
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

Lthememecoin

Veridise Inc.
July 13, 2023

▶ Prepared For:

Lthememecoin

▶ Prepared By:

Jacob Van Geffen

▶ Contact Us: contact@veridise.com

▶ Version History:

July 13th, 2023 Final
July 12th, 2023 Second Draft
July 8th, 2023 Initial Draft

© 2023 Veridise Inc. All Rights Reserved.

contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 5
3.4 Detailed Description of Issues . 8

3.4.1 V-L-VUL-001: approve transaction can be front-run 8
3.4.2 V-L-VUL-002: Users can exceed anti-snipping limit through use of multiple

accounts . 9
3.4.3 V-L-VUL-003: Storage variable “owner” should have a different name . 11

4 Fuzz Testing 13
4.1 Methodology . 13
4.2 Properties Fuzzed . 13

Veridise Audit Report: Lthememecoin © 2023 Veridise Inc.

Executive Summary 1
On June 30, 2023, Lthememecoin developers engaged Veridise to review the security of their L
Token.The review covered the security and functional correctness of their ERC20-like token
defined in L.sol. Veridise conducted the assessment over 1 person-day, with 1 engineers
reviewing code over 1 day. The auditing strategy involved a tool-assisted analysis of the source
code performed by Veridise engineers as well as extensive manual auditing.

Code assessment. The Lthememecoin developers provided the source code of the L token
contracts for review. To facilitate the Veridise auditors’ understanding of the code, the Lthe-
memecoin developers interactively answered questions about the source contracts and intended
functionality. The source code also contained some documentation in the form of documentation
comments on functions and storage variables.

Summary of issues detected. The audit uncovered 3 issues, 0 of which are assessed to be of
high or critical severity by the Veridise auditors. The Veridise auditors identified a medium-
severity issue pertaining to front-running transactions that alter approved allowance amounts
as well as a number of minor issues.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

Veridise Audit Report: Lthememecoin © 2023 Veridise Inc.

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
Lthememecoin N/A Solidity N/A

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
June 30, 2023 Manual & Tools 1 1 person-day

Table 2.3: Vulnerability Summary.

Name Number Resolved
Critical-Severity Issues 0 0
High-Severity Issues 0 0
Medium-Severity Issues 2 2
Low-Severity Issues 0 0
Warning-Severity Issues 1 1
Informational-Severity Issues 0 0
TOTAL 3 3

Table 2.4: Category Breakdown.

Name Number
Frontrunning 1
Logic Error 1
Maintainability 1

Veridise Audit Report: Lthememecoin © 2023 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of Lthememecoin’s smart contracts.
In our audit, we sought to answer the following questions:

▶ Can users spend more than their allotted allowance for any other user?
▶ Can users manipulate transactions in order to increase their balance above what should

be achieved through intended behavior?
▶ Does the anti-snipping mechanism work as intended?
▶ Does the permit transaction correctly recover the intended address?
▶ Does the transfer whitelist work as intended?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a combination of
human experts and automated program analysis & testing tools. In particular, we conducted
our audit with the aid of the following technique:

▶ Fuzzing/Property-based Testing. We leverage fuzz testing to determine if the protocol may
deviate from the expected behavior. To do this, we formalize the desired behavior of the
protocol as [V] specifications and then use our fuzzing framework OrCa to determine if a
violation of the specification can be found.

Scope. The scope of this audit is limited to the L.sol and PoolAddress.solfiles of the source code
provided by the Lthememecoin developers, which contains the smart contract implementation
of the Lthememecoin.

Methodology. Veridise auditors reviewed the reports of previous audits for Lthememecoin,
inspected the provided tests, and read the Lthememecoin documentation. They then began a
manual audit of the code assisted by both static analyzers and automated testing. During the
audit, the Veridise auditors regularly met with the Lthememecoin developers to ask questions
about the code.

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

In this case, we judge the likelihood of a vulnerability as follows in Table 3.2:

In addition, we judge the impact of a vulnerability as follows in Table 3.3:

Veridise Audit Report: Lthememecoin © 2023 Veridise Inc.

6 3 Audit Goals and Scope

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

Table 3.2: Likelihood Breakdown

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

Table 3.3: Impact Breakdown

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2023 Veridise Inc. Veridise Audit Report: Lthememecoin

3.3 Classification of Vulnerabilities 7

Table 3.4: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-L-VUL-001 approve transaction can be front-run Medium Acknowledged
V-L-VUL-002 Users can exceed anti-snipping limit . . . Medium Fixed
V-L-VUL-003 Storage variable “owner” should have a . . . Warning Acknowledged

Veridise Audit Report: Lthememecoin © 2023 Veridise Inc.

8 3 Audit Goals and Scope

3.4 Detailed Description of Issues

3.4.1 V-L-VUL-001: approve transaction can be front-run

Severity Medium Commit N/A
Type Frontrunning Status Acknowledged

File(s) L.sol

Location(s) approve()

As detailed by OpenZeppelin’s IERC20.sol (https://github.com/OpenZeppelin/openzeppelin-
contracts/blob/master/contracts/token/ERC20/IERC20.sol), calls to approve may be front-run
by the spender in order to use the balance that has already been approved before having more
spending approved. In the current implementation, there is no guard against this.

1 function approve(address spender, uint256 amount) external returns (bool) {

2 allowance[msg.sender][spender] = amount;

3

4 emit Approval(msg.sender, spender, amount);

5

6 return true;

7 }

Furthermore, there is currently no way to increase the approved allowance amount without
directly setting a new value.

Impact If a spender is originally approved to spend N tokens on the approver’s behalf, and a
call to approve(spender, M) is made, then the spender can use this exploit to spend N+M tokens on
the user’s behalf. This enables malicious users to spend more than their intended allowance.

Recommendation There are two possible fixes to this problem:

1. Include two new external functions — increaseAllowance and decreaseAllowance — so
that token holders may update allowance without the possibility of a front-run attack.

2. Require that each call to approve either sets allowance[msg.sender][spender] to 0, or that
the previous value of allowance[msg.sender][spender was 0. This forces users to reset the
allowance to 0 before changing the allowance amount, and thus preventing the front-run
attack.

Since the first solution is more standard and straightforward (and has also been adopted by
OpenZeppelin’s ERC20.sol implementation), we recommend solution (1) over solution (2).

Developer Response The developers have confirmed the issue, but since ownership had
already been renounced, it cannot be implemented.

© 2023 Veridise Inc. Veridise Audit Report: Lthememecoin

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/IERC20.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/IERC20.sol

3.4 Detailed Description of Issues 9

3.4.2 V-L-VUL-002: Users can exceed anti-snipping limit through use of multiple
accounts

Severity Medium Commit N/A
Type Logic Error Status Acknowledged

File(s) L.sol

Location(s) _beforeTokenTransfer(), setAntiSnipping()

In order to prevent snipping, setAntiSnipping(...) defines a maximum value that any user can
buy from a particular liquidity pool. This value is defined per-pool in the antiSnipping map:

1 function setAntiSnipping(address factory, address tokenA, address tokenB, uint24 fee,

uint256 value) external onlyOwner returns (address pool) {

2 PoolAddress.PoolKey memory poolKey = PoolAddress.getPoolKey(tokenA, tokenB, fee);

3

4 pool = PoolAddress.computeAddress(factory, poolKey);

5

6 antiSnipping[pool] = value;

7

8 emit AntiSnippingSet(pool, value);

9 }

The mechanism behind enforcing anti-snipping is implemented in _beforeTokenTransfer(),
and checks to see whether or not the new balance of the resulting transfer exceeds the bound
defined by the antiSnipping map.

1 function _beforeTokenTransfer(address from, address to, uint256 amount) view internal

{

2 if (!transferable) {

3 require(whitelist[from] || whitelist[to], "INVALID_WHITELIST");

4 }

5

6 if (antiSnipping[from] > 0) {

7 require(balanceOf[to] + amount <= antiSnipping[from], "BALANCE_LIMIT");

8 }

9 }

However, users can easily circumvent this bound in order to buy as many tokens from the pool
as they wish using the following scheme:

1. Control two accounts A and B.
2. Buy antiSnipping[pool] tokens using account A from pool.
3. Transfer all balance from A to B.
4. Repeat from step (2) as desired.

Additionally, users that may have a balance that is independently larger than antiSnipping[pool]

are prevented from buying any tokens from the pool, regardless of whether or not they have
previously bought pool tokens.

Impact Since the cost of circumventing the anti-snipping restrictions is relatively low — as it
only requires users generate one additional account and pay the gas fees of transferring between
those accounts — malicious users can perform an unlimited amount of snipping.

Veridise Audit Report: Lthememecoin © 2023 Veridise Inc.

10 3 Audit Goals and Scope

Additionally, good-acting users wishing to buy from the pool may be incorrectly prevented if
their balance is too high.

Recommendation In addition to the antiSnipping map, keep track of an additional mapping
balanceFromPool, which tracks how much each account has purchased from each pool

1 mapping (address => mapping(address => uint256)) public balanceFromPool;

The requirement in _beforeTokenTransfer could then be updated based on this new mapping:

1 function _beforeTokenTransfer(address from, address to, uint256 amount) view internal

{

2 if (!transferable) {

3 require(whitelist[from] || whitelist[to], "INVALID_WHITELIST");

4 }

5

6 if (antiSnipping[from] > 0) {

7 require(balanceFromPool[to][from] + amount <= antiSnipping[from], "

BALANCE_LIMIT");

8 }

9 }

Developers must also update this mapping whenever a transfer or transferFrom involving a
pool succeeds.

The result of this fix will be that users wishing to buy more than the anti-snipping limit will
have to generate many more accounts (specifically, one account per antiSnipping[pool] they
wish to buy). This additional overhead will de-incentivize users from exceeding this limit. Also,
since a user’s balance is kept separate from the balance gained from the pool, good-acting users
can buy tokens up to the limit from a pool no matter their previous balance of L.

Developer Response The developers have confirmed the issue. The anti-snipping limit has
been lifted, and thus this is no longer an issue.

© 2023 Veridise Inc. Veridise Audit Report: Lthememecoin

3.4 Detailed Description of Issues 11

3.4.3 V-L-VUL-003: Storage variable “owner” should have a different name

Severity Warning Commit N/A
Type Maintainability Status Acknowledged

File(s) L.sol

Location(s) permit()

The storage variable owner refers to the owner of the contract. However, the permit() function
also takes owner as a parameter, referring to the user who’s tokens should be permitted for
spending by the spender account.

1 function permit(address owner, address spender, uint256 value, uint256 deadline,

uint8 v, bytes32 r, bytes32 s) external

The names of one of these variables should be changed to avoid confusion and the possibility of
future bugs.

Impact Future refactors may cause bugs if not all occurrences of the owner variable are changed.
For example, if the owner parameter in the permit() function is refactored to a different name but
some parts of permit still reference owner, L.sol will successfully compile despite the incomplete
refactor.

Recommendation Change the name of storage variable owner to contractOwner so that future
confusion can be avoided. If developers still wish for the view function to be named owner(),
implement a new view function owner() that returns the value of contractOwner.

Developer Response The developers have acknowledged the issue.

Veridise Audit Report: Lthememecoin © 2023 Veridise Inc.

Fuzz Testing 4
4.1 Methodology

Our goal was to fuzz test the L token to assess its functional correctness i.e, whether the
implementation deviates from the intended behavior. We used OrCa, our in-house fuzzer, to
verify invariants – logical formulas that should hold after every transaction. For each invariant,
we wrote a harness which executed a random sequence of relevant external calls and then
asserted the invariant should hold after the calls. We prioritized invariants which had a higher
security impact. For all invariants, we ran OrCa for 10 minutes with 10 simulated users.

4.2 Properties Fuzzed

Table 4.1 describes the invariants we fuzz-tested. The first column states which contract the
invariant is associated with. The second describes the invariant informally in English, and the
last column notes whether we found a bug when fuzzing the invariant (✗ indicates no bug was
found and ✓ means fuzzing this invariant revealed a bug). We ran OrCa for 10 minutes when
fuzz-testing each invariant.

Table 4.1: Invariants Fuzzed.

Contract Invariant Bug
L Transfer reverts if the user attempts to send more funds than they have. ✗

L Funds transfer to sender when the sender != receiver. ✗

L transfer and transferFrom should not modify irrelevant state. ✗

L approve appropriately updates state. ✗

L burn will revert if user does not have enough funds. ✗
L The unchecked block of _mint would never revert if checked. ✗

L The unchecked block of burn would never revert if checked. ✗

L The unchecked block of transfer would never revert if checked. ✗

L The unchecked block of transferFrom would never revert if checked. ✗

As shown in the table above, no violations of the invariants above were found through fuzz
testing. Additional manual checking of these invariants similarly found no violations.

Veridise Audit Report: Lthememecoin © 2023 Veridise Inc.

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Detailed Description of Issues

	Detailed Description of Issues
	V-L-VUL-001: approve transaction can be front-run
	V-L-VUL-002: Users can exceed anti-snipping limit through use of multiple accounts
	V-L-VUL-003: Storage variable “owner” should have a different name
	Fuzz Testing
	Methodology

	Methodology
	Properties Fuzzed

	Properties Fuzzed

