
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

GammaProtocol-OTC | Unwinding

Veridise Inc.
September 1, 2023

▶ Prepared For:

Ribbon Finance
https://www.ribbon.finance

▶ Prepared By:

Benjamin Sepanski
Alberto Gonzalez
Jon Stephens

▶ Contact Us: contact@veridise.com

▶ Version History:

Aug. 11, 2023 V1
Aug. 9, 2023 Initial Draft

© 2023 Veridise Inc. All Rights Reserved.

https://www.ribbon.finance
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 6

4 Vulnerability Report 7
4.1 Detailed Description of Issues . 8

4.1.1 V-RBN-VUL-001: Frontrunners can grief USDC permit signatures 8
4.1.2 V-RBN-VUL-002: Frontrunners can grief unwind permit signatures . . . 9
4.1.3 V-RBN-VUL-003: Frontrunning market maker can prevent liquidation . 11
4.1.4 V-RBN-VUL-004: Substitute hard-coded constant for FEE_PERCENT_-

MULTIPLIER . 13
4.1.5 V-RBN-VUL-005: Hard-coded constant depends on FEE_PERCENT_-

MULTIPLIER . 14
4.1.6 V-RBN-VUL-006: Code Recommendation: Link to OZ Implementation . 15
4.1.7 V-RBN-VUL-007: Lack of slippage protection in the premium for the MM 16
4.1.8 V-RBN-VUL-008: Test uses wrong function 17
4.1.9 V-RBN-VUL-009: UnwindPermit does not inherit interface 18

Glossary 19

Veridise Audit Report: Ribbon Finance © 2023 Veridise Inc.

Executive Summary 1
From Jul. 31, 2023 to Aug. 2, 2023, Ribbon Finance engaged Veridise to review the security of
the new unwinding feature in GammaProtocol-OTC. GammaProtocol-OTC is a Solidity project
which facilitates a market for OTC tokens, each representing an option. Whitelisted market
makers are matched with would-be OTC buyers, putting down some (reputation-based) amount
of collateral to take out a short position. This also included a signature-checking contract, based
off of ERC 2612.

Compared to the previous version, which Veridise has audited previously, the new version adds
a feature which allows OTC holders to sell their long positions to whitelisted market makers in
an off-chain bid, and then recover the funds via signed permits. This audit focused exclusively
on the added functionality.

Veridise conducted the assessment over 8 person-days, with 2 engineers reviewing code over
4 days on commit 0xbcbf34e8. The auditing strategy involved a tool-assisted analysis of the
source code performed by Veridise engineers as well as extensive manual auditing.

Code assessment. The GammaProtocol-OTC developers provided the source code of the
GammaProtocol-OTC contracts for review. To facilitate the Veridise auditors’ understanding of
the code, the GammaProtocol-OTC developers provided a detailed design document outlining
the purpose of variables, example execution, desired access controls, and desired properties.
The source code also contained some documentation in the form of documentation comments
on functions and storage variables.

The source code contained a test suite. The Veridise auditors noted this test suite was very
comprehensive, testing the new functionality not only along “happy paths,” but checking that
the code reverts when expected as well. Several files in the source code also indicate that the
developers use linting and static analysis tools such as Slither, solhint, and prettier.

Overall, the Veridise team assessed the code quality to be above average. The code was clear
and well documented. Two key properties (such as the two listed below) do much to reduce the
possibility of abusing signatures revealed in the mempool.

▶ Only an option buyer can submit a permit to unwind a position.
▶ If a market maker buys back their own short, they cannot sell it again.

The Ribbon Finance team also identified actions which should be prevented by their implemen-
tation, further helping to focus the audit efforts.

Summary of issues detected. The audit uncovered 9 issues, 0 of which are assessed to be
of high or critical severity by the Veridise auditors. The Veridise auditors identified several
low-severity issues, each pertaining to frontrunning (V-RBN-VUL-001, V-RBN-VUL-003, and
V-RBN-VUL-002), as well as a number of minor issues. The GammaProtocol-OTC developers
have fixed 8 of these issues. The remaining unfixed issue is an Info issue which has been partially
fixed and does not have direct security implications.

Veridise Audit Report: Ribbon Finance © 2023 Veridise Inc.

2 1 Executive Summary

Recommendations. After auditing the protocol, the auditors had a few suggestions to improve
the GammaProtocol-OTC.

First, to make clear the importance of the properties mentioned above (only an option buyer can
submit an unwind, and a market maker cannot buy back their own short then resell it), Veridise
auditors recommend additional documentation to explain why these are important will help
readers of the code understand how the protocol’s guarantees are enforced.

Second, Veridise auditors noted that the unwind permits are signed only over the ID of the
order. Including the buyer and seller may add an additional layer of security to be extra sure
that signed permits cannot be repurposed. See also V-RBN-VUL-003.

Third, Veridise auditors suggested adding an event or timelock to changes in the protocol fees
to better protect market makers.

Finally, the Veridise auditors recommend to import contracts directly from OpenZeppelin (as a
dependency of the project) whenever possible. See V-RBN-VUL-006.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

© 2023 Veridise Inc. Veridise Audit Report: Ribbon Finance

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
GammaProtocol-OTC 0xbcbf34e8 Solidity Ethereum

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
Jul. 31 - Aug. 2, 2023 Manual & Tools 2 8 person-days

Table 2.3: Vulnerability Summary.

Name Number Resolved
Critical-Severity Issues 0 0
High-Severity Issues 0 0
Medium-Severity Issues 0 0
Low-Severity Issues 3 3
Warning-Severity Issues 2 2
Informational-Severity Issues 4 3
TOTAL 9 8

Table 2.4: Category Breakdown.

Name Number
Maintainability 4
Frontrunning 3
Data Validation 1
Logic Error 1

Veridise Audit Report: Ribbon Finance © 2023 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of Ribbon Finance’s implementa-
tion of the unwinding feature in GammaProtocol-OTC. In our audit, we sought to answer the
following questions:

▶ Are position sellers guaranteed to receive the necessary funds upon sale?
▶ Is the position properly transferred upon a successful bid?
▶ Can signatures, once revealed to the mempool, be used to steal funds or adversely affect

the buyer, seller, or pool?
▶ Can the sale be prevented by third-party actors?
▶ Are signatures properly validated?
▶ If a market maker buys an order they executed, can they redeem the order for more tokens

than they are owed?
▶ Can market makers safely liquidate a position if they own both sides of it?
▶ Are Solidity best practices followed and common vulnerabilities avoided?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a combination of
human experts and automated program analysis & testing tools. In particular, we conducted
our audit with the aid of the following techniques:

▶ Static analysis. To identify potential common vulnerabilities, we leveraged our custom
smart contract analysis tool Vanguard, as well as the open-source tool Slither. These
tools are designed to find instances of common smart contract vulnerabilities, such as
reentrancy and uninitialized variables.

Scope. The scope of this audit is limited to the updates in 0x2e43ab4-0xbcbf34e8, considering
only the portions of OTCWrapperV2.sol which differ from OTCWrapper.sol. More specifically,
the audit scope consists of:

▶ The diff between OTCWrapperV2.sol and OTCWrapper.sol in contracts/core.
▶ contracts/packages/unwind-permit/UnwindPermit.sol.
▶ contracts/interfaces/otcWrapperInterfaces/UnwindPermitInterface.sol.

The source code is provided by the GammaProtocol-OTC developers at commit 0xbcbf34e8.

Methodology. Veridise auditors reviewed the reports of previous audits for GammaProtocol-OTC,
inspected the provided tests, and read the GammaProtocol-OTC documentation. They then
began a manual audit of the code assisted by static analyzers.

Veridise Audit Report: Ribbon Finance © 2023 Veridise Inc.

6 3 Audit Goals and Scope

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

In this case, we judge the likelihood of a vulnerability as follows in Table 3.2:

Table 3.2: Likelihood Breakdown

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows in Table 3.3:

Table 3.3: Impact Breakdown

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2023 Veridise Inc. Veridise Audit Report: Ribbon Finance

Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowledged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-RBN-VUL-001 Frontrunners can grief USDC permit signatures Low Fixed
V-RBN-VUL-002 Frontrunners can grief unwind permit signatures Low Fixed
V-RBN-VUL-003 Frontrunning market maker can prevent liquidation Low Acknowledged
V-RBN-VUL-004 Hard-coded value depends on constant Warning Fixed
V-RBN-VUL-005 Hard-coded value depends on constant Warning Fixed
V-RBN-VUL-006 Code Recommendation: Link to OZ Implementation Info Partially Fixed
V-RBN-VUL-007 Lack of slippage protection Info Acknowledged
V-RBN-VUL-008 Test uses wrong function Info Fixed
V-RBN-VUL-009 UnwindPermit does not inherit interface Info Fixed

Veridise Audit Report: Ribbon Finance © 2023 Veridise Inc.

8 4 Vulnerability Report

4.1 Detailed Description of Issues

4.1.1 V-RBN-VUL-001: Frontrunners can grief USDC permit signatures

Severity Low Commit bcbf34e
Type Frontrunning Status Fixed

File(s) contracts/core/OTCWrapperV2.sol

Location(s) _deposit()
Confirmed Fix At a0daf13

The _deposit() function verifies a permit signature if the asset is USDC (see below code
snippet).

1 if (_asset == USDC) {
2 // Sign for transfer approval
3 IERC20Permit(USDC).permit(
4 _signature.acct,
5 address(this),
6 _signature.amount,
7 _signature.deadline,
8 _signature.v,
9 _signature.r,

10 _signature.s
11);
12 }

Snippet 4.1: Signature checking performed in the _deposit() function.

Note, however, that anyone may call the IERC20Permit(USDC).permit method in the USDC
contract. So, front-runners might grief the sale by making the function _deposit revert.

Impact Frontrunners may prevent any process that uses _deposit() from occurring. For
example, unwinding.

Recommendation Check if the contract has sufficient allowance before calling IERC20Permit(

USDC).permit.

Developer Response We have implemented the recommendation.

© 2023 Veridise Inc. Veridise Audit Report: Ribbon Finance

4.1 Detailed Description of Issues 9

4.1.2 V-RBN-VUL-002: Frontrunners can grief unwind permit signatures

Severity Low Commit bcbf34e
Type Frontrunning Status Fixed

File(s) contracts/core/OTCWrapperV2.sol

Location(s) sellRedeemRights()
Confirmed Fix At dd35454

The sellRedeemRights() function begins by verifying the permits of both the bidder and the
seller.

1 UNWIND_PERMIT.checkOrderPermit(
2 _sellerOrderSignature.acct,
3 _sellerOrderSignature.orderID,
4 _sellerOrderSignature.bidValue,
5 _sellerOrderSignature.deadline,
6 _sellerOrderSignature.v,
7 _sellerOrderSignature.r,
8 _sellerOrderSignature.s
9);

10 UNWIND_PERMIT.checkOrderPermit(
11 _bidderOrderSignature.acct,
12 _bidderOrderSignature.orderID,
13 _bidderOrderSignature.bidValue,
14 _bidderOrderSignature.deadline,
15 _bidderOrderSignature.v,
16 _bidderOrderSignature.r,
17 _bidderOrderSignature.s
18);

Snippet 4.2: Beginning of the sellRedeemRights() function:

Note, however, that anyone may call the UnwindPermit.checkOrderPermit method.

1 function checkOrderPermit(
2 address owner,
3 uint256 orderID,
4 uint256 value,
5 uint256 deadline,
6 uint8 v,
7 bytes32 r,
8 bytes32 s
9) external {

Snippet 4.3: Signature of checkOrderPermit()

Frontrunners who wish to do so may grief the sale by verifying either signature, causing the
checkOrderPermit() function to revert.

Impact Frontrunners may prevent unwinding from occurring.

Veridise Audit Report: Ribbon Finance © 2023 Veridise Inc.

10 4 Vulnerability Report

Recommendation Give the OTCWrapperV2ownership over UnwindPermit and make checkOrderPermit
owner-only. In this case, we also recommend that only short deadlines be accepted, since users

will no longer be able to manually invalidate signatures.

A "short deadline" check can be added to sellRedeemRights to ensure signatures with long
deadlines are unusable.

Whether the "ownership" change is made or not, we still recommend enforcing a "short deadline"
requirement as a proactive measure to prevent misuse of signatures.

Developer Response We have added an owner to the UnwindPermit who can whitelist a single
address. This whitelisted address is the only one which may validate signatures.

© 2023 Veridise Inc. Veridise Audit Report: Ribbon Finance

4.1 Detailed Description of Issues 11

4.1.3 V-RBN-VUL-003: Frontrunning market maker can prevent liquidation

Severity Low Commit bcbf34e
Type Frontrunning Status Acknowledged

File(s) contracts/core/OTCWrapperV2.sol

Location(s) sellRedeemRights()
Confirmed Fix At N/A

The sellRedeemRights() function begins by verifying the permits of both the bidder and the
seller.

1 UNWIND_PERMIT.checkOrderPermit(
2 _sellerOrderSignature.acct,
3 _sellerOrderSignature.orderID,
4 _sellerOrderSignature.bidValue,
5 _sellerOrderSignature.deadline,
6 _sellerOrderSignature.v,
7 _sellerOrderSignature.r,
8 _sellerOrderSignature.s
9);

10 UNWIND_PERMIT.checkOrderPermit(
11 _bidderOrderSignature.acct,
12 _bidderOrderSignature.orderID,
13 _bidderOrderSignature.bidValue,
14 _bidderOrderSignature.deadline,
15 _bidderOrderSignature.v,
16 _bidderOrderSignature.r,
17 _bidderOrderSignature.s
18);

Snippet 4.4: Beginning of the sellRedeemRights() function:

A frontrunning market maker may prevent another bidder from purchasing redeem rights by
signing their own permit and submitting it before the initial bidder.

Impact Malicious market makers could prevent other market makers from liquidating a
position by preventing them from buying out their positions.

For example, consider the following scenario.

1. Market maker Alice has taken out a short position on volatileCoin against Bob.
2. Alice comes to believe that volatileCoin is going to do very well. Bob disagrees, so Alice

convinces him to sell her the rights to the position so she can liquidate it.
3. Market maker Eve wishes to cause financial harm to Alice, but did not wish to drive the

price higher so did not bid. Instead, she waits for the bidding to conclude.
4. Eve frontruns the transaction and replaces Alice’s _bidderOrderSignature and USDC

permit with her own.

Although Alice has won the auction so that she may liquidate (what she believes to be) a
financially damaging holding, Eve prevented her from liquidating, forcing Alice to suffer the
losses associated to her short (if they manifest).

Veridise Audit Report: Ribbon Finance © 2023 Veridise Inc.

12 4 Vulnerability Report

Recommendation Include the bidder and the seller in the unwind permit.

Developer Response A malicious market maker could do this once. After this, they could be
blacklisted by the Ribbon. The MM loses a trade, not any money directly.

© 2023 Veridise Inc. Veridise Audit Report: Ribbon Finance

4.1 Detailed Description of Issues 13

4.1.4 V-RBN-VUL-004: Substitute hard-coded constant for
FEE_PERCENT_MULTIPLIER

Severity Warning Commit bcbf34e
Type Maintainability Status Fixed

File(s) contracts/core/OTCWrapperV2.sol

Location(s) sellRedeemRights()
Confirmed Fix At a0daf13

In sellRedeemRights the variable orderFee is computed as follows:

1 uint256 orderFee = (_bidderOrderSignature.bidValue * unwindFee[order.underlying]) / 1
e6; // divides by 1e6 as bidValue is expected to have 6 decimals (USDC)

Snippet 4.5: Computation of orderFee

The above computation uses 1e6 as a hard-coded value in the division in order to be consistent
with the decimals of unwindFee .

Impact Future updates to FEE_PERCENT_MULTIPLIER will cause the orderFee to be computed
incorrectly.

Recommendation Replace 1e6 with FEE_PERCENT_MULTIPLIER. And delete the comment:

1 // divides by 1e6 as bidValue is expected to have 6 decimals (USDC)

Since 1e6 comes from unwindFee and not from USDC.

Developer Response We have implemented the recommendation.

Veridise Audit Report: Ribbon Finance © 2023 Veridise Inc.

14 4 Vulnerability Report

4.1.5 V-RBN-VUL-005: Hard-coded constant depends on
FEE_PERCENT_MULTIPLIER

Severity Warning Commit bcbf34e
Type Maintainability Status Fixed

File(s) contracts/core/OTCWrapperV2.sol

Location(s) _settleFunds()
Confirmed Fix At a0daf13

In _settleFunds(), the decimals of the fee are combined with the decimals of the USDC as
described in the below code comment.

1 // eg. fee = 4bps = 0.04% , then need to divide by 100 again so ((4 / 100) / 100)
2 // after the above it is divided again by 1e2 which is the fee decimals
3 // multiplication by 1e8 is used to compensate the 8 decimals from USDC price
4 // when aggregated the multiplication becomes by 1e2
5 uint256 usdcPrice = oracle.getPrice(USDC);
6 require(usdcPrice > 0, "OTCWrapper: invalid USDC price");
7 uint256 orderFee = (_notional * (fee[_order.underlying]) * 1e2) / usdcPrice;

Snippet 4.6: Snippet from _settleFunds()

This value 1e2 is computed as

1 (1 / FEE_PERCENT_MULTIPLIER) * (1 / USDC_DECIMALS)

2 = USDC_DECIMALS / FEE_PERCENT_MULTIPLIER

3 = 1e2

However, if FEE_PERCENT_MULTIPLIER ever changes, this value will also need to change.

Impact Future updates to FEE_PERCENT_MULTIPLIER will cause the orderFee to be computed
incorrectly.

Recommendation Replace 1e2 with 1e8 / FEE_PERCENT_MULTIPLIER.

Developer Response We have implemented the recommendation.

© 2023 Veridise Inc. Veridise Audit Report: Ribbon Finance

4.1 Detailed Description of Issues 15

4.1.6 V-RBN-VUL-006: Code Recommendation: Link to OZ Implementation

Severity Info Commit bcbf34e
Type Maintainability Status Partially Fixed

File(s) contracts/packages/unnwind-permit/UnwindPermit.sol

Location(s) N/A
Confirmed Fix At dd35454

The UnwindPermit contract is closely based on the OpenZeppelin ERC20Permit implementation.
While this is indicated in documentation provided to the audit team, this is not indicated in the
file itself.

Impact Future readers of the file may require additional context, or not realize that parts of
the code have been heavily audited by multiple parties.

Recommendation Link to the OpenZeppelin implementation within the file.

We recommend doing the same in the EIP 712 implementation, and any other files imported
from OpenZeppelin. Preferably, these would be imported directly via a dependency on
OpenZeppelin.

Developer Response We have linked to the OpenZeppelin base implementation in the source
code, but decided to keep a copy of OpenZeppelin’s EIP712 rather than import it directly using
OpenZeppelin as a dependency.

Veridise Audit Report: Ribbon Finance © 2023 Veridise Inc.

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/7f028d69593342673492b0a0b1679e2a898cf1cf/contracts/token/ERC20/extensions/ERC20Permit.sol

16 4 Vulnerability Report

4.1.7 V-RBN-VUL-007: Lack of slippage protection in the premium for the MM

Severity Info Commit bcbf34e
Type Data Validation Status Acknowledged

File(s) contracts/core/OTCWrapperV2.sol

Location(s) _settleFunds()
Confirmed Fix At N/A

The orderFee takes into account the scenario when USDC depegs. It does that by querying the
price USD / USDC and using it on the computation of the fee:

1 uint256 usdcPrice = oracle.getPrice(USDC);
2 require(usdcPrice > 0, "OTCWrapper: invalid USDC price");
3 uint256 orderFee = (_notional * (fee[_order.underlying]) * 1e2) / usdcPrice;
4

5 // transfer premium to market maker
6 IERC20(USDC).safeTransfer(_msgSender(), (_premium - orderFee));

Snippet 4.7: Snippet from _settleFunds()

Then orderFee is subtracted from _premium , and the result is sent to the MM. However, there is
no upper bound in how much orderFee can grow. For example, in the event of a USDC depeg,
usdcPrice will start getting smaller, increasing orderFee .

Impact The MM will not receive any premium when orderFee ~= _premium.

Recommendation Allow the MM to specify the minimum amount of premium to receive.

Developer Response We have decided not to implement a fix for this as the event of a depeg
between the moment the function is called and the moment order premium is calculated is very
unlikely, and a minimum premium is enforced in the frontend.

© 2023 Veridise Inc. Veridise Audit Report: Ribbon Finance

4.1 Detailed Description of Issues 17

4.1.8 V-RBN-VUL-008: Test uses wrong function

Severity Info Commit bcbf34e
Type Logic Error Status Fixed

File(s) test/upgrades/otcWrapperV2.ts

Location(s) N/A
Confirmed Fix At a0daf13

The upgrade utility script checks the wrong field for fillDeadline.

1 const fillDeadlineAft = (await otcWrapperProxy.latestOrder()).toString()

Snippet 4.8: Snippet from test.

Impact If the fillDeadline storage variable were swapped with another, a storage collision
may occur undetected.

Recommendation Fix the test to use .fillDeadline().

Developer Response We have fixed the test to use the correct function.

Veridise Audit Report: Ribbon Finance © 2023 Veridise Inc.

18 4 Vulnerability Report

4.1.9 V-RBN-VUL-009: UnwindPermit does not inherit interface

Severity Info Commit bcbf34e
Type Maintainability Status Fixed

File(s) contracts/packages/unwind-permit/UnwindPermit.sol

Location(s) N/A
Confirmed Fix At dd35454

The UnwindPermit inherits from EIP712

1 contract UnwindPermit is EIP712 {

Snippet 4.9: Declaration of UnwindPermit.

but not from the UnwindPermitInterface.

1 interface UnwindPermitInterface {
2 function checkOrderPermit(
3 address owner,
4 uint256 orderID,
5 uint256 value,
6 uint256 deadline,
7 uint8 v,
8 bytes32 r,
9 bytes32 s

10) external;
11 }

Snippet 4.10: Definition of the UnwindPermitInterface.

Impact If the signature of UnwindPermit.checkOrderPermit changes, solcwill not automatically
require changes in uses of the interface (and vice versa).

Recommendation Have UnwindPermit inherit the UnwindPermitInterface.

Developer Response We have implemented the recommendation.

© 2023 Veridise Inc. Veridise Audit Report: Ribbon Finance

Glossary

ERC Ethereum Request for Comment. 19
ERC 20 The famous Ethereum fungible token standard. See https://eips.ethereum.org/

EIPS/eip-20 to learn more. 19
ERC 2612 An Ethereum Request for Comment (ERC) describing a permit extension for ERC

20-signed approvals. See https://eips.ethereum.org/EIPS/eip-2612 for the full ERC.
1

Ethereum Request for Comment Peer-reviewed proposals describing application-level stan-
dards and conventions. Visit https://eips.ethereum.org/erc to learn more. 19

OpenZeppelin A security company which provides many standard implementations of com-
mon contract specifications. See https://www.openzeppelin.com. 2

prettier A code formatting tool, seehttps://prettier.io/docs/en/integrating-with-linters.
html to learn more. 1

Slither A static analyzer for Solidity by Crytic, a subsidiary of Trail of Bits. See https:

//github.com/crytic/slither for more information. 1, 5
smart contract A self-executing contract with the terms directly written into code. Hosted on a

blockchain, it automatically enforces and executes the terms of an agreement between
buyer and seller. Smart contracts are transparent, tamper-proof, and eliminate the need
for intermediaries, making transactions more efficient and secure.. 19

solhint An open-source project for linting Solidity code. See https://protofire.github.io/
solhint/ to learn more. 1

Solidity The standard high-level language used to develop smart contracts on the Ethereum
blockchain. See https://docs.soliditylang.org/en/v0.8.19/ to learn more. 1, 19

Veridise Audit Report: Ribbon Finance © 2023 Veridise Inc.

https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-2612
https://eips.ethereum.org/erc
https://www.openzeppelin.com
https://prettier.io/docs/en/integrating-with-linters.html
https://prettier.io/docs/en/integrating-with-linters.html
https://github.com/crytic/slither
https://github.com/crytic/slither
https://protofire.github.io/solhint/
https://protofire.github.io/solhint/
https://docs.soliditylang.org/en/v0.8.19/

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	V-RBN-VUL-001: Frontrunners can grief USDC permit signatures
	V-RBN-VUL-002: Frontrunners can grief unwind permit signatures
	V-RBN-VUL-003: Frontrunning market maker can prevent liquidation
	V-RBN-VUL-004: Substitute hard-coded constant for FEE_PERCENT_MULTIPLIER
	V-RBN-VUL-005: Hard-coded constant depends on FEE_PERCENT_MULTIPLIER
	V-RBN-VUL-006: Code Recommendation: Link to OZ Implementation
	V-RBN-VUL-007: Lack of slippage protection in the premium for the MM
	V-RBN-VUL-008: Test uses wrong function
	V-RBN-VUL-009: UnwindPermit does not inherit interface
	Glossary

