
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

Manta Chain

Veridise Inc.
September 1, 2023

▶ Prepared For:

Manta Network
https://manta.network/

▶ Prepared By:

Shankara Pailoor
Jon Stephens
Burak Kadron
Jacob Van Geffen
Kostas Ferles
Daniel Dominguez
Benjamin Sepanski

▶ Contact Us: contact@veridise.com

▶ Version History:

April 27, 2023 Initial Draft
June 01, 2023 V1

© 2023 Veridise Inc. All Rights Reserved.

https://manta.network/
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 6

4 Vulnerability Report 9
4.1 Detailed Description of Issues . 10

4.1.1 V-MANC-VUL-001: Users can use any previously seen Merkle root . . . 10
4.1.2 V-MANC-VUL-002: Missing updates in update_asset_metadata 12
4.1.3 V-MANC-VUL-003: Collators given full rewards regardless of quality . 13
4.1.4 V-MANC-VUL-004: Static fee charged despite dynamic storage accesses 14
4.1.5 V-MANC-VUL-005: MantaPay weights calculated with a small database 16
4.1.6 V-MANC-VUL-006: Total supply of native assets can exceed the set limit 17
4.1.7 V-MANC-VUL-007: Missing validation in pull_ledger_diff 19
4.1.8 V-MANC-VUL-008: increase_count_of_associated_assets can overflow . 20
4.1.9 V-MANC-VUL-009: Unstaked user may be selected as collator 21
4.1.10 V-MANC-VUL-010: XCM instructions can charge 0 weight 24
4.1.11 V-MANC-VUL-011: Missing validation in set_units_per_second 26
4.1.12 V-MANC-VUL-012: Collator is a single point of failure for a round . . . 28
4.1.13 V-MANC-VUL-013: No slashing mechanism for collators 29
4.1.14 V-MANC-VUL-014: Account checks are incorrect. 30
4.1.15 V-MANC-VUL-015: Unchecked index calculation in spend_all 31
4.1.16 V-MANC-VUL-016: Excess fees not refunded 32
4.1.17 V-MANC-VUL-017: Assets can be registered at unsupported locations . 34
4.1.18 V-MANC-VUL-018: Minimum delegator funds is not MinDelegatorStk . 35
4.1.19 V-MANC-VUL-019: Unintended test crashes 36

5 Fuzz Testing 37
5.1 Methodology . 37
5.2 Properties Fuzzed . 37

Veridise Audit Report: Manta Network © 2023 Veridise Inc.

Executive Summary 1
From Mar. 6, 2023 to April. 17, 2023, Manta Network engaged Veridise to review the security
of their blockchain implementation, henceforth referred to as Manta Chain. Manta Chain is a
Substrate-based Polkadot parachain that exposes a protocol called MantaPay, whereby clients
(such as other parachains or end-users) can trade and deposit assets privately. Veridise conducted
the assessment over 30 person-weeks, with 5 engineers reviewing code over 6 weeks on commit
45ba60e1d. The auditing strategy involved a tool-assisted analysis of the source code performed
by Veridise engineers, namely static analysis and fuzz testing, as well as extensive manual
auditing.

Code assessment. Since Manta Chain is developed fully open-source, Manta Network de-
velopers provided Veridise auditors the link to Manta Chain’s public github repository along
with the commit to be reviewed. In addition to the code, Veridise auditors were given several
detailed, easy-to-read documents outlining the intended behavior of Manta Chain including
a whitepaper, a formal specification of the MantaPay protocol, along with links to additional
documentation hosted on their website. The Manta Chain code is also well documented and
contains detailed, yet clear, comments specifying the intended behavior of the corresponding
code. The code is also organized nicely with different components separated into independent
Rust crates; as an example, each pallet is separated into its own crate.

Every crate in the Manta Chain codebase also had an accompanying test suite which exercised
all the functions and security-critical paths in the package. Veridise auditors found the test
suites to be very helpful as they (1) illustrated the expected ways of invoking the external calls
exposed by Manta Chain and (2) helped when developing a fuzzer for Manta Chain.

There are two concerns worth noting about the codebase. First, parts of Manta Chain were copied
from other Polkadot parachains. In particular, the staking logic was derived from Moonbeam
and the tx-pause pallet was taken from Acala. Both of these blockchains have had audits and
the borrowed code is of high quality; however, the developers and users of Manta Chain should
keep in mind that if bugs are discovered in the original implementations then they could easily
be present in Manta Chain’s version and the fixes should be propagated. Second, since Manta
Chain was developed fully open source from inception, nearly 1.5 years ago, any attackers
would have significantly more time to study and find exploits compared to the length of this
audit.

Overall, we assess the Manta Chain codebase to be of very high quality. The documentation
provided was detailed and clear and the accompanying test-suites were thorough, exercising all
security-critical paths in the codebase.

Summary of issues detected. The audit uncovered 19 issues, none of which were assessed to
be of high or critical severity by the Veridise auditors. The Veridise auditors also identified 3
issues which were assessed as medium-severity. One issue was related to an implementation
deviation from the MantaPay formal specification (V-MANC-VUL-001), and another was due to
missing checks when rewarding collators (V-MANC-VUL-003).

Veridise Audit Report: Manta Network © 2023 Veridise Inc.

https://github.com/Manta-Network/Manta/commit/45ba60e1d940dbf3491ce0f1223e44c84d5b7218
https://github.com/Manta-Network/Manta
https://eprint.iacr.org/2021/743.pdf
https://github.com/Manta-Network/spec/blob/main/manta-pay/spec.pdf
https://docs.manta.network/docs/Introduction
https://docs.manta.network/docs/Introduction

2 1 Executive Summary

Recommendations. Although none of the issues uncovered in this audit were of high or critical
severity, we recommend that the Manta Network developers address the medium-severity
issues in the near future. Furthermore, we recommend that Manta Network set up a bug bounty
program to incentivize hackers to disclose any vulnerabilities rather than exploit them. Since
the codebase has been open source for over 1.5 years, attackers have had a much longer time to
find vulnerabilities compared to the length of this audit.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

© 2023 Veridise Inc. Veridise Audit Report: Manta Network

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
Manta Chain 45ba60e1d Rust Substrate

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
Mar. 6 - April. 17, 2023 Manual & Tools 5 30 person-weeks

Table 2.3: Vulnerability Summary.

Name Number Resolved
Critical-Severity Issues 0 0
High-Severity Issues 0 0
Medium-Severity Issues 3 3
Low-Severity Issues 9 9
Warning-Severity Issues 6 6
Informational-Severity Issues 1 0
TOTAL 19 16

Table 2.4: Category Breakdown.

Name Number
Logic Error 7
Bad Extrensic Weight 4
Consensus 3
Data Validation 3
Hash Collision 1
Maintainability 1

Veridise Audit Report: Manta Network © 2023 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of Manta Chain, Manta Network’s
blockchain implementation. Manta Chain is a Substrate-based Polkadot parachain that provides
a protocol called MantaPay where clients (such as other parachains or end-users) can trade
and deposit assets privately. The MantaPay protocol consists of two components: an offchain
prover which generates zero-knowledge proofs and UTXOs, and an on-chain component which
verifies the proofs and updates the ledger with the transactions. Each component consists of a
whitepaper and formal specification; this audit was scoped to assess the on-chain component.
With this in mind, we sought to answer the following questions in our audit:

▶ Are there any design flaws with respect to the on-chain part of MantaPay in the whitepaper
or formal specification?

▶ Does the on-chain component of MantaPay adhere to its whitepaper and formal specifica-
tion?

▶ Is Manta Chain’s delegated proof-of-stake (PoS) implementation correct? In more detail:

• Are collators in the network properly incentivized to produce high quality blocks?
• Is it resistant to known PoS attacks like equivocation attacks?
• Is it possible for delegators to abuse the staking mechanism by either staking too

little (or none) or stealing funds?

▶ Can the external calls exposed by the Manta Chain runtime be used to compromise the
security of the system? Specifically:

• Are the call parameters properly validated?
• Is the proper authentication/authorization in place for the calls?

▶ Are there any transactions exposed by Manta Chain that are unsigned which should be
signed?

▶ Are appropriate weights set for all external calls? In particular:

• Is there high quality benchmarking in place for deriving weights?
• Does the weight function correspond to the runtime complexity of the external call?
• Does the weight function account for all storage reads and writes?
• Finally, can the weight function ever be 0, a case that can admit denial of service

bugs?

▶ Are there any arithmetic overflows/underflows and if so, what are their security impact?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a combination of
human experts and automated program analysis & testing tools. In particular, we conducted
our audit with the aid of the following techniques:

Veridise Audit Report: Manta Network © 2023 Veridise Inc.

https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/attack-and-defense/

6 3 Audit Goals and Scope

▶ Static analysis. We used cargo-audit, an open-source static analysis tool used to audit
Cargo.lock files for crates with security vulnerabilities reported to the RustSec Advisory
Database.

▶ Fuzzing/Property-based Testing. We leveraged fuzz testing to determine if Manta Chain’s
implementation deviated from the intended behavior. To do this, we first encoded
invariants, logical formulas that should hold throughout Manta Chain’s lifecycle, as
assertions. We then wrote harnesses for afl.rs, which generated random sequences of
external calls relevant to those assertions. If afl.rs found a crash then this indicated either
a panic or a violation of the invariant. We provide a table outlining the invariants we
fuzzed tested as well as the fuzzing methodology in Chapter 5.

Scope. The scope of the audit was limited to all the code in the following top-level directories of
Manta Chain:

▶ node/* - starts up a node in Manta Chain
▶ pallets/* - includes the following pallets whose name explains their behavior

• asset-manager

• collator-selection

• manta-pay

• parachain-staking

• tx-pause

• vesting

▶ primitives/* - defines traits and types used by other packages.
▶ runtime/* - contains runtime configuration for different execution environments.

Methodology. Veridise auditors first reviewed previous audit reports of substrate blockchains,
the documentation provided by Manta Network developers, and inspected the provided tests
to determine what logic had been extensively tested. They then began a manual audit of the
code assisted by both static analyzers and property-based fuzz testing. During the audit, the
Veridise auditors met with the Manta Network developers on a weekly basis and messaged
over Telegram to ask questions about the code, and report suspected bugs.

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

In this case, we judge the likelihood of a vulnerability as follows in Table 3.2:

In addition, we judge the impact of a vulnerability as follows in Table 3.3:

© 2023 Veridise Inc. Veridise Audit Report: Manta Network

https://github.com/rust-fuzz/afl.rs

3.3 Classification of Vulnerabilities 7

Table 3.2: Likelihood Breakdown

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

Table 3.3: Impact Breakdown

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

Veridise Audit Report: Manta Network © 2023 Veridise Inc.

Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowleged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-MANC-VUL-001 Users can use any previously seen Merkle root Medium Acknowledged
V-MANC-VUL-002 Missing updates in update_asset_metadata Medium Acknowledged
V-MANC-VUL-003 Collators given full rewards regardless of quality Medium Open
V-MANC-VUL-004 Static fee charged despite dynamic storage access Low Acknowledged
V-MANC-VUL-005 MantaPay weights calculated with a small database Low Acknowledged
V-MANC-VUL-006 Total supply of native assets can exceed the set limit Low Acknowledged
V-MANC-VUL-007 Missing validation in pull_ledger_diff Low Acknowledged
V-MANC-VUL-008 increase_count_of_associated_assets can overflow Low Acknowledged
V-MANC-VUL-009 Unstaked user may be selected as collator Low Acknowledged
V-MANC-VUL-010 XCM instructions can charge 0 weight Low Fixed
V-MANC-VUL-011 Missing validation in set_units_per_second Low Fixed
V-MANC-VUL-012 Collator is a single point of failure for a round Low Acknowledged
V-MANC-VUL-013 No slashing mechanism for collators Warning Acknowledged
V-MANC-VUL-014 Account checks are incorrect Warning Acknowledged
V-MANC-VUL-015 Unchecked index calculation in spend_all Warning Open
V-MANC-VUL-016 Excess fees not refunded Warning Invalid
V-MANC-VUL-017 Assets can be registered at unsupported locations Warning Acknowledged
V-MANC-VUL-018 Minimum delegator funds is not MinDelegatorStk Warning Acknowledged
V-MANC-VUL-019 Unintended test crashes Info Open

Veridise Audit Report: Manta Network © 2023 Veridise Inc.

10 4 Vulnerability Report

4.1 Detailed Description of Issues

4.1.1 V-MANC-VUL-001: Users can use any previously seen Merkle root

Severity Medium Commit 45ba60e1d
Type Hash Collision Status Acknowledged

File(s) pallets/manta-pay/src/lib.rs

Location(s) has_matching_utxo_accumulator_output

The MantaPay protocol maintains a Merkle tree on the ledger where the leaves of the ledgers
are the hashes of the UTXOs generated during the protocol’s lifetime. In order to spend a
UTXO, users must supply a ZK proof that the UTXO belongs to the Merkle tree on ledger. The
membership proof takes as input the root of the Merkle tree (public input), the inner node
hashes (private inputs), and proves that root can be derived from the inner node hashes and
leaf.

Ideally, the ledger would check that the root provided is equal to the latest root on chain.
However, this isn’t done in practice as the transaction could easily be front-runned since every
transaction changes the root. Instead, the ledger maintains a set of all previously generated
roots and just checks that the root provided belongs to that set.

However, by allowing the root provided by the user to be any previously generated root, an
attacker simply needs to find a hash collision with any previously generated root in order
to steal assets. The likelihood of finding a collision grows quadratically with the number of
previously seen hashes. In particular, given an output size of 𝑏 bits and 𝑛 previously generated
hashes, the likelihood of finding a collision with any of the 𝑛 hashes is is approximately 𝑛2

2𝑏+1 .

The current version of the Protocol uses the Poseidon hash function which produces 255 bit
hashes and so in theory should be safe even with billions of previously seen roots. However, this
is contingent on the safety of the Poseidon hash. While there has been a significant amount of
research and analysis conducted on the function, including various attacks and optimizations,
there is no formal proof of its security and correctness let alone any proofs about concrete
implementations.

Impact Storing all previously seen roots significantly increases the likelihood of a collisions. If
any attack or weakness is found in the Poseidon hash, then this can be an additional means of
attacking the protocol.

Recommendation There are a few ways to mitigate this. Protocols like Semaphore maintain
a timeout period TIMEOUT and associate each root with a timestamp indicating when it was
created. Any root created before now() - TIMEOUT is rejected. Another option is to only store
the N previously generated roots and only allow a root if it belongs to the set of N previously
generated roots. The latter option would have the additional benefit of not needing to store
every root on chain.

© 2023 Veridise Inc. Veridise Audit Report: Manta Network

4.1 Detailed Description of Issues 11

Developer Response “We will implement the auditor’s recommendation of only allowing
users to generate Merkle proofs with the last N roots (of each tree), which may be the only ones
stored on-chain. We can decide on the right N to use upon observing the behaviour of the chain
over the course of a few weeks."

Veridise Audit Report: Manta Network © 2023 Veridise Inc.

12 4 Vulnerability Report

4.1.2 V-MANC-VUL-002: Missing updates in update_asset_metadata

Severity Medium Commit 45ba60e1d
Type Logic Error Status Acknowledged

File(s) pallets/asset-manager/src/lib.rs

Location(s) update_asset_metadata

Manta Chain has an asset-manager pallet which is responsible for registering and minting
assets. Each asset has a unique id and is associated with various metadata like a name, symbol,
decimal places etc. One important metadata is called min_balance . In order to store an account
with some quantity of assets on the ledger, it must have more than min_balance quantity. This
piece of metadata is also used when validating transfers.

In particular, many asset transfers take an “existential parameter” as input, called KeepAlive,
which decides what to do if the transfer would take the account’s balance (with respect to the
asset) below min_balance. If KeepAlive is set, then the transfer will fail if the amount goes below
the min_balance. If it is not set then other configurations come into place and the account may
be removed and the remaining balance burned.

The asset-manager pallet exposes an extrinsic called update_asset_metadata which takes as
input the new metadata for that asset and updates the ledger to associate the asset with that
metadata. While the implementation took a new min_balance as input, it did not update the
ledger to associate the asset with this metadata.

We note the this API also took as input a new value for the metadata is_sufficient, but similarly
did not update the ledger to associate the asset with this metadata.

Impact While it is rare for the min_balance to be changed, it is sometimes necessary if it was
originally set to high for example. The current API made it appear that min_balance could be
changed and so users may think the min_balance was changed when it fact wasn’t.

Recommendation The main issue with this extrinsic is its interface makes it appear as though
the metadata min_balance and is_sufficient could be changed when it actually didn’t. Either
the API should be changed to only take the metadata which should be changed, or it should
appropriately update min_balance and is_sufficient.

Developer Response The developers acknowledged this issue and are discussing two possible
fixes. The first is to update both parameters in the asset pallet and the second is to change the
interface to not allow the min_balance or is_sufficient parameters to be updated.

© 2023 Veridise Inc. Veridise Audit Report: Manta Network

4.1 Detailed Description of Issues 13

4.1.3 V-MANC-VUL-003: Collators given full rewards regardless of quality

Severity Medium Commit 45ba60e1d
Type Consensus Status Open

File(s) pallets/parachain-staking/src/lib.rs

Location(s) pay_one_collator_reward

Manta Chain rewards collators by first allocating a fixed number of points (20) for every block
they author and then giving the collator a fixed percentage of those allocated points as rewards.
However, there is no check on the quality of the blocks authored by the collator: an empty block
will result in just as many rewards as a full block.

Currently, Manta relies on the owners to monitor the blocks on-chain and manually punish
collators who perform poorly. However, as the chain grows, this misbehavior may not be easy
to detect.

One relatively simple way to address this issue is to adjusting the reward system to incentivize
high quality blocks.

Impact Collators can effectively steal funds from Manta by authoring low quality blocks (i.e,
empty or partial blocks) and reaping full rewards.

Recommendation We recommend implementing a check on the quality of the block by
checking various properties of the block including including the fullness.

Developer Response “This will be addressed by a change to points allocation rewarding fuller
blocks more than empty ones. Research for this is needed however so this fix will take time."

Veridise Audit Report: Manta Network © 2023 Veridise Inc.

14 4 Vulnerability Report

4.1.4 V-MANC-VUL-004: Static fee charged despite dynamic storage accesses

Severity Low Commit 45ba60e1d
Type Bad Extrinsic Weight Status Acknowledged

File(s) parachain-staking/lib.rs

Location(s) go_online, go_offline, candidate_bond_more

Blockchain computations must have appropriate fees to prevent network congestion. For
substrate extrinsics, these fees are set by computing an associated weight for the operation
where the weight is intended to capture the maximum computational cost. As reads from and
writes to storage are expensive, these weights should consider the number of these operations
that are performed. The following extrinsics, however, have a fixed weight despite requiring
a dynamic number of reads or writes due to insert or remove operations being performed on
CandidatePool.

▶ go_online
▶ go_offline
▶ candidate_bond_more
▶ execute_candidate_bond_less
▶ delegate
▶ execute_leave_delegators
▶ delegator_bond_more
▶ execute_delegation_request
▶ schedule_leave_delegators
▶ schedule_delegator_bond_less
▶ cancel_leave_delegators

Also note that similar functions in the same pallet, such as schedule_leave_candidates charge
the users dynamic fees. An example can be seen in Snippet 4.1.

Impact As the size of the CandidatePool grows, the cost of insert and remove will increase
linearly since vector inserts in Rust are linear in the size of the vector. This allows malicious
actors to add many candidates to the pool for a fixed monetary cost despite an increasing
computational cost. If the size of the pool becomes too large, this could effectively create a
DoS.

Recommendation Similar to schedule_leave_candidates, calculate the weights dynamically
rather than charging a fixed cost.

Developer Response “This will be addressed in a future rework of the pallet_parachain_-
staking pallet. Currently, we only use 70% of available block weight for user extrinsics, so
overruns won’t lead to consensus failure but just be somewhat-too-cheap TXNS to attack the
network with. Anything using the weight system is subject to dynamic fee adjustments based
on prolonged block fullness, so impact of a DOS using this method would be limited"

© 2023 Veridise Inc. Veridise Audit Report: Manta Network

4.1 Detailed Description of Issues 15

1 #[pallet::call_index(12)]
2 #[pallet::weight(<T as Config>::WeightInfo::go_offline())]
3 /// Temporarily leave the set of collator candidates without unbonding
4 pub fn go_offline(origin: OriginFor<T>) -> DispatchResultWithPostInfo {
5 let collator = ensure_signed(origin)?;
6 let mut state = <CandidateInfo<T>>::get(&collator).ok_or(Error::<T>::CandidateDNE

)?;
7 ensure!(state.is_active(), Error::<T>::AlreadyOffline);
8 state.go_offline();
9 let mut candidates = <CandidatePool<T>>::get();

10 if candidates.remove(&Bond::from_owner(collator.clone())) {
11 <CandidatePool<T>>::put(candidates);
12 }
13 <CandidateInfo<T>>::insert(&collator, state);
14 Self::deposit_event(Event::CandidateWentOffline {
15 candidate: collator,
16 });
17 Ok(().into())
18 }

Snippet 4.1: go_offline calls remove on the CandidatePool but charges users a fixed weight in
WeightInfo::go_offline

Veridise Audit Report: Manta Network © 2023 Veridise Inc.

16 4 Vulnerability Report

4.1.5 V-MANC-VUL-005: MantaPay weights calculated with a small database

Severity Low Commit 45ba60e1d
Type Bad Extrinsic Weight Status Acknowledged

File(s) pallets/manta-pay/src/lib.rs

Location(s) to_private, to_public, private_transfer

Transactions to_public, to_private, and private_transfer take as input nullifiers and mem-
bership proofs and generate UTXOs. These UTXOs are then added to a Merkle tree on the
ledger.

Manta pay shards this Merkle tree into 256 buckets where each bucket has its own Merkle tree.
Instead of storing the entire tree at each bucket, the Ledger just stores the last path added to the
tree. When adding a UTXO, the Ledger first computes its corresponding bucket, then computes
the new path pointing to that UTXO, and finally adds that path to the bucket.

Computing the new path should take time proportional to log(n) where n is the size of the
Merkle Tree. The current benchmarking scheme only covers cases where the previous path is
small i.e, at most size 1. However, if the number of transactions gets large i.e, is on the order of
hundreds of millions or billions, then the size of the path can get to 24-28 (taking shards into
account). If the tree grows to this size, this means each execution of the extrinsic will perform
24-28 hashes, multiplied by the number of UTXOs to be added.

The benchmarking scheme should take into account the size of the tree to make sure that the
existing weights are enough to offset the computation of the new Merkle tree path.

Impact In general it is important to set the weights to account for both computation and
storage; setting the weight too low can allow users to perform a large number of transactions
with little cost. In particular, malicious users may take advantage of the low fee to launch a DOS
attack.

Recommendation There are several ways to address this.

One strategy would be to take in an additional parameter that corresponds to the logarithm of
size of the Merkle Tree on the ledger. The weight charged can be proportional to this value. In
the implementation, this value (technically 2value) can be compared against the actual size and
the transaction will only proceed if it is larger than or equal to the actual size.

Another strategy would be to benchmark the pallets by taking into account the size of the tree
as well. If we expect Manta-Pay to not exceed more than a billion transactions then maybe
benchmark the pallet assuming the current path length is around 24-28.

Developer Response “This will be addressed by a change to the weight generation process in
the near future. Impact is expected to only become significant over a mid-to-long timespan."

© 2023 Veridise Inc. Veridise Audit Report: Manta Network

4.1 Detailed Description of Issues 17

4.1.6 V-MANC-VUL-006: Total supply of native assets can exceed the set limit

Severity Low Commit 45ba60e1d
Type Logic Error Status Acknowledged

File(s) pallets/asset-manager/src/lib.rs

Location(s) mint_asset

One invariant underlying the correctness of MantaPay is that the total supply of an asset cannot
exceed the maximum amount that can be held in a particular account. This is because Manta-Pay
uses a dedicated account A to store the value of all the private assets. As such, A should, in
principle, be able to hold all the supply in the case where all of that asset is privatized.

In more detail, when privatizing a user’s public assets (via to_private), Manta-Pay constructs
opaque utxo’s to encode the amount privatized, and then transfers those public assets into A.
This transfer is expected to not fail because of the invariant described above. However, we found
a case where the transfer can fail.

In particular, Manta enforces this invariant for NonNative assets because every time an asset
is minted into an account, the total supply is increased. If the total supply would exceed the
maximum that can be held in an account, then the mint fails with the error Overflow. However,
there is no such check for Native assets. As such, if the total supply of Native assets exceeds
the maximum that can be held in an account, u128::MAX , then to_private calls that should
succeed can fail if the amount held in A is close to the maximum allowed. This is demonstrated
in Snippet 4.2.

Impact By not constraining the amount of Native assets to be less than the maximum amount
that can be held in an account, to_private transactions that should succeed will fail.

Recommendation We recommend a similar check be done for Native assets as is done for
NonNative assets to enforce that the total supply cannot exceed the maximum that can be held
in a given account.

Developer Response Total issuance of Native asset is 10 Billion KMA with 12 decimals, less
than 0.00000000000001% of u128::MAX. It is not expected to ever be reached, except through a
separate inflation or governance exploit. However, this will be addressed by adding a check as
recommended.

Veridise Audit Report: Manta Network © 2023 Veridise Inc.

18 4 Vulnerability Report

1 #[test]
2 fn public_account_issue() {
3 let mut rng = OsRng;
4 new_test_ext().execute_with(|| {
5 let asset_id = NATIVE_ASSET_ID;
6 let value = 1000u128;
7 let id = NATIVE_ASSET_ID;
8 let metadata = AssetRegistryMetadata {
9 metadata: AssetStorageMetadata {

10 name: b"Calamari".to_vec(),
11 symbol: b"KMA".to_vec(),
12 decimals: 12,
13 is_frozen: false,
14 },
15 min_balance: TEST_DEFAULT_ASSET_ED2,
16 is_sufficient: true,
17 };
18 assert_ok!(MantaAssetRegistry::create_asset(
19 id, metadata.into(), TEST_DEFAULT_ASSET_ED2,
20 true
21));
22 assert_ok!(FungibleLedger::<Test>::deposit_minting(id, &ALICE, 2*value));
23 assert_ok!(FungibleLedger::<Test>::deposit_minting(id, &MantaPay::account_id

(), u128::MAX));
24

25

26 let mut utxo_accumulator = UtxoAccumulator::new(UTXO_ACCUMULATOR_MODEL.clone
());

27 let spending_key = rng.gen();
28 let address = PARAMETERS.address_from_spending_key(&spending_key);
29 let mut authorization =
30 Authorization::from_spending_key(&PARAMETERS, &spending_key, &mut rng);
31 let asset_0 = Asset::new(Fp::from(asset_id), value);
32

33 // First ToPrivate
34 let (to_private_0, pre_sender_0) = ToPrivate::internal_pair(
35 &PARAMETERS, &mut authorization.context,
36 address, asset_0,
37 Default::default(), &mut rng,
38);
39

40 let to_private_0 = to_private_0
41 .into_post(
42 FullParametersRef::new(&PARAMETERS, utxo_accumulator.model()),
43 &PROVING_CONTEXT.to_private,
44 None, Vec::new(), &mut rng,
45)
46 .expect("Unable to build TO_PRIVATE proof.")
47 .expect("Did not match transfer shape.");
48

49 assert_ok!(MantaPay::to_private(
50 MockOrigin::signed(ALICE),
51 PalletTransferPost::try_from(to_private_0).unwrap()
52));
53 });
54 }

Snippet 4.2: Failed to_private due to count of native assets exceeding u128::MAX

© 2023 Veridise Inc. Veridise Audit Report: Manta Network

4.1 Detailed Description of Issues 19

4.1.7 V-MANC-VUL-007: Missing validation in pull_ledger_diff

Severity Low Commit 45ba60e1d
Type Data Validation Status Acknowledged

File(s) pallets/manta-pay/src/lib.rs

Location(s) Line 593

pull_ledger_diff takes as input a Checkpoint which is a struct of two fields receiver_index

and sender_index and pulls sender and receiver data from the ledger starting at sender_index
(resp. receiver_index) up till at most sender_index + PULL_MAX_SENDER_UPDATE_SIZE (resp.
receiver_index + PULL_MAX_RECEIVER_UPDATE_SIZE). However, there is no check that this sum
cannot overflow for both the sender and receiver index in pull_senders, pull_receivers,
pull_senders_for_shard and pull_receivers_for_shard.

Impact If the code is compiled without --release flag then a malicious user could crash the
node by passing in bad values. If it is built with --release then the call will be reported as
successful and no senders or receivers will be returned. However, if a benign end user is calling
the API with incorrect indexes it might be better to return an Error informing them that the
index is invalid.

Recommendation We recommend adding bounds checks to be safe and to return an Error.

Developer Response “This is an API breaking change so it will take some time, but it’ll be
changed as recommended by throwing an error instead of silently succeeding with a noop."

Veridise Audit Report: Manta Network © 2023 Veridise Inc.

20 4 Vulnerability Report

4.1.8 V-MANC-VUL-008: increase_count_of_associated_assets can overflow

Severity Low Commit 45ba60e1d
Type Logic Error Status Acknowledged

File(s) pallets/asset-manager/src/lib.rs

Location(s) Line 590

The asset_manager pallet maintains a mapping of paraids to a count of assets associated with
that paraid. Each paraid can be associated with at most u32::MAX assets. When registering an
asset or moving its location, the pallet calls increase_count_of_associated_assets which takes
as input a paraid and increments the number of assets associated with that paraid. However, this
function does not check whether increasing the number of assets will result in an overflow.

Impact If the runtime is compiled using --debug then this can crash the node. However, if
built under --release then the asset count will go to zero.

Recommendation Make this function check if the addition will result in an overflow i.e, check
if the current count is u32::MAX and return an error.

Developer Response “We will check for overflow as recommended."

© 2023 Veridise Inc. Veridise Audit Report: Manta Network

4.1 Detailed Description of Issues 21

4.1.9 V-MANC-VUL-009: Unstaked user may be selected as collator

Severity Low Commit 45ba60e1d
Type Logic Error Status Acknowledged

File(s) parachain-staking/lib.rs

Location(s) select_top_candidates

Parachains use collators to combine transactions into blocks that are then checked by Validators
on the relay chain. Notably, this allows collators to remain relatively untrusted as validators
will ensure blocks were created correctly. On Manta’s chain, collators are selected from a group
of staked users who receive rewards for creating blocks. Requiring that collators be staked
provides additional security guarantees as if a collator does misbehave (e.g. submit no blocks
for validation, submit multiple conflicting blocks), governance can step in and slash the user’s
staked funds. As such, unstaked collators have less incentive to maintain the stability of the
parachain and therefore should be avoided. In the collator selection process though, if no
sufficiently staked collator can be found, collators from the previous round will be selected as
shown below. As there is no validation as to the current state of the previous collators’ stake, this
could select completely unstaked validators who have no incentive to ensure network stability.
Here is a simple test case which demonstrates this occurring:

1 #[test]

2 fn test_failed_candidate_selection() {

3 ExtBuilder::default()

4 .with_balances(vec![(10, 10)])

5 .with_candidates(vec![(10, 10)])

6 .build()

7 .execute_with(|| {

8 roll_to(2);

9 // Account 10 leaves

10 assert_ok!(ParachainStaking::schedule_leave_candidates(

11 Origin::signed(10),

12 6u32

13));

14 // move to round where we get update

15 roll_to(5);

16 let candidate: Vec<u64> = ParachainStaking::selected_candidates();

17 assert_ne!(candidate[0], 10u64);

18 });

19 }

Impact Collators will not be incentivized to ensure network stability. As such, it is possible that
another set of partially staked or perhaps “trusted” collators would provide better stability.

Recommendation The developers may want to consider maintaining a set of “trusted” collators
to fall back on in case no staked collators can be found.

Developer Response “In the interest of maintaining network decentralization, entrusting net-
work stability with a previously functioning set of validators is preferable to giving preferential

Veridise Audit Report: Manta Network © 2023 Veridise Inc.

22 4 Vulnerability Report

treatment to a consortium of whitelisted validators. The company will be maintaining at least 5
collators to ensure the error case triggering this issue will not occur."

© 2023 Veridise Inc. Veridise Audit Report: Manta Network

4.1 Detailed Description of Issues 23

1 fn select_top_candidates(now: RoundIndex) -> (u32, u32, BalanceOf<T>) {
2 let (mut collator_count, mut delegation_count, mut total) =
3 (0u32, 0u32, BalanceOf::<T>::zero());
4 // choose the top TotalSelected qualified candidates, ordered by stake
5 let collators = Self::compute_top_candidates();
6 if collators.is_empty() {
7 // SELECTION FAILED TO SELECT >=1 COLLATOR => select collators from previous

round
8 let last_round = now.saturating_sub(1u32);
9 let mut total_per_candidate: BTreeMap<T::AccountId, BalanceOf<T>> = BTreeMap

::new();
10 // set this round AtStake to last round AtStake
11 for (account, snapshot) in <AtStake<T>>::iter_prefix(last_round) {
12 collator_count = collator_count.saturating_add(1u32);
13 delegation_count =
14 delegation_count.saturating_add(snapshot.delegations.len() as u32);
15 total = total.saturating_add(snapshot.total);
16 total_per_candidate.insert(account.clone(), snapshot.total);
17 <AtStake<T>>::insert(now, account, snapshot);
18 }
19 // ‘SelectedCandidates‘ remains unchanged from last round
20 // emit CollatorChosen event for tools that use this event
21 for candidate in <SelectedCandidates<T>>::get() {
22 let snapshot_total = total_per_candidate
23 .get(&candidate)
24 .expect("all selected candidates have snapshots");
25 Self::deposit_event(Event::CollatorChosen {
26 round: now,
27 collator_account: candidate,
28 total_exposed_amount: *snapshot_total,
29 })
30 }
31 return (collator_count, delegation_count, total);
32 }
33

34 ...
35 }

Snippet 4.3: Candidate selection code that can select unstaked collators

Veridise Audit Report: Manta Network © 2023 Veridise Inc.

24 4 Vulnerability Report

4.1.10 V-MANC-VUL-010: XCM instructions can charge 0 weight

Severity Low Commit 45ba60e1d
Type Bad Extrinsic Weight Status Fixed

File(s) runtime/(calamari, dolphin)/src/weights/xcm/mod.rs

Location(s) Every use of weigh_multi_assets

The polkadot ecosystem uses the XCM messaging standard to enable parachains and the
relay-chain to communicate with each other. For example, if a parachain P1 wants to deposit
an asset onto another parachain P2 they can construct an XCM message saying they wish to
deposit an asset into an account associated with P1 and send it to P2.

In more detail, each XCM message consists of a sequence of low level XCM instructions that get
executed by the XCM executor on the destination parachain. To offset the cost of executing these
instructions, parachains are responsible for setting weights for each instruction. That way, the
sender of the XCM can be charged fees for the destination parachain executing their message.

Manta chain configured the weights of multiple instructions in such a way that senders could
generate messages that totaled 0 weight. For example, here is the code snippet which sets the
weight for deposit_asset:

1 fn deposit_asset(

2 assets: &MultiAssetFilter,

3 _max_assets: &u32,

4 _dest: &MultiLocation,

5) -> Weight {

6 // Hardcoded until better understanding how to deal with worst case scenario

of holding register

7 let hardcoded_weight: u64 = 1_000_000_000;

8 let weight = assets.weigh_multi_assets(XcmFungibleWeight::<Runtime>::

deposit_asset());

9 cmp::min(hardcoded_weight, weight)

10 }

Here, deposit_asset sets the weight for the XCM instruction deposit_asset which takes as
input a parameter called assets. For simplicity, we can think of assets as a vector of assets.
This function sets the weight to be the minimum of a hard coded weight and the result of
weight_multi_assets which returns 0 when the length of assets is 0. Thus, if deposit_asset is
called with an empty vector of assets, then the instruction has weight 0 and the caller is not
charged.

This may allow malicious or incompetent senders the ability to spam Manta since the cost for
sending the message is 0 even though the instruction will get successfully executed by the XCM
executor. In general, setting weights to 0 can lead to a denial of service, however, in this case a
denial of service might be difficult since when the instruction is invoked on a vector of length 0,
the execution is very fast. However, to avoid spam and incompetent usage we recommend that
Manta add a minimal base fee since for instructions that can be executed with 0 weight.

Impact Malicious users may be able to spam Manta with XCM messages of weight 0. This
spam could slow down the performance of the blockchain and potentially result in a denial of

© 2023 Veridise Inc. Veridise Audit Report: Manta Network

4.1 Detailed Description of Issues 25

service.

Recommendation We recommend that a base fee always be charged to prevent spam.

Developer Response Fixed in this commit.

Veridise Audit Report: Manta Network © 2023 Veridise Inc.

 https://github.com/Manta-Network/Manta/pull/1071

26 4 Vulnerability Report

4.1.11 V-MANC-VUL-011: Missing validation in set_units_per_second

Severity Low Commit 45ba60e1d
Type Data Validation Status Fixed

File(s) pallets/asset-manager/src/lib.rs

Location(s) set_units_per_second

The asset-manager pallet manages a hashmap called UnitsPerSecond which maps assetIds to a
u128 value units_per_second which is used to determine the price to perform an XCM transfer. It
exposes a function called set_units_per_second which can be used to set the units_per_second

for a given asset. The units_per_second value is used to determine the cost (in terms of the
corresponding asset) of purchasing a given weight to perform a transaction. The code snippet
which determines the cost is shown below:

1 let units_per_second = M::units_per_second(&asset_id).ok_or({

2 log::debug!(

3 target: "FirstAssetTrader::buy_weight",

4 "units_per_second missing for asset with id: {:?}",

5 id,

6);

7 XcmError::TooExpensive

8 })?;

9

10 let amount = units_per_second * (weight as u128) / (WEIGHT_PER_SECOND as u128);

11 // we don’t need to proceed if amount is zero.

12 // This is very useful in tests.

13 if amount.is_zero() {

14 return Ok(payment);

15 }

16 let required = MultiAsset {

17 fun: Fungibility::Fungible(amount),

18 id: XcmAssetId::Concrete(id.clone()),

19 };

It calculates amountusing the multiplication operator *which can overflow. Currently, units_per_second
and amount are of type u128 and if units_per_second is larger than u128::MAX / (u64::MAX) then
someone can purchase a large amount of weight i.e, u64::MAX for a small amount of a given
asset. This can allow a malicious parachain to perform a DOS attack on the chain.

Currently there is no validation in set_units_per_second on the parameters to ensure the
units_per_second is sufficiently small. However, since set_units_per_second can only be called
by the root , this is unlikely to occur. Nevertheless, if the root user sets this accidentally or is
tricked into setting an excessively large value then this attack is possible.

Impact If units_per_second is set larger than u128::MAX / (u64::MAX) then someone can
purchase large amounts of weight at a low cost, which can lead to a DOS attack on the chain.

Recommendation We recommend either changing the type of the storage variable holding
units_per_second to be a map of assetId to a value of type u64 or by validating that the amount
is sufficiently small.

© 2023 Veridise Inc. Veridise Audit Report: Manta Network

4.1 Detailed Description of Issues 27

Developer Response Fixed in this commit.

Veridise Audit Report: Manta Network © 2023 Veridise Inc.

https://github.com/Manta-Network/Manta/pull/1084/files

28 4 Vulnerability Report

4.1.12 V-MANC-VUL-012: Collator is a single point of failure for a round

Severity Low Commit 45ba60e1d
Type Consensus Status Acknowledged

File(s) N/A
Location(s) N/A

The Manta parachain uses the Aura consensus mechanism to select collators to author blocks.
Aura selects a primary collator for a round and only that collator is allowed to produce blocks in
that round. However, if that collator goes down then no blocks will get produced which makes
that collator a single point of failure.

Other parachains like Moonbeam address this by selecting multiple collators in a given round.

Impact If a collator goes down, then no blocks will get produced for a given round, thereby
impacting the transaction throughput of Manta.

Recommendation We recommend that Manta use a consensus mechanism that selects multiple
collators. Ideally, this mechanism would choose geographically separated collators so if one
collator goes down the likelihood of the other going down is low.

Developer Response “Fixing this issue is not a simple task without forcing wasted computation
on collators by building sibling blocks that have a high chance of being discarded. While future
non-Aura mechanisms may have simple liveness checks improving the quality of the collator
set on round boundaries, single-candidate-per-slot mechanisms are a current limitation for
cumulus parachain consensus-based chains (note the absence of BABE for parachains). Impact
of this issue is limited by block producers changing each slot (12s), ensuring small numbers of
defunct collators cannot impair chain liveness for long."

© 2023 Veridise Inc. Veridise Audit Report: Manta Network

4.1 Detailed Description of Issues 29

4.1.13 V-MANC-VUL-013: No slashing mechanism for collators

Severity Warning Commit 45ba60e1d
Type Consensus Status Acknowledged

File(s) parachain-staking
Location(s) N/A

Proof of Stake blockchains oftentimes have a slashing mechanism to detect poorly performing
stakers and punish them. Usually, a large portion of the staker’s stake is taken by the chain as
punishment for poor performance.

Currently, Manta Chain does not have any slashing mechanism. Instead, it uses a combination
of social pressure and manual slashing to incentivize good behavior. In more detail, when the
owners detect a poorly performing collator, they will contact the collator over Discord and warn
them of the poor performance. If their performance does not improve, the owners will slash the
collator’s funds manually.

While this may work when the blockchain is small, it will be difficult to enforce as the chain
grows. As such, we recommend that Manta Chain put a slashing mechanism in place.

Impact Manta Chain’s current mechanism of social pressure will only work with a small set of
trusted collators. However, as the chain grows, we believe this mechanism is not sufficient for
properly incentivizing collators to do a good job.

Recommendation We recommend that Manta Chain have a slashing mechanism in place to
swap in if/when the current process is insufficient.

Developer Response “Slashing is not needed as most unaligned behaviour is handled by
economic (not social) incentives of losing out on rewards."

Veridise Audit Report: Manta Network © 2023 Veridise Inc.

30 4 Vulnerability Report

4.1.14 V-MANC-VUL-014: Account checks are incorrect.

Severity Warning Commit 45ba60e1d
Type Logic Error Status Acknowledged

File(s) pallets/manta-pay/src/lib.rs

Location(s) check_sink_accounts, check_source_accounts

When validating a transaction, the source and sink accounts are checked by check_sink_accounts

and check_source_accounts. These functions iterate over pairs (account, value) and check
that value can be safely deposited (withdrawn) from account. The logic is correct only if every
account only appears in at most one pair. While this is fine for the current APIs, if the APIs
change to allow multiple sink or multiple source accounts, then this code needs to be refactored
or the uniqueness needs to be enforced elsewhere.

Impact Currently there is no impact since the current APIs only allow one account for the
source and sink accounts.

Recommendation To be safe, we recommend you add additional check in the validation step
to ensure the accounts are distinct for both sources and sinks.

Developer Response “While the functions can fail in the cases pointed out by the auditors
(more than one source/sink account), this doesn’t happen in any of the MantaPay circuits. For
now, we’ll add the necessary documentation explaining the proper usage of the functions. If at
some point in the future we want to expand to other circuits with possibly more source/sink
accounts in a given transaction, we’ll rectify the function/"

© 2023 Veridise Inc. Veridise Audit Report: Manta Network

4.1 Detailed Description of Issues 31

4.1.15 V-MANC-VUL-015: Unchecked index calculation in spend_all

Severity Warning Commit 45ba60e1d
Type Logic Error Status Acknowledged

File(s) pallets/manta-pay/src/lib.rs

Location(s) spend_all

The spend_all function in the Manta-Pay pallet does the following:

1. Adds the nullifier commitments in the TransactionPost to the NulliferCommitmentSet

2. Inserts each (nullifier, outgoingNote) pair to the NullifierSetInsertionOrder structure.
3. Updates a global variable NullifierSetSize which stores the size of the nullifier commit-

ment set.

The index where the pair gets inserted, along with the new nullifier size, is based on a calculation
index + i where i is the index of the corresponding SenderPost and index is the current size of
the set. However, this arithmetic is unchecked and could result in an overflow.

Impact When the size of the commitment set is u64::MAX, the computation for the index to insert
overflows which results in the pair getting inserted at the beginning of the list. Furthermore,
the size of the nullifier set is also set to 1. However, this is very unlikely to occur as this value is
extremely large and will not be reached through normal execution.

Recommendation Add an overflow check and return an error.

Developer Response “Given that the size of the commitment set is 264, approximately 1020,
and that the total UTXO capacity of our forest is 256 ∗ 220 = 108, not even in the long future
when we potentially make our forest elastic this will be a problem. We’d need a forest consisting
of 1012 trees per shard and to spend every single UTXO in that forest to trigger the overflow.
Because of the inherent risk that an overflow and the subsequent rewriting of an entry in the
nullifier set would result in a double-spending attack, we will add the overflow check."

Veridise Audit Report: Manta Network © 2023 Veridise Inc.

32 4 Vulnerability Report

4.1.16 V-MANC-VUL-016: Excess fees not refunded

Severity Warning Commit 45ba60e1d
Type Bad Extrinsic Weight Status Invalid

File(s) parachain-staking/lib.rs

Location(s) (cancel_leave, execute_leave, schedule_leave, join)_candidates

When a substrate extrinsic is created, its weight must be carefully considered to ensure it
correctly reflects the computational cost of the operation as extrinsic weight is directly related
to the fees that are charged to the user. This weight should capture the maximum number of
computational resources that will be consumed by the extrinsic as excess fees can be returned.
In several functions, though, the weights are computed based on the value of an argument
provided by the user which might not always reflect the true cost of the computation. For
example, consider the following:

1 #[pallet::call_index(11)]

2 #[pallet::weight(<T as Config>::WeightInfo::cancel_leave_candidates(*candidate_count)

)]

3 /// Cancel open request to leave candidates

4 /// - only callable by collator account

5 /// - result upon successful call is the candidate is active in the candidate pool

6 pub fn cancel_leave_candidates(

7 origin: OriginFor<T>,

8 #[pallet::compact] candidate_count: u32,

9) -> DispatchResultWithPostInfo {

10 ...

11

12 let mut candidates = <CandidatePool<T>>::get();

13 ensure!(

14 candidates.0.len() as u32 <= candidate_count,

15 Error::<T>::TooLowCandidateCountWeightHintCancelLeaveCandidates

16);

17

18 ...

19 Ok(().into())

20 }

In this function, the weight is computed using the candidate_count argument, and in order
for the function to execute successfully, candidate_count must be greater than or equal to the
current size of the candidate pool. A user might need to call this function with a candiate_count

that is larger than the size of the pool to prevent a front-running attack where a malicious user
would add candidates to prevent the transaction from executing successfully. In such a case, the
weight would be larger than necessary, but no fees are returned to the user.

Impact Such functions can charge unnecessary fees to the user.

Recommendation Refund the user additional fees that are not consumed.

© 2023 Veridise Inc. Veridise Audit Report: Manta Network

4.1 Detailed Description of Issues 33

Developer Response “No action planned as users are expected to interact with these extrinsics
through a frontend which will do calculation of these parameter on the user’s behalf. Morever,
pallet_transaction_payment supposedly returns the difference between call weight and actual
weight based on PostDispatchInfo of the extrinsic to the user. Additional clarification on “but
no fees are returned to the user” is needed.

Veridise Audit Report: Manta Network © 2023 Veridise Inc.

34 4 Vulnerability Report

4.1.17 V-MANC-VUL-017: Assets can be registered at unsupported locations

Severity Warning Commit 45ba60e1d
Type Data Validation Status Acknowledged

File(s) pallets/asset-manager/src/lib.rs

Location(s) register_asset

The asset-manager pallet allows assets to be registered, managed, and minted. In particular,
register_asset takes as input an asset, location, and corresponding asset_metadata and
register the asset. Every asset must be associated with a location; however, Manta only supports
assets from specific locations. The current implementation of asset-managerdoes not perform any
validation on the locations passed into register_assetpotentially allowing assets to be registered
from untested locations. The pallet also exposes a method called update_asset_location which
is supposed to update the location of an asset. It similarly does not perform any validation on
the new location of the asset.

Impact The current implementation allows assets to be registered from untested locations.

Recommendation The asset-manager pallet already implements the Contains trait which
exposes a method contains which takes as input a location and returns true if and only if the
location is supported. Currently that method is unused and can be used to validate the locations
passed in.

Developer Response “The contains method is unsuitable for this purpose as it checks for
destination-type multilocations, not asset-type multilocations. Assets can have arbitrary formats
and hierarchical depths, any filter allowing only currently used location types will need constant
maintenance/expansion. For this reason, the choice is made to not check asset locations in code
and instead leave this burden with the registering party/developer."

© 2023 Veridise Inc. Veridise Audit Report: Manta Network

4.1 Detailed Description of Issues 35

4.1.18 V-MANC-VUL-018: Minimum delegator funds is not MinDelegatorStk

Severity Warning Commit 45ba60e1d
Type Logic Error Status Acknowledged

File(s) parachain-staking/lib.rs

Location(s) N/A

In the case where MinDelegation < MinDelegatorStk, it is possible for the delegator’s staked
funds to be less than MinDelegatorStk. This can occur through the following sequence of calls:

1. delegate amount N from delegator D to candidate C1 where N >= MinDelegatorStk

2. delegate amount M from delegator D to candidate C2 where M < MinDelegatorStk and
M >= MinDelegation

3. schedule_leave_candidates and execute_leave_candidates for C1

This results in D having M funds staked, where M < MinDelegatorStk.

Impact If MinDelegation is less than MinDelegatorStk, a delegator end up with less than
MinDelegatorStk funds actually staked.

Note that this is not currently exploitable because MinDelegation == MinDelegatorStk in all
production runtimes. However, if these values are adjusted in the future, this bug may become
exploitable.

Recommendation There are two options

1. When starting a runtime, ensure that MinDelegation >= MinDelegatorStk

2. Whenever a delegation is removed (such as in execute_leave_candidates), ensure that the
remaining locked funds for the delegator are at least MinDelegatorStk.

Developer Response “We will consider your recommended approach as it does not lose
generality as opposed to our original idea of removing MinDelegation."

Veridise Audit Report: Manta Network © 2023 Veridise Inc.

36 4 Vulnerability Report

4.1.19 V-MANC-VUL-019: Unintended test crashes

Severity Info Commit 45ba60e1d
Type Maintainability Status Open

File(s) pallets/manta-pay/src/lib/rs

Location(s) to_private_should_work

Many of the manta-pay tests randomly generate an asset id, total supply, and an amount to
make private. To ensure the total supply of the asset is greater than the minimum balance, the
minimum balance is always added to randomly generated total supply as seen in this test:

1 fn to_private_should_work() {

2 let mut rng = OsRng;

3 for _ in 0..RANDOMIZED_TESTS_ITERATIONS {

4 new_test_ext().execute_with(|| {

5 let asset_id = rng.gen();

6 let total_free_supply = rng.gen();

7 initialize_test(asset_id, total_free_supply + TEST_DEFAULT_ASSET_ED);

8 mint_private_tokens(

9 asset_id,

10 &value_distribution(5, total_free_supply, &mut rng),

11 &mut rng,

12);

13 });

14 }

15 }

If the random number generator generates a value for the total_free_supply which is greater
than u128::MAX - TEST_DEFAULT_ASSET_ED then the test will fail even though it is expected to
succeed.

Impact May cause tests to fail when they are expected to succeed.

Recommendation Change the test to generate a value for total_free_supply between [0,

u128::MAX - TEST_DEFAULT_ASSET_ED)

© 2023 Veridise Inc. Veridise Audit Report: Manta Network

Fuzz Testing 5
5.1 Methodology

Our goal was to fuzz test Manta Chain to assess its functional correctness i.e, whether the
implementation deviates from the intended behavior. We used afl.rs as our fuzzer and started
writing invariants –logical formulas that should hold after every transaction. We then encoded
those invariants as assertions in Rust. For each invariant, we wrote a harness which executed a
random sequence of relevant external calls and then asserted the invariant should hold after the
calls. We prioritized invariants which had a higher security impact e.g, if violated would allow
someone to steal funds. For all invariants, we ran afl.rs for at least 24 hours for each invariant.

5.2 Properties Fuzzed

The following table describes the invariants we fuzz-tested. The first column states which
subsystem (e.g, pallet or xcm) the invarianted is associated with. The second describes the
invariant informally in English and the last column notes whether we found a bug when fuzzing
the invariant (✗ indicates no bug was found and ✓ means fuzzing this invariant revealed a
bug). We ran afl.rs for 24 hours when fuzz-testing each invariant. In the table we use the term
“Private transactions" to refer to the collection of external calls in the manta-pay pallet that take
a TransferPost; namely, to_private, to_public and private_transfer.

Veridise Audit Report: Manta Network © 2023 Veridise Inc.

https://github.com/rust-fuzz/afl.rs

38 5 Fuzz Testing

Table 5.1: Invariants Fuzzed.

Subsystem Invariant Bug
para-staking No account is both a collator and delegator ✗

para-staking No account appears in the candidate pool more than once ✗

para-staking No account appears as a key in DelegatorStake more than once ✗

Any When external calls fail, the state should be unaffected ✗

para-staking Candidate bond is at most their free balance and at least minimum stake ✗

para-staking At the start of every round, SelectedCandidatePool is a subset of CandidatePool ✗

para-staking All candidate accounts have associated info ✗

para-staking All candidate collators have an active state ✗

para-staking Candidate bond is at most delegator’s free balance and at least minimum stake ✗

para-staking A delegator can only have one delegation per candidate ✗

para-staking A candidate’s TopDelegations and BottomDelegations are sorted ✗

para-staking For each cand., the lowest top delegation amount is larger than the greatest bottom ✗

para-staking Any delegation must be larger than MinDelegation and already staked MinDelegatorStake ✗

para-staking A delegator must always stake at least MinDelegatorStake ✓
para-staking If a delegator is in TopDelegations or BottomDelegations they must have registered a bond ✗

para-staking If a delegator is in TopDelegations or BottomDelegations they must have registered a bond ✗

asset-manager AssetIdMetadata and Assets should point to the same metadata values for any asset id ✓
asset-manager Minting an asset for any beneficiary should accurately update the balance ✗

asset-manager Minting or burning an asset shouldn’t allow an account’s balance to go below minBalance ✗

xcm If xcm fee is less than MinXcmFee, transfer should not succeed ✓
xcm Transfer does not change total supply and balance is calculated correctly ✗

xcm Xcm instructions are filtered correctly based on the xcm_config filtering ✗

xcm buy_execution does not accept non-fungible assets ✗

xcm buy_execution correctly calculates the purchase and refund amount ✗

manta-pay For all u128 values 𝑢, fp_encode(fp_decode(𝑢)) = 𝑢 ✗

manta-pay For all ZK proofs 𝑝 on the subgroup of Bn254, proof_encode(proof_decode(𝑝)) = 𝑢 ✗

manta-pay Private transactions should throw error when given a random proof ✗

manta-pay Given a transfer post that should succeed, changing the ZK proof should result in an error ✗

manta-pay Mutating the public inputs for a valid TransferPost should produce an error ✗

manta-pay pull_ledger_diff should always succeed or throw an error ✓
manta-pay Ledger should always throw an error when given an invalid signature ✗

manta-pay Ledger should always throw an error for a transfer with insufficient balance ✗

manta-pay Transactions should never allow an account’s balance to go below min_balance ✗

manta-pay UTXO accumulator in TransferPost should equal a “current" accumulator on-chain ✓
manta-pay No private transaction can succeed if the nullifier exists on the Ledger ✗

manta-pay No private transaction can succeed if a nullifier appears twice in the TransferPost. ✗

manta-pay Private transactions succeed only if the UTXOs in the receiver of the TransferPost are distinct ✗

manta-pay to_private should always succeed if the amount privatized is sufficiently small ✓

© 2023 Veridise Inc. Veridise Audit Report: Manta Network

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	V-MANC-VUL-001: Users can use any previously seen Merkle root
	V-MANC-VUL-002: Missing updates in update_asset_metadata
	V-MANC-VUL-003: Collators given full rewards regardless of quality
	V-MANC-VUL-004: Static fee charged despite dynamic storage accesses
	V-MANC-VUL-005: MantaPay weights calculated with a small database
	V-MANC-VUL-006: Total supply of native assets can exceed the set limit
	V-MANC-VUL-007: Missing validation in pull_ledger_diff
	V-MANC-VUL-008: increase_count_of_associated_assets can overflow
	V-MANC-VUL-009: Unstaked user may be selected as collator
	V-MANC-VUL-010: XCM instructions can charge 0 weight
	V-MANC-VUL-011: Missing validation in set_units_per_second
	V-MANC-VUL-012: Collator is a single point of failure for a round
	V-MANC-VUL-013: No slashing mechanism for collators
	V-MANC-VUL-014: Account checks are incorrect.
	V-MANC-VUL-015: Unchecked index calculation in spend_all
	V-MANC-VUL-016: Excess fees not refunded
	V-MANC-VUL-017: Assets can be registered at unsupported locations
	V-MANC-VUL-018: Minimum delegator funds is not MinDelegatorStk
	V-MANC-VUL-019: Unintended test crashes
	Fuzz Testing
	Methodology

	Methodology
	Properties Fuzzed

	Properties Fuzzed

