
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

Davos Stable Asset

Veridise Inc.
November 30, 2022

▶ Prepared For:

Davos Finance
https://davos.xyz/

▶ Prepared By:

Jon Stephens
Xiangan He
Bryan Tan

▶ Contact Us: contact@veridise.com

▶ Version History:

Nov 15, 2022 V1
Nov 30, 2022 V2

© 2022 Veridise Inc. All Rights Reserved.

https://davos.xyz/
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 6

4 Vulnerability Report 7
4.1 Detailed Description of Bugs . 8

4.1.1 V-DAV-VUL-001: Truncation on result of division in PriceOracle 8
4.1.2 V-DAV-VUL-002: Malicious or buggy strategy can cause over-drafting . 9
4.1.3 V-DAV-VUL-003: Potential Loss of Funds from Vault 10
4.1.4 V-DAV-VUL-004: Incorrect Logic Adjusting Allocated Funds 11
4.1.5 V-DAV-VUL-005: Incorrect Amount of LP Tokens Minted 12
4.1.6 V-DAV-VUL-006: Noop on threshold checks for surge 13
4.1.7 V-DAV-VUL-007: totalDebt may be reduced by incorrect amount 15
4.1.8 V-DAV-VUL-008: Withdraw Amount Truncation 16
4.1.9 V-DAV-VUL-009: Colander doesn’t obey profit threshold 17
4.1.10 V-DAV-VUL-010: State Vars Not Set in Initialize 18
4.1.11 V-DAV-VUL-011: Lack of token burn access control 20
4.1.12 V-DAV-VUL-012: Add Revert to Receive to Prevent Stuck Funds 21
4.1.13 V-DAV-VUL-013: Potential Reentrancy in SwapPool 22
4.1.14 V-DAV-VUL-014: Unsafe Typecasting in SwapPool 23
4.1.15 V-DAV-VUL-015: Ceros Strategy may withdraw fewer than requested funds 24
4.1.16 V-DAV-VUL-016: No checks for 0x0 . 25
4.1.17 V-DAV-VUL-017: Contracts should inherit from their interfaces 27
4.1.18 V-DAV-VUL-018: Use SafeERC20 Functions 28

Veridise Audit Report: Davos © 2022 Veridise Inc.

Executive Summary 1
From October 21 to November 16, Davos engaged Veridise to review the security of their Stable
Asset. The review covered the on-chain contracts that implement the protocol logic. Veridise
conducted the assessment over 9 person-weeks, with 3 engineers reviewing code over 3 weeks
from commit 46973a1 to commit 8bf1474 of the sikka-smart-contracts/contracts repository.
The auditing strategy involved tool-assisted analysis of the source code performed by Veridise
engineers as well as extensive manual auditing.

Summary of issues detected. The audit uncovered 18 issues, 2 of which are assessed to be of
high or critical severity by the Veridise auditors. Specifically, bug V-DAV-VUL-001 causes the
oracle to return potentially incorrect prices, while bug V-DAV-VUL-002 can lead to users receiving
an incorrect amount of funds on performing a withdraw. The Veridise auditors also identified
several moderate-severity issues, including redundant checks in Colander (V-DAV-VUL-006)
and truncating computations (V-DAV-VUL-008). In addition to these concerns, auditors also
identified a number of other concerns, including potentially stuck funds due to a lack of revert
on contracts receiving ETH (V-DAV-VUL-012), instances of unsafe typecasting (V-DAV-VUL-
014), as well as several code optimizations and maintainability suggestions (V-DAV-VUL-016,
V-DAV-VUL-017, V-DAV-VUL-018).

Code assessment. The Davos Stable Asset is based on a fork of the Helio stable asset. From
Helio, Davos inherits a modified version of MakerDAO, Sikka DAO and Ceros. Davos extends
upon this by adding several contracts to generate further yields for their users. One such contract
is Colander, which rewards users for staking Sikka used to losslessly purchase collateral from
auctions. In addition Davos adds an ERC4626 vault that will allocate funds to several investment
strategies. Currently, the only strategy Davos has written will invest funds in Ceros, allowing it
to gain yields. Finally, Davos adds in a Swap pool that swaps MATIC and Ceros tokens. They
also integrate the swap pool into several components of the protocol, including Ceros and the
CerosYieldConverterStrategy.

Davos provided the source code for the Stable Asset contracts for review. A hardhat-based test-
suite accompanied the source-code with tests written by the developers. These tests encompassed
only the MasterVault and SwapPool. In addition, the client provided documentation describing
the intended behavior for the contracts.

Code Stability. Over the period of the audit, new code was pushed to the repository 13 times,
with the most recent commit occurring on Nov. 14. The primary purpose of these commits was
to fix issues discovered during the course of the audit however a few new features were added.
The Veridise auditors have therefore reviewed some portions of the code more than others.

Veridise Audit Report: Davos © 2022 Veridise Inc.

sikka-smart-contracts/contracts

2 1 Executive Summary

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

© 2022 Veridise Inc. Veridise Audit Report: Davos

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
Davos Stable Asset 46973a1 - 8bf1474 Solidity Polygon

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
Oct. 21 - Nov. 16, 2022 Manual & Tools 3 9 person-weeks

Table 2.3: Vulnerability Summary.

Name Number Resolved
Critical-Severity Issues 0 0
High-Severity Issues 2 2
Medium-Severity Issues 7 7
Low-Severity Issues 6 6
Warning-Severity Issues 3 3
Informational-Severity Issues 0 0
TOTAL 18 18

Table 2.4: Category Breakdown.

Name Number
Logic Error 4
Locked Funds 2
Maintainability 2
Data Validation 5
Usability 5

Veridise Audit Report: Davos © 2022 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of the on-chain portion of the
Stable Asset. In our audit, we sought to answer the following questions:

▶ Are users rewarded fairly for staking funds?
▶ Can users eventually withdraw funds deposited in MasterVault?
▶ Will Colander perform lossless purchases from auctions?
▶ Are funds properly distributed among strategies according to their allocation?
▶ Can a user steal funds from the MasterVault?
▶ Can new yield conversion strategies be added in the future?
▶ Is MasterVault robust against possible bugs in strategies?
▶ Does SwapPool fairly swap one token for another?
▶ Does CerosVault correctly pass yields onto the user?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a combination of
human experts and automated program analysis & testing tools. In particular, we conducted
our audit with the aid of the following techniques:

▶ Static analysis. To identify potential common vulnerabilities, we leveraged our custom
smart contract analysis tool Vanguard, as well as the open-source tool Slither. These
tools are designed to find instances of common smart contract vulnerabilities, such as
reentrancy and uninitialized variables.

▶ Fuzzing/Property-based Testing. We also leverage fuzz testing to determine if the protocol
may deviate from the expected behavior. To do this, we formalize the desired behavior of
the protocol as [V] specifications and then use our fuzzing framework OrCa to determine
if a violation of the specification can be found.

Scope. This audit reviewed the on-chain behaviors of the Stable Asset, including user deposits
and withdrawals, yield collection and distribution via. DeFi strategy primitives, as well as
internal behaviors and liquidations. As such, Veridise auditors first reviewed the provided
whitepaper and documentation to understand the desired behavior of the protocol as a whole.
Then, the auditors inspected the provided tests to better understand the desired behavior of the
provided contracts at a more granular level. Finally, auditors began a multi-week manual audit
of the code assisted by both static analyzers and automated testing.

In terms of the audit, the key components include the following:

▶ The ERC4626 MasterVault and Waiting Pool
▶ MasterVault Yield Farming Strategies

Veridise Audit Report: Davos © 2022 Veridise Inc.

6 3 Audit Goals and Scope

▶ Davos Swap Pool
▶ Davos Colander Lossless Auction Purchasing Contract and Rewards
▶ Davos’s inherited components from Helio

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

In this case, we judge the likelihood of a vulnerability as follows:

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows:

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2022 Veridise Inc. Veridise Audit Report: Davos

Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowledged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-DAV-VUL-001 Truncation on result of division in PriceOracle High Fixed
V-DAV-VUL-002 Strategy can cause over-drafting High Fixed
V-DAV-VUL-003 Potential Loss of Funds from Vault Medium Intended Behavior
V-DAV-VUL-004 Incorrect Logic Adjusting Allocated Funds Medium Intended Behavior
V-DAV-VUL-005 Incorrect Amount of LP Tokens Minted Medium Intended Behavior
V-DAV-VUL-006 Noop on threshold checks for surge Medium Fixed
V-DAV-VUL-007 totalDebt may be reduced by incorrect amount Medium Fixed
V-DAV-VUL-008 Withdraw Amount Truncation Medium Fixed
V-DAV-VUL-009 Colander doesn’t obey profit threshold Medium Fixed
V-DAV-VUL-010 State Vars Not Set in Initialize Low Intended Behavior
V-DAV-VUL-011 Lack of token burn access control Low Intended Behavior
V-DAV-VUL-012 Add Revert to Receive to Prevent Stuck Funds Low Fixed
V-DAV-VUL-013 Potential Reentrancy in SwapPool Low Fixed
V-DAV-VUL-014 Unsafe Typecasting in SwapPool Low Fixed
V-DAV-VUL-015 Ceros Strategy may withdraw fewer than requested fundsLow Fixed
V-DAV-VUL-016 No checks for 0x0 Warning Fixed
V-DAV-VUL-017 Contracts should inherit from their interfaces Warning Fixed
V-DAV-VUL-018 Use SafeERC20 Functions Warning Fixed

Veridise Audit Report: Davos © 2022 Veridise Inc.

8 4 Vulnerability Report

4.1 Detailed Description of Bugs

4.1.1 V-DAV-VUL-001: Truncation on result of division in PriceOracle

Severity High Commit 466a036
Type Truncation Status Fixed
Files oracle/PriceOracle.sol

Functions peek()

As a result of the following operation on the result of division, the price returned by peek of the
PriceOracle (used in multiple parts of the protocol such as IkkaRewards, colander, etc.) can be
incorrect. Note this issue was fixed in Helio.

1 function peek() public view returns (bytes32, bool) {

2 ...

3 uint256 price = oneTokenOut / amountOut * 10**18 ;

4 return (bytes32(price), true);

5 }

Snippet 4.1: Multiplication operation after division can cause truncation.

Impact Inaccurate oracle prices returned from calling peek.

Recommendation Fix the error by doing multiplication first.

© 2022 Veridise Inc. Veridise Audit Report: Davos

4.1 Detailed Description of Bugs 9

4.1.2 V-DAV-VUL-002: Malicious or buggy strategy can cause over-drafting

Severity High Commit 7430197
Type Overdrafting Status Fixed
Files MasterVault/MasterVault.sol

Functions withdrawETH()

When performing a withdraw, it might be the case that the MasterVault does not have sufficient
funds to pay back the user. If this occurs, it will attempt to retrieve any additional funds
necessary from a strategy. In doing so, it updates the amount of funds that should be sent to the
user in the statement shares = withdrawFromActiveStrategies(amount - wethBalance) . Here
the developers make the assumption that shares == amount - wethBalance or shares == 0.

1 shares = amount;

2 _burn(src, shares);

3 uint256 wethBalance = totalAssetInVault();

4 if(wethBalance < amount) {

5 shares = withdrawFromActiveStrategies(amount - wethBalance);

6 if(shares == 0) {

7 // submit to waiting pool

8 waitingPool.addToQueue(account, amount);

9 if(wethBalance > 0) {

10 IWETH(asset()).withdraw(wethBalance);

11 shares = _assessSwapFee(amount);

12 payable(address(waitingPool)).transfer(wethBalance);

13 }

14 emit Withdraw(src, src, src, amount, amount);

15 return amount;

16 }

17 shares += _assessSwapFee(wethBalance);

18 } else {

Snippet 4.2: The affected logic in withdrawETH()

Impact If a strategy deviates from the assumption identified above so that shares < amount -

wethBalance , the user will receive fewer funds than they are owned. Similarly, if shares >

amount - wethBalance the user will receive more funds than they are owed.

Recommendation The developers clarified that they do this because withdrawFromStrategies

may charge fees; however, we believe they should perform some validation to ensure the
returned value is within an acceptable range.

Veridise Audit Report: Davos © 2022 Veridise Inc.

10 4 Vulnerability Report

4.1.3 V-DAV-VUL-003: Potential Loss of Funds from Vault

Severity Medium Commit 466a036
Type Locked Funds Status Intended Behavior
Files MasterVault.sol

Functions withdrawETH(address account, uint256 amount)

In a situation where:

▶ wethBalance of the vault < withdrawal amount (with valid amount)
▶ shares == 0 from strategy withdrawal
▶ wethBalance > 0

A transfer call is made to the waitingPool address with value of the weth balance of the
MasterVault. By default, all solidity addresses are initialized as 0x0.

1 function withdrawETH(address account, uint256 amount)

2 external

3 override

4 nonReentrant

5 whenNotPaused

6 onlyProvider

7 returns (uint256 shares) {

8 ...

9 if(wethBalance < amount) {

10 shares = withdrawFromActiveStrategies(amount - wethBalance);

11 if(shares == 0) {

12 ...

13 if(wethBalance > 0) {

14 IWETH(asset()).withdraw(wethBalance);

15 payable(address(waitingPool)).transfer(wethBalance);

16 }

17 emit Withdraw(src, src, src, amount, shares);

18 return amount;

19 }

20 ...

21 }

Snippet 4.3: The affected logic in MasterVault.sol

Impact An unwrapping and sending of funds to payable(address(waitingPool)).transfer(wethBalance);
results in loss of all funds from the treasury if waitingPool was never set.

Developer Response The deployment script will ensure the waiting pool is properly initial-
ized.

© 2022 Veridise Inc. Veridise Audit Report: Davos

4.1 Detailed Description of Bugs 11

4.1.4 V-DAV-VUL-004: Incorrect Logic Adjusting Allocated Funds

Severity Medium Commit 466a036
Type Logic Error Status Intended Behavior
Files MasterVault.sol

Functions allocate()

Currently, the allocate function is responsible for providing funds to strategies based on
their allocations percentage. Allocate should rebalance the strategy allocation portfolio by
withdrawing and depositing from and to strategy pools such that the final allocated amount
matches the percentage of funds set to be allocated to strategies. Currently, allocate only evaluates
whether or not a strategy should be deposited to. However, it does not do the following:

▶ If allocation ratio is set to 0 for any strategy, withdraw all existing funds
▶ If allocation ratio is higher than funds allocated to total assets ratio, withdraw appropriate

amount of funds

1 if(strategyRatio < allocation) {

2 uint256 depositAmount = ((totalAssets * allocation) / 1e6) - strategy.debt;

3 if(totalAssetInVault() > depositAmount) {

4 _depositToStrategy(strategies[i], depositAmount);

5 // IBaseStrategy(strategies[i]).depositAll();

6 }

7 // } else {

8 // uint256 withdrawAmount = strategy.debt - (totalAssets * allocation) /

1e6;

9 // if(withdrawAmount > 0) {

10 // _withdrawFromStrategy(strategies[i], withdrawAmount);

11 // }

12 // }

13

14 ...

Snippet 4.4: The deposit logic is there, but the withdrawal logic seems commented out.

Seeing that there are no other functions that call to withdrawFromStrategy besides from
retireStrat or migrateStrategy, there currently is no way to be able to rebalance the portfolio
on a strategy-by-strategy basis.

Impact Since old funds are stuck inside the strategies and not rebalanced, it is possible for the
portfolio to have incorrect total debt asset accounting via. the ratio of strategies to total assets.
This affects multiple functions inside MasterVault.

Recommendation Since this has been recognized as intended behavior, this dead code should
be removed

Developer Response The withdraw behavior was removed to reduce the number of incurred
fees. Instead, admins will be responsible for determining when to withdraw from a strategy.

Veridise Audit Report: Davos © 2022 Veridise Inc.

12 4 Vulnerability Report

4.1.5 V-DAV-VUL-005: Incorrect Amount of LP Tokens Minted

Severity Medium Commit 466a036
Type Logic Error Status Intended Behavior
Files SwapPool.sol

Functions _addLiquidity

SwapPool’s _addLiquidity function mints an amount of LP tokens to the user equivalent to the
total of their native token and ceros token deposit. However, since the ratio of both the native
and Ceros tokens are denominated in 1e18, and the mint here only mints 10**8, there may have
been a mistake in the minting logic.

1 if (nativeTokenAmount == 0 && cerosTokenAmount == 0) {

2 require(amount0 > 1e18, "cannot add first time less than 1 token");

3 nativeTokenAmount = amount0;

4 cerosTokenAmount = amount1;

5

6 lpToken.mint(msg.sender, (2 * amount0) / 10**8);

7 }

Snippet 4.5: Should mint 2 * amount / 10**18

Impact LP Tokens would be minted incorrectly on calls to add liquidity to the swap pools,
impacting users’ ability to withdraw the correct amount since they would be burning less tokens
than they’re supposed to have.

Recommendation Fix the above by raising to 1e18.

Developer Response Since this value likely only affects the first individual to interact with the
contract and since it has already been posted to the blockchain, the value cannot be changed.

© 2022 Veridise Inc. Veridise Audit Report: Davos

4.1 Detailed Description of Bugs 13

4.1.6 V-DAV-VUL-006: Noop on threshold checks for surge

Severity Medium Commit 466a036
Type Validation Error Status Fixed
Files colander.sol

Functions surge(address _collateral, uint256 _auction_id)

The surge function is responsible for checking on a maximum of auction prices: they should
always be strictly lower than prices from the price feed and abacus, and at least lower than a
threshold price.

Firstly, there is already a check assuring that abacusPrice is always strictly lower than feedPrice
(else revert)

1 if (abacusPrice >= feedPrice) revert IStabilityPool.BufZone();

So the fact that auctionPrice is checked to be less than abacusPrice after being checked to be
lower than feedPrice is redundant.

1 if (auctionPrice >= feedPrice) revert IStabilityPool.AbsurdPrice();

2 else if (auctionPrice >= abacusPrice) revert IStabilityPool.SinZone();

Snippet 4.6: The feedPrice check can be removed because abacusPrice < feedPrice.

Next, auctionPrice is checked to be less than or equal to threshold, and so is abacusPrice. But
threshold < feePrice .

1 uint256 threshold = feedPrice - y;

2

3 if (auctionPrice > threshold) revert IStabilityPool.AbsurdThreshold();

4 else if (abacusPrice > threshold) revert IStabilityPool.InactiveZone();

Snippet 4.7: We now have auctionPrice < abacusPrice < threshold < feedPrice

Therefore, given the above checks, the checks on auction price greater than threshold would not
be necessary at the moment, since it’s already being checked to be less than abacus price.

Additionally, Colander tests are currently skipped. The success case for surge actually fails,
in addition to several other tests for surge reverting with only AbsurdPrice() when they were
described to revert with other messages.

Impact Redundant checks create no-ops, and cases where certain lines of checks will never
revert. Removing these increases code clarity and improves code maintainability while saving
contract size and gas.

Note that in the colander.js tests, the function call expected to revert with InactiveZone() ,
AbsurdThreshold() , and SinZone() already reverts only with AbsurdPrice , which may contain
logic errors that pertains to the oracle within itself.

Veridise Audit Report: Davos © 2022 Veridise Inc.

14 4 Vulnerability Report

Additionally, the failing test on the success case of surge is alarming for the actual protocol
functionality. These tests should be fixed for guarantees that the protocol functions as intended,
especially with its oracle interactions in light of issues having been discovered.

Recommendation

▶ Keep only if (auctionPrice >= abacusPrice) revert and if (abacusPrice >= threshold

) revert

▶ Or change uint256 threshold = feedPrice - y; to uint256 threshold = feedPrice + y;

since it’s supposed to indicate (gathering from comments in this case) the amount of
profit they should receive; then the variables would be different and checks would be
meaningful again (auctionPrice < abacusPrice < feedPrice < threshold); still; remove
the auctionPrice checks against feedPrice and threshold as auctionPrice will always be
less than these two since it’s already checked to be less than abacusPrice

© 2022 Veridise Inc. Veridise Audit Report: Davos

4.1 Detailed Description of Bugs 15

4.1.7 V-DAV-VUL-007: totalDebt may be reduced by incorrect amount

Severity Medium Commit ee8ff78
Type Logic Error Status Fixed
Files MasterVault/MasterVault.sol

Functions _withdrawFromStrategy()

The _withdrawFromStrategy() makes a call to IBaseStrategy(strategy).withdraw(amount) ,
which then returns the actual amount value that is withdrawn. However, both totalDebt

and strategyParams[strategy].debt are decreased by amount instead of value, so they may be
decreased by a greater amount than should be expected.

1 function _withdrawFromStrategy(address strategy, uint256 amount) private returns(

uint256) {

2 require(amount > 0, "invalid withdrawal amount");

3 require(strategyParams[strategy].debt >= amount, "insufficient assets in strategy

");

4 uint256 value = IBaseStrategy(strategy).withdraw(amount);

5 if(value > 0)

6 totalDebt -= amount;

7 strategyParams[strategy].debt -= amount;

8 emit WithdrawnFromStrategy(strategy, amount);

9 }

10 return value;

11 }

Snippet 4.8: Implementation of _withdrawFromStrategy()

Impact This can cause totalDebt to be out of sync with the actual strategy, which could cause
funds to be locked in the strategy or unexpected reverts to occur.

Recommendation Subtract by value instead of amount. If valuemay be less than amount validate
that the return value is within an acceptable threshold of the given amount.

Veridise Audit Report: Davos © 2022 Veridise Inc.

16 4 Vulnerability Report

4.1.8 V-DAV-VUL-008: Withdraw Amount Truncation

Severity Medium Commit 466a036
Type Truncation Status Fixed
Files MasterVault.sol

Functions payDebt

As a result of the following operation on the result of division, the withdrawAmount calculated
by payDebt can be incorrect.

1 function payDebt() public {

2 ...

3 if (waitingPoolDebt > waitingPoolBal) {

4 uint256 maxFee = swapPool.FEE_MAX();

5 uint256 withdrawAmount =

6 (

7 ((waitingPoolDebt - waitingPoolBal) * 1e18) /

8 (maxFee - swapPool.unstakeFee()) * maxFee

9) / 1e18;

10 uint256 withdrawn = withdrawFromActiveStrategies(withdrawAmount +

1);

11 if(withdrawn > 0) {

12 IWETH(asset()).withdraw(withdrawn);

13 payable(address(waitingPool)).transfer(withdrawn);

14 }

15 }

16 }

Recommendation Fix the error by doing multiplication first.

© 2022 Veridise Inc. Veridise Audit Report: Davos

4.1 Detailed Description of Bugs 17

4.1.9 V-DAV-VUL-009: Colander doesn’t obey profit threshold

Severity Medium Commit ee8ff78
Type Access Control Status Fixed
Files Colander.sol

Functions surge()

The colander contract allows admins to set a target amount the contract should profit from
a particular sale. However, at the moment that profit range is not being adhered to since
threshold < feedPrice, rendering the checks redundant.

1 function surge(address _collateral, uint256 _auction_id) external isLive

auth nonReentrant {

2 ...

3

4 if (auctionPrice >= feedPrice) revert IStabilityPool.AbsurdPrice();

5 else if (auctionPrice >= abacusPrice) revert IStabilityPool.SinZone()

;

6 // require(auctionPrice < feedPrice, "Colander/absurd-price");

7 // require(auctionPrice < abacusPrice, "Colander/sin-zone");

8

9 uint256 y = (feedPrice * profitRange) / RAY;

10 uint256 threshold = feedPrice - y;

11

12 if (auctionPrice > threshold) revert IStabilityPool.AbsurdThreshold()

;

13 else if (abacusPrice > threshold) revert IStabilityPool.InactiveZone

();

14

15 ...

16 }

Impact This could cause the colander contract to actually lose money in cases where the
priceImpact allows for the sale of an asset for less than the abacusPrice and feedPrice. Note,
that this still will never allow user funds to be lost since that would cause surplus = stablecoin

.balanceOf(address(this)) - totalSupply; to revert.

Veridise Audit Report: Davos © 2022 Veridise Inc.

18 4 Vulnerability Report

4.1.10 V-DAV-VUL-010: State Vars Not Set in Initialize

Severity Low Commit 466a036
Type Data Validation Status Intended Behavior
Files Multiple

Functions initialize()

Many state variables are not assigned to a default value, meaning that they can be 0 or 0x0
where potentially undesirable.

Some examples of where this happens is listed below.

1 function initialize(

2 string memory name,

3 string memory symbol,

4 uint256 maxDepositFees,

5 uint256 maxWithdrawalFees,

6 IERC20MetadataUpgradeable asset,

7 uint8 maxStrategies,

8 address swapPoolAddr

9) public initializer {

10 require(maxDepositFees > 0 && maxDepositFees <= 1e6, "invalid maxDepositFee")

;

11 require(maxWithdrawalFees > 0 && maxWithdrawalFees <= 1e6, "invalid

maxWithdrawalFees");

12

13 __Ownable_init();

14 __Pausable_init();

15 __ReentrancyGuard_init();

16 __ERC20_init(name, symbol);

17 __ERC4626_init(asset);

18 manager[msg.sender] = true;

19 maxDepositFee = maxDepositFees;

20 maxWithdrawalFee = maxWithdrawalFees;

21 MAX_STRATEGIES = maxStrategies;

22 feeReceiver = payable(msg.sender);

23 swapPool = ISwapPool(swapPoolAddr);

24 }

Snippet 4.9: MasterVault doesn’t check maxStrategies initialization input

© 2022 Veridise Inc. Veridise Audit Report: Davos

4.1 Detailed Description of Bugs 19

1 function initialize(string memory _name, string memory _symbol, address
_stablecoin, address _interaction, address _spotter, address _dex, address
_rewards, uint256 _flashDelay) public initializer {

2 wards[msg.sender] = 1;

3 live = 1;

4 name = _name;

5 symbol = _symbol;

6 stablecoin = IERC20Upgradeable(_stablecoin);

7 interaction = IDao(_interaction);

8 spotter = SpotLike(_spotter);

9 dex = DexV3Like(_dex);

10 rewards = IColanderRewards(_rewards);

11 flashDelay = _flashDelay;

12

13 decimals = 18;

14

15 __ReentrancyGuard_init_unchained();

16

17 emit Initialize(msg.sender);

18 }

Snippet 4.10: No validations on nonzero state values outside of initialize (such as spread)

Impact In some past examples of attacks (e.g. Nomad), having variables be set to 0x0
automatically proves to be a threat. The code becomes potentially difficult to maintain, as taking
into account every state variable that gets initialized intentionally to 0x0 when writing safe code
becomes hard with multiple contracts.

Recommendation Initialize all variables to an appropriate default value.

Veridise Audit Report: Davos © 2022 Veridise Inc.

20 4 Vulnerability Report

4.1.11 V-DAV-VUL-011: Lack of token burn access control

Severity Low Commit 466a036
Type Access Control Status Intended Behavior
Files Sikka.sol

Functions burn(address usr, uint wad)

Currently anyone is allowed to burn their Sikka tokens.

1 function burn(address usr, uint wad) external {

2 require(usr != address(0), "Sikka/burn-from-zero-address");

3 require(balanceOf[usr] >= wad, "Sikka/insufficient-balance");

4 if (usr != msg.sender && allowance[usr][msg.sender] != type(uint256).max) {

5 require(allowance[usr][msg.sender] >= wad, "Sikka/insufficient-allowance");

6 allowance[usr][msg.sender] -= wad;

7 }

8 balanceOf[usr] -= wad;

9 totalSupply -= wad;

10 emit Transfer(usr, address(0), wad);

11 }

Snippet 4.11: Logic allowing anyone to burn tokens

Impact Since this reduces the supply of tokens, it could impact the price of the Sikka stable
asset.

Developer Response Since burning tokens will cost the user funds, we think it is unlikely
that users will be able to burn sufficient funds to impact the price of Sikka.

© 2022 Veridise Inc. Veridise Audit Report: Davos

4.1 Detailed Description of Bugs 21

4.1.12 V-DAV-VUL-012: Add Revert to Receive to Prevent Stuck Funds

Severity Low Commit 466a036
Type Locked Funds Status Fixed
Files MasterVault.sol

Functions receive()

Currently, receive does not have a revert, allowing the contract to arbitrarily receive funds sent
from transactions without explicit calls to the deposit function. Since the whole mechanic of
users being able to get their funds back via. withdrawal depends on a minting of share tokens
on calls to deposit, not having a revert() in receive can potentially cause user funds that are
sent to the contract to be stuck.

1 receive() external payable {}

Snippet 4.12: Empty Receive function allowing anyone to send funds to MasterVault

Impact Not having a revert() in receive can potentially cause user funds that are sent to the
contract to be stuck.

Recommendation Revert unless funds are received from an expected entity

Veridise Audit Report: Davos © 2022 Veridise Inc.

22 4 Vulnerability Report

4.1.13 V-DAV-VUL-013: Potential Reentrancy in SwapPool

Severity Low Commit 466a036
Type Reentrancy Status Fixed
Files SwapPool.sol

Functions _addLiquidity

The _sendValue function uses a low-level call to transfer funds to a user. Since such calls do not
restrict the amount of gas the call consumes, however, it leaves the protocol vulnerable to a
reentrancy attack. While it appears that most functions in SwapPool use a Reentrancy Guard,
ReentrancyGuards can potentially be removed if instead a .transfer was used instead of .call
(or .send to the same effect).

1 function _sendValue(address receiver, uint256 amount) virtual internal {

2 // solhint-disable-next-line avoid-low-level-calls

3 (bool success,) = payable(receiver).call{ value: amount }("");

4 require(success, "unable to send value, recipient may have reverted");

5 }

Impact While the reentrancy doesn’t seem harmful in this case, any future development that
uses functions that can eventually call sendValue are vulnerable to reentrancy attacks.

Recommendation Since none of the protocol’s contracts perform any computation in their
onReceive function, a transfer should be used rather than a call.

© 2022 Veridise Inc. Veridise Audit Report: Davos

4.1 Detailed Description of Bugs 23

4.1.14 V-DAV-VUL-014: Unsafe Typecasting in SwapPool

Severity Low Commit 466a036
Type Validation Error Status Fixed
Files SwapPool.sol

Functions _withdrawOwnerFee(), _swap()

SwapPool performs multiple typecasts from uint256 inputs to uint128, which is unsafe in various
scenarios. Consider the following code when a user inputs type(uint128).max + 1

1 function _withdrawOwnerFee(

2 uint256 amount0Raw,

3 uint256 amount1Raw,

4 bool useEth

5) internal virtual {

6 uint128 amount0;

7 uint128 amount1;

8 if (amount0Raw == type(uint256).max) {

9 amount0 = ownerFeeCollected.nativeFee;

10 } else {

11 amount0 = uint128(amount0Raw);

12 }

Snippet 4.13: The following function contains no reverts (and also doesn’t emit an event) for
owner withdrawing their stored fee for said input

In Solidity, when greater uints are typed into smaller uints, bits are truncated; in the case of the
example above, type(uint128).max + 1 would simply be 1 after truncation. This is obviously
not the correct withdrawal logic and should be corrected.

For the sake of safety, _swap also has similar typecasts from uint256 to uint128. Though they are
relatively unlikely to happen (stake fees must be close to 1, amountIn is greater than uint128), a
similar thing will happen where an incorrect amount is casted into the variable.

1 ownerFeeCollected.nativeFee += uint128(ownerFeeAmt);

2 mmanagerFeeCollected.nativeFee += uint128(managerFeeAmt);

Snippet 4.14: Similarly, bits are truncated here.

Impact Incorrect amounts are calculated for withdrawal, which causes incorrect behavior for
the user (owner or otherwise).

Recommendation One can change the typing on the input itself to match with the rest of the
variables tracked in uint128, or simply increase the size of the state variables using uint128 (to
uint256) to be uniform and increase code clarity.

Veridise Audit Report: Davos © 2022 Veridise Inc.

24 4 Vulnerability Report

4.1.15 V-DAV-VUL-015: Ceros Strategy may withdraw fewer than requested funds

Severity Low Commit 466a036
Type Logic Error Status Fixed
Files CerosYieldConverterStrategy.sol

Functions _withdraw()

When funds are withdrawn from CerosStrategy, they are first withdrawn from the CerosRouter
and then swapped to the desired currency using the SwapPool. However, the SwapPool charges
fees for its use and therefore the amount returned may be less than the amount desired. Due to
this, withdrawing from the CerosStrategy may withdraw fewer than the requested funds. In
several places in MasterVault it is assumed that withdraw will either return 0 or the requested
amount.

1 function _withdraw(uint256 amount) internal returns (uint256 value) {

2 ...

3

4 (uint256 amountOut, bool enoughLiquidity) = ISwapPool(_swapPool).getAmountOut(

false, ((amount - wethBalance) * _certToken.ratio()) / 1e18, false); // (amount *
ratio) / 1e18

5 if (enoughLiquidity) {

6 value = _ceRouter.withdrawWithSlippage(address(this), amount - wethBalance,

amountOut);

7 require(value >= amountOut, "invalid out amount");

8 uint256 withdrawAmount = wethBalance + value;

9 if (amount < withdrawAmount) {

10 // transfer extra funds to feeRecipient

11 underlying.transfer(feeRecipient, withdrawAmount - amount);

12 } else {

13 amount = withdrawAmount;

14 }

15 underlying.transfer(address(vault), amount);

16 return amount;

17 }

18 }

Snippet 4.15: The withdraw function in CerosYieldConverterStrategy which can reduce the
requested amount

Impact By assuming the amount withdrawn is equal to the requested amount, it is possible to
underpay users and inaccurately track funds.

© 2022 Veridise Inc. Veridise Audit Report: Davos

4.1 Detailed Description of Bugs 25

4.1.16 V-DAV-VUL-016: No checks for 0x0

Severity Warning Commit 466a036
Type Validation Error Status Fixed
Files Multiple

Functions Multiple

Thoughout the contracts repository, there are places where there are 0x0 checks while other
places don’t. Given that there have been past hacks (e.g. Nomad) as a result of a lack of data
validation checks, we recommend for the following (and any other instances in the repo) to
include more validation. The following highlighted code snippets are some common patterns
of not having 0x0 checks.

1 function changeVault(address vault) external onlyOwner {

2 // update allowances

3 _certToken.approve(address(_vault), 0);

4 _vault = IVault(vault);

5 _certToken.approve(address(_vault), type(uint256).max);

6 emit ChangeVault(vault);

7 }

8 function changeDex(address dex) external onlyOwner {

9 IERC20(_wMaticAddress).approve(address(_dex), 0);

10 _certToken.approve(address(_dex), 0);

11 _dex = ISwapRouter(dex);

12 // update allowances

13 IERC20(_wMaticAddress).approve(address(_dex), type(uint256).max);

14 _certToken.approve(address(_dex), type(uint256).max);

15 emit ChangeDex(dex);

16 }

17 function changeSwapPool(address swapPool) external onlyOwner {

18 IERC20(_wMaticAddress).approve(address(_pool), 0);

19 _certToken.approve(address(_pool), 0);

20 _pool = ISwapPool(swapPool);

21 IERC20(_wMaticAddress).approve(swapPool, type(uint256).max);

22 _certToken.approve(swapPool, type(uint256).max);

23 emit ChangeSwapPool(swapPool);

24 }

25 function changeProvider(address masterVault) external onlyOwner {

26 _masterVault = IMasterVault(masterVault);

27 emit ChangeProvider(masterVault);

28 }

29 function changePairFee(uint24 fee) external onlyOwner {

30 _pairFee = fee;

31 emit ChangePairFee(fee);

32 }

33 function changePriceGetter(address priceGetter) external onlyOwner {

34 _priceGetter = IPriceGetter(priceGetter);

35 }

Snippet 4.16: Most of the setters (especially the ones in CerosRouter) have no 0x0 checks.

Veridise Audit Report: Davos © 2022 Veridise Inc.

26 4 Vulnerability Report

1 function _addLiquidity(

2 uint256 amount0,

3 uint256 amount1,

4 bool useEth

5) internal virtual {

6 uint256 ratio = cerosToken.ratio();

7 uint256 value = (amount0 * ratio) / 1e18;

8 if (amount1 < value) {

9 amount0 = (amount1 * 1e18) / ratio;

10 } else {

11 amount1 = value;

12 }

13 if (useEth) {

14 nativeToken.deposit{ value: amount0 }();

15 uint256 diff = msg.value - amount0;

16 if (diff != 0) {

17 _sendValue(msg.sender, diff);

18 }

19 } else {

20 nativeToken.transferFrom(msg.sender, address(this), amount0);

21 }

22 cerosToken.transferFrom(msg.sender, address(this), amount1);

Snippet 4.17: There are also cases where unchecked transfers are made

1 function _depositToStrategy(address strategy, uint256 amount) private returns (

bool success){

2 require(amount > 0, "invalid deposit amount");

3 IWETH weth = IWETH(asset());

4 require(totalAssetInVault() >= amount, "insufficient balance");

5 if (IBaseStrategy(strategy).canDeposit(amount)) {

6 weth.transfer(strategy, amount);

7 uint256 value = IBaseStrategy(strategy).deposit(amount);

8 if(value > 0) {

9 totalDebt += value;

10 strategyParams[strategy].debt += value;

11 emit DepositedToStrategy(strategy, amount);

12 return true;

13 }

14 }

15 }

Snippet 4.18: There are no checks for the existence (or correct input) of the strategy address in
MasterVault either, including for 0x0 inputs

Impact Incorrect inputs significantly damage the protocol’s ability to function properly.

Recommendation Add appropriate address(0) checks.

© 2022 Veridise Inc. Veridise Audit Report: Davos

4.1 Detailed Description of Bugs 27

4.1.17 V-DAV-VUL-017: Contracts should inherit from their interfaces

Severity Warning Commit 466a036
Type Maintainability Status Fixed
Files Multiple

Functions N/A

There are several contracts with interfaces that the contract does not inherit from. These interfaces
include:

▶ ILP
▶ ISwapPool
▶ IWaitingPool
▶ PipLike (clip.sol)
▶ SpotterLike (clip.sol)
▶ DogLike (clip.sol)
▶ ClipperCallee (clip.sol)
▶ AbacusLike (clip.sol)
▶ ClipperLike (dog.sol)
▶ VatLike (dog.sol)
▶ DSTokenLike (join.sol)
▶ VatLike (join.sol)

Impact If there are differents between the interface and contract function definitions, functions
in the contract may not be callable via the intervace.

Recommendation Always make contracts inherit from interfaces used to call them so that the
compiler may catch any issues with the interface.

Veridise Audit Report: Davos © 2022 Veridise Inc.

28 4 Vulnerability Report

4.1.18 V-DAV-VUL-018: Use SafeERC20 Functions

Severity Warning Commit 0056e2a
Type Maintainability Status Fixed
Files Multiple

Functions N/A

When using ERC20 functions the developers should consider using the SafeERC20 library. In
the current codebase it is common to use ERC20 functions without checking the return value.
Since some tokens return false on failure rather than reverting, funds can be lost if the tokens
are not properly vetted.

1 function _removeLiquidity(uint256 removedLp, bool useEth) virtual internal {

2 ...

3

4 if (useEth) {

5 nativeToken.withdraw(amount0Removed);

6 _sendValue(msg.sender, amount0Removed);

7 } else {

8 nativeToken.transfer(msg.sender, amount0Removed);

9 }

10 cerosToken.transfer(msg.sender, amount1Removed);

11

12 ...

13 }

Impact In the event that a token returned false on failure rather than reverting, a malicious
user could steal funds from the protocol.

Recommendation Use the SafeERC20 library when interacting with an ERC20 token.

© 2022 Veridise Inc. Veridise Audit Report: Davos

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Bugs

	Detailed Description of Bugs
	V-DAV-VUL-001: Truncation on result of division in PriceOracle
	V-DAV-VUL-002: Malicious or buggy strategy can cause over-drafting
	V-DAV-VUL-003: Potential Loss of Funds from Vault
	V-DAV-VUL-004: Incorrect Logic Adjusting Allocated Funds
	V-DAV-VUL-005: Incorrect Amount of LP Tokens Minted
	V-DAV-VUL-006: Noop on threshold checks for surge
	V-DAV-VUL-007: totalDebt may be reduced by incorrect amount
	V-DAV-VUL-008: Withdraw Amount Truncation
	V-DAV-VUL-009: Colander doesn’t obey profit threshold
	V-DAV-VUL-010: State Vars Not Set in Initialize
	V-DAV-VUL-011: Lack of token burn access control
	V-DAV-VUL-012: Add Revert to Receive to Prevent Stuck Funds
	V-DAV-VUL-013: Potential Reentrancy in SwapPool
	V-DAV-VUL-014: Unsafe Typecasting in SwapPool
	V-DAV-VUL-015: Ceros Strategy may withdraw fewer than requested funds
	V-DAV-VUL-016: No checks for 0x0
	V-DAV-VUL-017: Contracts should inherit from their interfaces
	V-DAV-VUL-018: Use SafeERC20 Functions

