
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

Veridise Inc.
September 9, 2023

▶ Prepared For:

Cubist
https://cubist.dev/

▶ Prepared By:

Benjamin Mariano
Alberto Gonzalez
Xiangan He

▶ Contact Us: contact@veridise.com

▶ Version History:

July 31, 2023 V1
Aug. 30, 2023 V2

© 2023 Veridise Inc. All Rights Reserved.

https://cubist.dev/
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 5

4 Vulnerability Report 7
4.1 Detailed Description of Issues . 8

4.1.1 V-CUB-VUL-001: Unsuccessfully revoked tokens can be reused 8
4.1.2 V-CUB-VUL-002: Incorrect assumption about chain id 9
4.1.3 V-CUB-VUL-003: setName function does not set anything 10
4.1.4 V-CUB-VUL-004: API misuse with disallowed chain ID 11
4.1.5 V-CUB-VUL-005: Non-null assertions might cause run-time errors . . . 12
4.1.6 V-CUB-VUL-006: Users cannot be removed from role 13
4.1.7 V-CUB-VUL-007: Duplicated error handling 14
4.1.8 V-CUB-VUL-008: Incorrect comments . 15
4.1.9 V-CUB-VUL-009: No Unstake / Stake Operations in Request Handler . . 16
4.1.10 V-CUB-VUL-010: Error handling on login exposes user secrets 17
4.1.11 V-CUB-VUL-011: Fix token docstrings to align with naming 18
4.1.12 V-CUB-VUL-012: Confusing variable use 19

Veridise Audit Report: Cubist © 2023 Veridise Inc.

Executive Summary 1
From July 19, 2023 to July 27, 2023, Cubist engaged Veridise to review the security of their
Cubist MetaMask Snap and TypeScript SDK. The review covered Cubist’s new MetaMask snap
which is designed to allow users to easily interact with their transaction signing APIs. Veridise
conducted the assessment over 15 person-days, with 3 engineers reviewing code over 5 days
from commits 951a820 - 031312f. The auditing strategy involved a extensive manual auditing by
Veridise engineers.

Code assessment. The Cubist MetaMask Snap and TypeScript SDK developers provided
the source code of the Cubist MetaMask Snap and TypeScript SDK contracts for review. The
code is fairly well tested, with tests of most expected behaviors as well as unit tests of internal
functions. Documentation is somewhat limited, although the code is fairly well documented via
descriptive comments within the source files.

Summary of issues detected. The audit uncovered 12 issues. The most severe error was
a medium-level issue where a key could silently remain unrevoked after users expected it
to be revoked (V-CUB-VUL-001). Veridise auditors also reported a number of other minor
(info and warning-level) issues, including incomplete functions (V-CUB-VUL-003) and missing
functionality (V-CUB-VUL-006, V-CUB-VUL-009).

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

Veridise Audit Report: Cubist © 2023 Veridise Inc.

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
Snap and TypeScript SDK 951a820 - 031312f TypeScript MetaMask

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
July 19 - July 27, 2023 Manual 3 15 person-days

Table 2.3: Vulnerability Summary.

Name Number Resolved
Critical-Severity Issues 0 0
High-Severity Issues 0 0
Medium-Severity Issues 1 1
Low-Severity Issues 0 0
Warning-Severity Issues 5 5
Informational-Severity Issues 6 6
TOTAL 12 12

Table 2.4: Category Breakdown.

Name Number
Usability Issue 4
Logic Error 3
Maintainability 2
Authorization 1
Documentation 1
Information Leakage 1

Veridise Audit Report: Cubist © 2023 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of Cubist MetaMask Snap and
TypeScript SDK’s smart contracts. In our audit, we sought to answer the following questions:

▶ Can secret information of a user be leaked to any publicly accessible channels?
▶ Is secret information stored securely for maintaining active sessions?
▶ Are users prompted before risky or potentially dangerous actions are undertaken (e.g.,

signing transactions)?
▶ Do user-facing APIs behave as expected?
▶ Does the Snap leave users exposed to potential phishing scams?
▶ Are the OpenAPI specifications respected by all calls made?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a manual review of
the code by Veridise’s engineers.

Scope. The scope of this audit is limited to the packages/ folder of the source code provided by
the Cubist MetaMask Snap and TypeScript SDK developers, which contains the smart contract
implementation of the Cubist MetaMask Snap and TypeScript SDK, including both the snap/

directory which contains the Snap implementation as well as the sdk/ folder, which contains
methods for interacting with the Cubist API.

Methodology. Veridise auditors reviewed the reports of previous audits for Cubist, inspected the
provided tests, and read the Cubist MetaMask Snap and TypeScript SDK documentation. They
then began a manual audit of the code. During the audit, the Veridise auditors met with the
Cubist MetaMask Snap and TypeScript SDK developers to ask questions about the code.

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

Veridise Audit Report: Cubist © 2023 Veridise Inc.

6 3 Audit Goals and Scope

In this case, we judge the likelihood of a vulnerability as follows in Table 3.2:

Table 3.2: Likelihood Breakdown

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows in Table 3.3:

Table 3.3: Impact Breakdown

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2023 Veridise Inc. Veridise Audit Report: Cubist

Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowledged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-CUB-VUL-001 Unsuccessfully revoked tokens can be reused Medium Fixed
V-CUB-VUL-002 Incorrect assumption about chain id Warning Acknowledged
V-CUB-VUL-003 setName function does not set anything Warning Fixed
V-CUB-VUL-004 API misuse with disallowed chain ID Warning Fixed
V-CUB-VUL-005 Non-null assertions might cause run-time errors Warning Acknowledged
V-CUB-VUL-006 Users cannot be removed from role Warning Acknowledged
V-CUB-VUL-007 Duplicated error handling Info Fixed
V-CUB-VUL-008 Incorrect comments Info Fixed
V-CUB-VUL-009 No Unstake / Stake Operations in Request Handler Info Acknowledged
V-CUB-VUL-010 Error handling on login exposes user secrets Info Fixed
V-CUB-VUL-011 Fix token docstrings to align with naming Info Fixed
V-CUB-VUL-012 Confusing variable use Info Fixed

Veridise Audit Report: Cubist © 2023 Veridise Inc.

8 4 Vulnerability Report

4.1 Detailed Description of Issues

4.1.1 V-CUB-VUL-001: Unsuccessfully revoked tokens can be reused

Severity Medium Commit 01aca78
Type Authorization Status Fixed

File(s) session.ts

Location(s) handleLogout()
Confirmed Fix At a0aee44

The handleLogout function appears to clear the state regardless of whether the session.revoke()

call was successful or not. If session.revoke() fails (for example, because the user doesn’t have
a management token, or due to any other error), the application still proceeds to clear the
state, which might mislead the user into believing that their API token has been successfully
revoked.

Impact This introduces a security risk because a user no longer believes their token is valid, so
may reveal it without knowing the risks. If the token falls into the wrong hands, it could be
misused by a malicious actor.

Recommendation A more reliable approach might be to only clear the state if the session.

revoke() call was successful. If it fails, the function could return an error to the user or throw
an exception on logout.

Developer Response The developers have opted for a solution that still completes the logout
with a session that was not revoked, but communicates this information clearly to the user so
there is no confusion and instructs them on how to use the CLI to revoke their token. They
believe this approach should be fine as their tokens are typically short-lived and so will expire
relatively quickly even without a specific revocation.

© 2023 Veridise Inc. Veridise Audit Report: Cubist

4.1 Detailed Description of Issues 9

4.1.2 V-CUB-VUL-002: Incorrect assumption about chain id

Severity Warning Commit 01aca78
Type Usability Issue Status Acknowledged

File(s) sdk/src/schema.ts

Location(s) N/A
Confirmed Fix At N/A

The chain_id field of the EthSignRequest object assumes that it fits in 64 bits. Per the discussion
here, chain ids may be greater due to using hash functions to compute them.

1 Eth1SignRequest: {

2 /**
3 * Format: int64

4 * @description Chain id to set in the given transaction.

5 */

6 chain_id: number;

7 /** @description ‘TypedTransaction‘ object as an untyped JSON value. */

8 tx: Record<string, never>;

9 };

Impact The SDK will not support EVM blockchains with chain ids that use more than 64
bits.

Recommendation Define chain_id as a BigInt

Developer Response At this time, the developers will continue to use the interface as is
because they rely on ethers-rs which uses a u64, so changing the interface would require a large
change.

Veridise Audit Report: Cubist © 2023 Veridise Inc.

https://ethereum-magicians.org/t/eip-2294-explicit-bound-to-chain-id/11090

10 4 Vulnerability Report

4.1.3 V-CUB-VUL-003: setName function does not set anything

Severity Warning Commit 01aca78
Type Logic Error Status Fixed

File(s) sdk/src/org.ts

Location(s) setName()
Confirmed Fix At 32594d0

The setName function only validates the syntactic form of the name argument but does not change
any state.

1 /** Set the human-readable name for the org.

2 * @param {string} name The new human-readable name for the org (must be

alphanumeric).

3 * @example my_org_name

4 * */

5 async setName(name: string) {

6 // @audit Check this.

7 if (!/^[a-zA-Z0-9_]{3,30}$/.test(name)) {

8 throw new Error("Org name must be alphanumeric and between 3 and 30 characters

");

9 }

10 }

Impact The name() function will always return null, although setName was called with a valid
name.

Recommendation Update the function by making a patch request to update the organization
to change its name. From schema.ts:

1 "/v0/org/{org_id}": {

2 /**
3 * Get Org

4 * @description Get Org

5 *
6 * Retrieves information about an organization.

7 */

8 get: operations["getOrg"];

9 /**
10 * Update Org

11 * @description Update Org

12 *
13 * Update organization attributes (enabled flag, name, and policies).

14 */

15 patch: operations["updateOrg"];

16 };

Developer Response Suggested fix implemented in commit 32594d0.

© 2023 Veridise Inc. Veridise Audit Report: Cubist

4.1 Detailed Description of Issues 11

4.1.4 V-CUB-VUL-004: API misuse with disallowed chain ID

Severity Warning Commit 01aca78
Type Documentation Status Fixed

File(s) sdk/src/key.ts

Location(s) createKeys()
Confirmed Fix At 28e77af

The function createKeys always sets the chain_id value to 0 before making a call to create keys.
However, the OpenAPI spec shown below expects a chain ID with a minimum value of 1.0.

1 "CreateKeyRequest": {

2 "type": "object",

3 "required": ["chain_id", "key_type", "count"],

4 "properties": {

5 "chain_id": {

6 "type": "integer",

7 "format": "int64",

8 "description": "Chain id for which the key is allowed to sign messages",

9 "example": 5,

10 "minimum": 1.0

11 },

12 ...

13 }

Impact This could lead to all key creation requests being rejected if the chain_id is determined
to be invalid.

Recommendation Use a valid chain ID or remove the unused parameter if possible.

Developer Response The minimum value has been updated to include 0.

Veridise Audit Report: Cubist © 2023 Veridise Inc.

12 4 Vulnerability Report

4.1.5 V-CUB-VUL-005: Non-null assertions might cause run-time errors

Severity Warning Commit 01aca78
Type Usability Issue Status Acknowledged

File(s) sdk/src/token.ts

Location(s) create()
Confirmed Fix At N/A

The create function in the token.ts file make use of non-null assertion ! in data.session_info:

1 return new Token(cs.withSignerToken(data.token), <SignerSessionObject>{

2 org_id: orgId,

3 role_id: roleId,

4 purpose: req.purpose,

5 token: data.token,

6 // @audit Best practice to not use non-null assertions, may cause runtime

errors.

7 session_info: data.session_info!,

8 });

Actually, the CreateTokenResponse might return null as session_info :

1 CreateTokenResponse: {

2 content: {

3 "application/json": {

4 session_info?: components["schemas"]["ClientSessionInfo"] | null;

5 /**
6 * @description Token to be used for signing auth. Requests to signing

endpoints

7 * should include this value in the ‘Authorization‘ header

8 */

9 token: string;

10 };

11 };

12 };

Impact If the assumption that data.session_info is never going to be null happens to be
incorrect, then an error will occur and disrupt the execution of the code.

Recommendation There are a couple of patterns recommended instead of non-null assertions.
Using any of these should avoid the problem.

Developer Response Developers indicated this assumption will always hold and therefore
the fix here is to update the documentation.

© 2023 Veridise Inc. Veridise Audit Report: Cubist

4.1 Detailed Description of Issues 13

4.1.6 V-CUB-VUL-006: Users cannot be removed from role

Severity Warning Commit 01aca78
Type Usability Issue Status Acknowledged

File(s) sdk/src/role.ts

Location(s) N/A
Confirmed Fix At N/A

For roles, a user can be added via addRole but cannot be removed

Impact A user cannot be removed from a role

Recommendation Add a function for removing a user from a role if this is desired behavior.

Developer Response For now, the developers have decided not to support this operation.
They may opt to add this functionality at a later date.

Veridise Audit Report: Cubist © 2023 Veridise Inc.

14 4 Vulnerability Report

4.1.7 V-CUB-VUL-007: Duplicated error handling

Severity Info Commit 01aca78
Type Logic Error Status Fixed

File(s) sdk/src/index.ts

Location(s) aboutMe(), getOrg()
Confirmed Fix At 32594d0

The functions aboutMe and getOrg both check for errors directly in their code, rather than relying
on assertOk from sdk/src/env.ts which is used in other locations to handle error checking.

Impact This could lead to unexpected inconsistencies in error handling, especially if the
implementation of error handling in assertOk is changed in the future.

Recommendation For consistency and to avoid any errors due to inconsistency, developers
should use the assertOk function here as is used throughout the rest of the code.

Developer Response Suggested fix implemented in commit 32594d0.

© 2023 Veridise Inc. Veridise Audit Report: Cubist

4.1 Detailed Description of Issues 15

4.1.8 V-CUB-VUL-008: Incorrect comments

Severity Info Commit 01aca78
Type Usability Issue Status Fixed

File(s) sdk/src/org.ts

Location(s) id(), fetch()
Confirmed Fix At 32594d0

The functions id and fetch both have inaccurate comments that appear to have been copied
from other functions

Impact Inaccurate comments can lead to developer and user errors when intended behavior
is not properly understood.

Recommendation Fix comments.

Developer Response Fixed in commit 32594d0.

Veridise Audit Report: Cubist © 2023 Veridise Inc.

16 4 Vulnerability Report

4.1.9 V-CUB-VUL-009: No Unstake / Stake Operations in Request Handler

Severity Info Commit 01aca78
Type Logic Error Status Acknowledged

File(s) index.ts

Location(s) onRpcRequest()
Confirmed Fix At 32594d0

onRpcRequest is a handler for receiving signing requests of multiple sorts.

Even though the ETH staking operations are included in the Cubist SDK, it is not handled in
the RPC request handler.

Impact Staking and unstaking is not supported through the snap.

Recommendation Implement logic to handle staking/unstaking requests

Developer Response This requires some discussion among the team as to the desired behavior.
For now, they have opted to remove the eth2_sign capability from the Snap and will revisit at a
later time.

© 2023 Veridise Inc. Veridise Audit Report: Cubist

4.1 Detailed Description of Issues 17

4.1.10 V-CUB-VUL-010: Error handling on login exposes user secrets

Severity Info Commit 01aca78
Type Information Leakage Status Fixed

File(s) session.ts

Location(s) handleLogin()
Confirmed Fix At a0aee44

The current implementation of the function handleLogin includes a block that catches exceptions,
and in the event of an error, it displays a message to the user that includes the error details.

When processing sensitive data like a base64-encoded JSON API token, the error can reveal
the token to the user. If the parsing fails due to a syntax error, function throws an error with
JSON.parse that includes a segment of the input string, in this case, the token.

Impact This issue is indicated as info-level severity as it is not clear that this issue can be easily
exploited — information in snap dialogues should be restricted to the MetaMask extension
(assuming the whole browser has not been compromised). The main concern here is that a
user may copy and paste their error to attempt to find a solution (and could even post it)
and unknowingly could reveal a secret. In general, showing secret information in plaintext is
considered risky and should only be done in cases when no other option is available.

Recommendation At this time, Veridise auditors were unable to find a way that any information
within a snap dialog, whether it be within the prompt or plaintext, can be leaked to other
browser processes or snaps. However, despite this, we still suggest changing the behavior
because (1) printing out an error code could be almost as informative with no risk and (2) a
naive user could copy and paste the error message (including their secret information) and
share it unknowingly (especially if the error contains their secret information in an encoded
format).

Developer Response The developers removed the printing of the error message.

Veridise Audit Report: Cubist © 2023 Veridise Inc.

18 4 Vulnerability Report

4.1.11 V-CUB-VUL-011: Fix token docstrings to align with naming

Severity Info Commit 01aca78
Type Maintainability Status Fixed

File(s) signer_session.ts

Location(s) N/A
Confirmed Fix At 32594d0

Recently, the developers seem to have refactored code by renaming Token related information to
SignerSession. Documentation relating to Token info, however, are still in multiple places where
SignerSession code stands.

Impact Future contributors may be confused by the lack of consistency between the purpose
of Tokens and SignerSession.

Recommendation For consistency and maintainability, those docstrings should be adjusted to
match with the refactor.

Developer Response Fixed in commit 32594d0.

© 2023 Veridise Inc. Veridise Audit Report: Cubist

4.1 Detailed Description of Issues 19

4.1.12 V-CUB-VUL-012: Confusing variable use

Severity Info Commit 01aca78
Type Maintainability Status Fixed

File(s) snap/src/types.ts

Location(s) santize()
Confirmed Fix At 32594d0

In the function sanitize the following code is used to recursively check that a given object
conforms to the expected shape:

1 for (const [key, type] of Object.entries(shape)) {

2 ...

3

4 if (typeof shape[key] === "object") {

5 // validate inner object

6 obj[key] = sanitize(val, shape[key] as Shape);

7 } else {

8 ...

9 }

10 }

In multiple places, shape[key] is used, even though this value is identical to type as defined in
the for loop header.

Impact This could confuse future developers as it subtly implies a difference between shape[

key] and type.

Recommendation For consistency and maintainability, the same variable name should be
used everywhere.

Developer Response Fixed in commit 32594d0.

Veridise Audit Report: Cubist © 2023 Veridise Inc.

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	V-CUB-VUL-001: Unsuccessfully revoked tokens can be reused
	V-CUB-VUL-002: Incorrect assumption about chain id
	V-CUB-VUL-003: setName function does not set anything
	V-CUB-VUL-004: API misuse with disallowed chain ID
	V-CUB-VUL-005: Non-null assertions might cause run-time errors
	V-CUB-VUL-006: Users cannot be removed from role
	V-CUB-VUL-007: Duplicated error handling
	V-CUB-VUL-008: Incorrect comments
	V-CUB-VUL-009: No Unstake / Stake Operations in Request Handler
	V-CUB-VUL-010: Error handling on login exposes user secrets
	V-CUB-VUL-011: Fix token docstrings to align with naming
	V-CUB-VUL-012: Confusing variable use

