical paths of the application. The
Veridise team studied the suite extensively to understand the expected way of using each API
in Manta Network’s codebase.

Overall, Manta Network’s codebase was of very high quality. The accompanied documentation
was clear and easy to follow, and the test suite was extensive and exercised all security critical
flows of the system.

Summary of issues detected. The audit uncovered 7 issues, none of which were assessed to
be of high or critical severity by the Veridise auditors. The Veridise team assessed two issues
as medium severity. Both of these issue were related to the configuration of cryptographic
protocols (e.g., Schnorr signatures).

Recommendations. Even though our audit did not uncover any critical issues, we would still
recommend fixing the medium severity issues at some point in the future. This recommendation
is warranted by the fact that the sophistication of blockchain attackers is increasing monotonically.
Therefore, a codebase that is not exploitable at this point of time might become exploitable in
the future.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

Veridise Audit Report: Manta Network © 2023 Veridise Inc.

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
Manta-ZK Lib ba1a4b7 - ba1a4b7 Rust Substrate

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
Feb. 27 - April. 18, 2023 Manual & Tools 5 35 person-weeks

Table 2.3: Vulnerability Summary.

Name Number Resolved
Critical-Severity Issues 0 0
High-Severity Issues 0 0
Medium-Severity Issues 2 0
Low-Severity Issues 1 0
Warning-Severity Issues 2 1
Informational-Severity Issues 2 0
TOTAL 7 1

Table 2.4: Category Breakdown.

Name Number
Cryptographic Vulnerability 3
Data Validation 2
Maintainability 2

Veridise Audit Report: Manta Network © 2023 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of Manta Network’s arkworks
circuits. In our audit, we sought to answer the following questions:

▶ Do all circuits implement the expected behavior?
▶ Are all circuits properly constrained?
▶ Are all cryptographic protocols implemented and configured properly?
▶ Does the project utilize the arkworks framework properly?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a combination of
human experts and automated program analysis & testing tools. In particular, we conducted
our audit with the aid of the following techniques:

▶ Fuzzing/Property-based Testing. We leveraged fuzz testing to determine if the protocol may
deviate from the expected behavior. To do this, we formalized the desired behavior of
several components as assertions and then used the AFL fuzzing framework to determine
if a violation of the specification can be found.

▶ Differential Fuzzing. We also employed differential fuzzing techniques in cases where
encoding the desired behavior of a component as an assertion is infeasible, e.g., hash
functions. For such cases, we found an existing (and audited) implementation of the same
component and used it as an oracle for our differential fuzzer.

In total, we fuzz tested the API of 5 sub-components of Manta-ZK Lib. These components
included the Manta Network’s Poseidon hash implementation, digital signatures, Merkle trees,
etc. We ran our fuzzers for a total of 182 hours combined across all components. Our tests did
not uncover any bugs or crashes, which is an additional confirmation of the high quality of code
produced by Manta Network developers.

Scope. The scope of this audit is limited to the following packages provided by the Manta
Network developers:

▶ manta-crypto: includes cryptographic primitives used throughout the codebase.
▶ manta-accounting/transfer: defines a generic version of Manta Network’s protocol.
▶ manta-pay: an instantiation of the above protocol that will be deployed.

The Manta Network developers also provided a detailed breakdown on which individual files
must be audited for each of the above packages. For brevity, we omit listing each of the files in
this document. We are happy to provide a complete list of the documents we audited upon
request.

Veridise Audit Report: Manta Network © 2023 Veridise Inc.

6 3 Audit Goals and Scope

Limitations. Due to the scope of our audit, the recommendations provided in this report are
limited to the functional specification provided by the Manta Network developers. The overall
security of the system can be compromised if any component outside the scope of the audit is
vulnerable. For Manta-ZK Lib, such components include, but are not limited to, the following:

▶ Circuit deployment: If the circuits are not deployed according to industry standards, i.e.,
following a secure trusted setup ceremony, the whole protocol can be at risk in case the
information used in the creation of the common reference string (CRS) is leaked.

▶ Front-ends: Certain components in the codebase assume that the front-end uses Manta-ZK
Lib’s API correctly. Since the front-end is not in scope of the current audit, our team
cannot provide any guarantees to that extent.

Methodology. Veridise auditors reviewed the reports of previous audits for Manta-ZK Lib,
inspected the provided tests, and read the Manta-ZK Lib documentation. They then began a
manual audit of the code assisted by the tools described above. During the audit, the Veridise
auditors regularly met with the Manta Network developers to ask questions about the code and
report progress of the audit.

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

In this case, we judge the likelihood of a vulnerability as follows in Table 3.2:

Table 3.2: Likelihood Breakdown

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows in Table 3.3:

© 2023 Veridise Inc. Veridise Audit Report: Manta Network

https://zkproof.org/2021/06/30/setup-ceremonies/

3.3 Classification of Vulnerabilities 7

Table 3.3: Impact Breakdown

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

Veridise Audit Report: Manta Network © 2023 Veridise Inc.

Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowleged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-MANZ-VUL-001 Schnorr signature scheme is vulnerable to bad r. . . Medium Open
V-MANZ-VUL-002 Repeated domain tags across Poseidon specs Medium Open
V-MANZ-VUL-003 Hash Function Bias Low Open
V-MANZ-VUL-004 Public Asset of opaque UTXOs can have non-defau. . .Warning Open
V-MANZ-VUL-005 Unconstrained address_partition Warning Intended
V-MANZ-VUL-006 Use of RngCore trait without CryptoRng Info Open
V-MANZ-VUL-007 field_try_into! assumes field is larger than ta. . . Info Open

Veridise Audit Report: Manta Network © 2023 Veridise Inc.

10 4 Vulnerability Report

4.1 Detailed Description of Issues

4.1.1 V-MANZ-VUL-001: Schnorr signature scheme is vulnerable to bad
randomness attacks

Severity Medium Commit ba1a4b7
Type Crypto Vulnerability Status Open

File(s) manta-crypto/src/signature/mod.rs

Location(s) Schnorr::sign

Textbook Schnorr signatures (and the Manta implementation) typically use a random nonce.
However, if a bad source of randomness is used (e.g., using the same nonce twice or dependent
randomness), this can leak the secret key.

Impact Leaked secret keys would compromise security for end users, since others can use
their secret key to impersonate them.

Recommendation In practice, it is recommended to de-randomize the nonce. For instance, a
hash of the message and the secret key (or xored with the secret key) can be used instead of the
nonce. You can find more details under Section 5.1 in this paper.

Developer Response The developers acknowledged this issue and they are planning on fixing
it in a future version of their circuit.

© 2023 Veridise Inc. Veridise Audit Report: Manta Network

https://ed25519.cr.yp.to/multischnorr-20151012.pdf

4.1 Detailed Description of Issues 11

4.1.2 V-MANZ-VUL-002: Repeated domain tags across Poseidon specs

Severity Medium Commit ba1a4b7
Type Crypto Vulnerability Status Open

File(s) manta-pay/src/config/utxo.rs

Location(s) All implementations of poseidon::hash::DomainTag

All implementations of poseidon::hash::DomainTag in the affected file return the same domain
tag (i.e., zero value). Domain tags should be distinct for each use of cryptographic hash function
(see here). The Manta developers are clearly aware of this issue, as they have marked all these
locations with a FIXME comment.

Impact Malicious users can reuse hash values across domains with identical configurations of
the Poseidon hash.

Recommendation Please change the domain tag for each implementation as recommended
by this RFC.

Developer Response The developers acknowledged this issue and they are planning on fixing
it in a future version of their circuit.

Veridise Audit Report: Manta Network © 2023 Veridise Inc.

https://www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-16.html#term-domain-separation
https://www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-16.html

12 4 Vulnerability Report

4.1.3 V-MANZ-VUL-003: Hash Function Bias

Severity Low Commit ba1a4b7
Type Cryptographic Vulnerability Status Open

File(s) manta-pay/src/config/utxo.rs

Location(s) ViewingKeyDerivationFunction

When obtaining the viewing key from the authorization key, the 𝑥 and 𝑦 coordinates of the
authorization key are hashed to an element of the base field of the elliptic curve. This is reduced
modulo the order of the large prime subgroup of the elliptic curve to obtain an element of the
scalar field.

Snippet from ViewingKeyDerivationFunction

1 fn viewing_key(

2 &self,

3 proof_authorization_key: &Self::ProofAuthorizationKey,

4 compiler: &mut (),

5) -> Self::ViewingKey {

6 Fp(rem_mod_prime::<ConstraintField, EmbeddedScalarField>(

7 self.0

8 .hash(

9 [

10 &Fp(proof_authorization_key.0.x),

11 &Fp(proof_authorization_key.0.y),

12],

13 compiler,

14)

15 .0,

16))

17 }

The size of the base field (ContraintField) is not divisible by the size of the scalar field
(EmbeddedScalarField). This will introduce a modulo bias, as in the reduction elements can
have 7 or 8 inverse images. As the ratio of the field sizes is small (around 8, the cofactor of the
prime subgroup), the bias will be computationally noticeable. In general, to ensure the outcome
to be indistinguishable from random, the ratio in bits (here 3) should be around the targeted
security level (see Section 5 here)

Impact Bias acts like a side-channel and will pose a vulnerability if it can be exploited. It can
leak secret information or impair privacy.

Recommendation The root cause of this issue is that the viewing key derivation function
obtains only the first element of the Poseidon hash state which is then reduced modulo the
order of the embedded scalar field (see snippet below).

1 fn hash(&self, input: [&Self::Input; ARITY], compiler: &mut COM)

2 -> Self::Output {

3 self.hash_untruncated(input, compiler).take_first()

4 }

© 2023 Veridise Inc. Veridise Audit Report: Manta Network

https://www.ietf.org/id/draft-irtf-cfrg-hash-to-curve-16.html

4.1 Detailed Description of Issues 13

We suggest the following key derivation scheme, which yields an insignificant bias and has
the desired security level. Use the first two elements of the vector returned by hash_untrucated,
say 𝑎0 and 𝑎1, forming the big integer 𝑎0 + 𝑎1 · 𝑝 (where 𝑝 is the size of the base field) and then
reducing modulo the prime of the scalar field, let’s say ℓ , as follows:(

(𝑎0 mod ℓ) + (𝑎1 mod ℓ) · (𝑝 mod ℓ)
)

mod ℓ

Developer Response The developers acknowledged this issue and they are planning on fixing
it in a future version of their circuit.

Veridise Audit Report: Manta Network © 2023 Veridise Inc.

14 4 Vulnerability Report

4.1.4 V-MANZ-VUL-004: Public Asset of opaque UTXOs can have non-default value

Severity Warning Commit ba1a4b7
Type Data Validation Status Open

File(s) N/A
Location(s) N/A

For opaque transfers, utxo.public_asset can be set to any value.

For example, given a variable to_public_pre of type Transfer with an opaque UTXO, we may
set the public_asset of its receiver to any value before generating the TransferPost:

1 // Set receiver utxo to an arbitrary asset

2 to_public_pre.receivers[0].utxo.public_asset = Asset::sample((), &mut rng);

3

4 // Generate a TransferPost from the modified transfer succeeds

5 let to_public = to_public_pre

6 .into_post(

7 FullParametersRef::new(&PARAMETERS, utxo_accumulator.model()),

8 &PROVING_CONTEXT.to_public,

9 Some(&spending_key),

10 Vec::from([ALICE.into()]),

11 &mut rng,

12)

13 .expect("Unable to build TO_PUBLIC proof.")

14 .expect("");

Impact Buggy front-ends may reveal secret information via the utxo.public_asset variable.
In the worst case, a buggy frontend may set the public asset equal to the secret asset. However,
subtler errors (such as setting the public_asset to an insecure hash of the secret asset) may be
difficult to identify.

Other bugs may arise from frontends which incorrectly assume that a utxo is transparent when
the utxo.public_asset is non-zero.

Finally, this gives some control to users over the nullifiers of opaque UTXOs. This doesn’t seem
to be exploitable with the current transaction shapes, but as the system evolves such freedom
can be potentially exploitable.

Recommendation This can be easily prevented by requiring that utxo.public_asset is set to
some fixed value for opaque transfers.

Developer Response The developers informed us that this was actually a feature of the system
as they are planning to use the unconstrained public asset asset to store metadata. However, they
did acknowledge that giving control to users over the nullifiers does expose some risk to the
system. So, they will consider restricting the value of the public asset for opaque transactions.

© 2023 Veridise Inc. Veridise Audit Report: Manta Network

4.1 Detailed Description of Issues 15

4.1.5 V-MANZ-VUL-005: Unconstrained address_partition

Severity Warning Commit ba1a4b7
Type Data Validation Status Intended Behavior

File(s) protocol.rs
Location(s) MintSecret::well_formed_asset

The FullIncomingNote class contains a field address_partition: u8 which is used to optimize
the wallet synchronization process—reducing the number of notes it must open by a factor of
256.

However, this field is unconstrained. For example, given a to_public_pre: Transfer,

1 let mut to_public_pre = ToPublic::build(authorization, [sender_0, sender_1], [

receiver_1], asset_3);

we are still able to create a (valid) post after mutating the address partition:

1 let old_address_partition = to_public_pre.receivers[0].note.address_partition;

2 let new_address_partition: u8 = old_address_partition.wrapping_add(1);

3 to_public_pre.receivers[0].note.address_partition = new_address_partition;

4

5 let to_public = to_public_pre

6 .into_post(

7 FullParametersRef::new(&PARAMETERS, utxo_accumulator.model()),

8 &PROVING_CONTEXT.to_public,

9 Some(&spending_key),

10 Vec::from([ALICE.into()]),

11 &mut rng,

12)

13 .expect("Unable to build TO_PUBLIC proof.")

14 .expect("");

15

16 // Ledger validation...

If set incorrectly, wallets will not display the asset as owned by the user. The sync_with method
invokes NoteOpen::open: In this case, the user must then go to the chain in order to retrieve the

1 #[inline]
2 fn open(
3 &self,
4 decryption_key: &Self::DecryptionKey,
5 utxo: &Self::Utxo,
6 note: Self::Note,
7) -> Option<(Self::Identifier, Self::Asset)> {
8 let address_partition = // compute wallet address partition....
9 if address_partition == note.address_partition {

10 // Decrypt
11 } else {
12 None
13 }
14 }

Snippet 4.1: Snippet from impl NoteOpen for Parameters:

Veridise Audit Report: Manta Network © 2023 Veridise Inc.

16 4 Vulnerability Report

asset.

Similarly, the field light_incoming_note is unconstrained. However, this is not easily fixed since
the note is encrypted using AES.

Impact Bugs in frontends may seemingly lead to disappearing funds.

Malicious users may intentionally set address_partition to an incorrect value in order to trick
other users into thinking that transactions failed. This may enable third-parties to perform social
engineering attacks.

Similar issues arise if light_incoming_note is set incorrectly.

Recommendation Require that the address_partition is computed correctly via the zk
constraints.

Further, ensure wallet users are able to easily “self-audit” (checking the incoming_note instead
of the light_incoming_note) to search for transactions.

Developer Response This is the intended behavior of the system.

© 2023 Veridise Inc. Veridise Audit Report: Manta Network

4.1 Detailed Description of Issues 17

4.1.6 V-MANZ-VUL-006: Use of RngCore trait without CryptoRng

Severity Info Commit ba1a4b7
Type Maintainability Status Open

File(s) See description
Location(s) See description

Several encryption schemes rely on internal randomness in order to ensure that multiple
encryptions of the same plaintext appear unrelated. This randomness is usually sampled via
the Sample trait. For instance, the Randomness trait in hybrid.rs implements Sample as follows: In

1 impl<K, E, DESK, DR> Sample<(DESK, DR)> for Randomness<K, E>
2 where
3 K: EphemeralSecretKeyType,
4 E: RandomnessType,
5 K::EphemeralSecretKey: Sample<DESK>,
6 E::Randomness: Sample<DR>,
7 {
8 #[inline]
9 fn sample<R>(distribution: (DESK, DR), rng: &mut R) -> Self

10 where
11 R: RngCore + ?Sized,
12 {
13 Self::new(rng.sample(distribution.0), rng.sample(distribution.1))
14 }
15 }

Snippet 4.2: Snippet from hybrid.rs

practice, rng is instantiated with a value of type OsRng, which satisfies CryptoRng (indicating that
the RNG is cryptographically safe). However, the CryptoRng trait bound is not enforced by this
implementation.

Impact Any random number generator used for encryption should be cryptographically
secure. Without the CryptoRng trait bound, one must trace through the application to find which
RNG is being used in order to ensure that the generator is (believed to be) cryptographically
secure.

Recommendation Add the CryptoRng trait bound to any implementation of the Sample trait
which may be invoked during the transfer protocol (i.e. for signatures, ephemeral keys, symmetric
encryption randomness, and UTXO randomness).

This has the added benefit of making clear which Sample implementations are critical to
cryptographic security, and which ones are primarily used for testing.

Developer Response The developers acknowledged this issue and they are planning on fixing
it in a future version of their circuit.

Veridise Audit Report: Manta Network © 2023 Veridise Inc.

https://docs.rs/rand_core/latest/rand_core/trait.CryptoRng.html

18 4 Vulnerability Report

4.1.7 V-MANZ-VUL-007: field_try_into! assumes field is larger than target data-type

Severity Info Commit ba1a4b7
Type Maintainability Status Open

File(s) manta-crypto/src/arkworks/ff.rs

Location(s) field_try_into!

The macro field_try_into! (which converts an element in an arkworks PrimeField to some
unsigned integer type) assumes that the field is larger than the target datatype. In the above

1 if x < F::from(2u8).pow([$type::BITS as u64]) {
2 let mut bytes = x.into_repr().to_bytes_le();
3 bytes.truncate(byte_count($type::BITS) as usize);
4 Some($type::from_le_bytes(into_array_unchecked(bytes)))
5 } else {
6 None
7 }

Snippet 4.3: Snippet from field_try_into!

code snippet, if F is smaller than 2.pow([$type::BITS as u64]), the exponentiation will wrap
around and prevent some valid values from being converted from F.

Impact Any future instance of this macro with a target type larger than the field will produce
an incorrect implementation. For instance, if try_into_u256 were implemented using this macro,
the implementation would prevent some valid conversions from 254-bit prime fields.

Although fallible conversion is unlikely to be implemented from a field into a larger type (and
no such instance of the macro is currently used), instances of this macro may be created for
consistency with other parts of the code base or as a convenience function.

Note also that the function created by this macro applies to all Arkworks PrimeFields. For
instance, the full ed_on_cp6_782 curve has a scalar field with a 373-bit prime subgroup. If future
implementations rely on large fields such as this one, they may use this macro to create a
try_into_u256 method, which would be incorrect for smaller prime fields.

Recommendation Add an or to the if statement that allows successful conversion when the
target type is larger than the field.

Developer Response The developers acknowledged this issue and they are planning on fixing
it in a future version of their circuit.

© 2023 Veridise Inc. Veridise Audit Report: Manta Network

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	V-MANZ-VUL-001: Schnorr signature scheme is vulnerable to bad randomness attacks
	V-MANZ-VUL-002: Repeated domain tags across Poseidon specs
	V-MANZ-VUL-003: Hash Function Bias
	V-MANZ-VUL-004: Public Asset of opaque UTXOs can have non-default value
	V-MANZ-VUL-005: Unconstrained address_partition
	V-MANZ-VUL-006: Use of RngCore trait without CryptoRng
	V-MANZ-VUL-007: field_try_into! assumes field is larger than target data-type

