
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

Native BNB Token Staking

Veridise Inc.
February 17, 2023

▶ Prepared For:

ANKR
https://www.ankr.com/

▶ Prepared By:

Jon Stephens
Jacob Van Geffen
Yanju Chen

▶ Contact Us: contact@veridise.com

▶ Version History:

Feb 17, 2023 V1

© 2022 Veridise Inc. All Rights Reserved.

https://www.ankr.com/
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 6

4 Vulnerability Report 7
4.1 Detailed Description of Bugs . 8

4.1.1 V-ANS-VUL-001: Users Charged Twice by ERC20 Staking Pool 8
4.1.2 V-ANS-VUL-002: Locked Funds in Staking Pool 10
4.1.3 V-ANS-VUL-003: Potential Reentrancy 12
4.1.4 V-ANS-VUL-004: Missing Requirements on Unstaking Amount 13
4.1.5 V-ANS-VUL-005: Unguarded External Function 14
4.1.6 V-ANS-VUL-006: Incorrect Gap Tracking 15
4.1.7 V-ANS-VUL-007: Min Delegation Requirement Bypassed 17
4.1.8 V-ANS-VUL-008: Inconsistent Values Passed to Token Transfer Utility

Functions . 18
4.1.9 V-ANS-VUL-009: Potential Unlock DoS 20
4.1.10 V-ANS-VUL-010: Potential Theft from Queue 21
4.1.11 V-ANS-VUL-011: Potential Underpay for Shares 22
4.1.12 V-ANS-VUL-012: Wasting Gas via External Call 23
4.1.13 V-ANS-VUL-013: Double Converting between Shares and Bonds 24
4.1.14 V-ANS-VUL-014: Unused State . 25
4.1.15 V-ANS-VUL-015: Duplicated Code . 26
4.1.16 V-ANS-VUL-016: Potential Overflow on Downcast 27
4.1.17 V-ANS-VUL-017: Potentially Unsafe Conditional 28

Veridise Audit Report: ANKR © 2022 Veridise Inc.

Executive Summary 1
From Jan. 19 to Feb. 3, ANKR engaged Veridise to review the security of their Native BNB
Token Staking protocol. The review covered the on-chain contracts that implement the protocol
logic. Veridise conducted the assessment over 6 person-weeks, with 3 engineers reviewing code
over 2 weeks on commit 41c5531 for the stakefi-smart-contract repository and c004d02 for the
ankr-contracts repository. The auditing strategy involved a tool-assisted analysis of the source
code performed by Veridise engineers as well as extensive manual auditing.

Code assessment. The ANKR Native BNB Token Staking protocol allows users to stake funds
in return ANKR’s liquid staking tokens aBNBb and aBNBc. These tokens earn yields for users over
time as the token’s ratio decreases. The staking pool allows validators to stake the pool funds in
Binance’s native staking pool to earn rewards on the staked funds. Since user funds may be
staked at the time of withdraw, the staking pool also provides a waiting queue so that users can
be paid in the order that withdraws were requested.

ANKR provided the source code for the Native BNB Token Staking protocol for review. In
addition, they provided some documentation about the intended behavior of the protocol.
Finally, they provided a set of tests based on the Truffle testing framework.

Summary of issues detected. The audit uncovered 17 issues, 2 of which are assessed to be of
high or critical severity by the Veridise auditors. Specifically, V-ANS-VUL-001 charges users
twice for staking their funds and V-ANS-VUL-002 would cause funds to be locked in a waiting
queue. In addition, the auditors identified two moderate-severity issues, including the potential
to underpay users when unstaking their funds (V-ANS-VUL-004). Finally, the auditors identified
several other security concerns, including logic errors (V-ANS-VUL-006), a possible theft from
the waiting queue (V-ANS-VUL-010) and a potential overflow on downcast (V-ANS-VUL-016).

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

Veridise Audit Report: ANKR © 2022 Veridise Inc.

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
Native BNB Token Staking 41c5531, c004d02 Solidity BNB Smart Chain

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
Jan. 19 - Feb. 3, 2022 Manual & Tools 3 6 person-weeks

Table 2.3: Vulnerability Summary.

Name Number Resolved
Critical-Severity Issues 1 1
High-Severity Issues 1 1
Medium-Severity Issues 2 1
Low-Severity Issues 7 6
Warning-Severity Issues 6 5
Informational-Severity Issues 0 0
TOTAL 17 14

Table 2.4: Category Breakdown.

Name Number
Logic Error 4
Locked Funds 3
Reentrancy 2
Theft 2
Dead Code 2
Denial of Service 1
Overflow 1
Data Validation 1
Gas Optimization 1

Veridise Audit Report: ANKR © 2022 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of the on-chain portion of the
Native BNB Token Staking protocol defined in the following scope. In our audit, we sought to
answer the following questions:

▶ Can users steal funds from the pool?
▶ Are users fairly rewarded with ANKR’s liquid staking tokens upon staking?
▶ Will users be paid upon unstaking?
▶ If users are placed in the waiting queue, will they eventually be paid?
▶ Can one user deny payment to others in the waiting queue?
▶ Can users steal funds from the waiting queue?
▶ Will users be processed by the waiting queue only once?
▶ Are all external functions guarded by a reentrancy guard?
▶ Are all bearing tokens backed by certificate tokens?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a combination of
human experts and automated program analysis & testing tools. In particular, we conducted
our audit with the aid of the following techniques:

▶ Static analysis. To identify potential common vulnerabilities, we leveraged our custom
smart contract analysis tool Vanguard, as well as the open-source tool Slither. These
tools are designed to find instances of common smart contract vulnerabilities, such as
reentrancy and uninitialized variables.

▶ Fuzzing/Property-based Testing. We also leverage fuzz testing to determine if the protocol
may deviate from the expected behavior. To do this, we formalize the desired behavior of
the protocol as [V] specifications and then use our fuzzing framework OrCa to determine
if a violation of the specification can be found.

Scope. The audit reviewed the on-chain behaviors of the Native BNB Token Staking protocol,
including user staking, pool funds staking, user withdrawals and liquid staking tokens. The
Veridise engineers first inspected the provided documentation to understand the high-level
design of the protocol. They then inspected the provided test-cases to better understand the
specific contract behavior. Finally, the auditors performed a multi-week audit of the code assisted
both by static analyzers and automated testing. In terms of the audit, the following files were
in-scope:

Repository: ankr-contracts

▶ contracts/earn/BearingToken.sol

Veridise Audit Report: ANKR © 2022 Veridise Inc.

6 3 Audit Goals and Scope

▶ contracts/earn/CertificateToken.sol
▶ contracts/earn/EarnConfig.sol
▶ contracts/earn/LiquidTokenStakingPool.sol
▶ contracts/earn/extension/ERC20LiquidTokenStakingPool.sol
▶ contracts/earn/extension/ImmediateLiquidTokenStakingPool.sol
▶ contracts/earn/extension/ManualClaimLiquidTokenStakingPool.sol
▶ contracts/earn/extension/MixedLiquidTokenStakingPool.sol
▶ contracts/earn/extension/QueueLiquidTokenStakingPool.sol
▶ contracts/earn/extension/ReferralLiquidTokenStakingPool.sol

Repository: stakefi-smart-contract

▶ bnb-v2/contracts/native-staking/BNBStakingPool.sol
▶ bnb-v2/contracts/tokens/aBNBb.sol
▶ bnb-v2/contracts/tokens/aBNBc.sol
▶ bnb-v2/contracts/tokens/upgrades/aBNBb_R1.sol
▶ bnb-v2/contracts/tokens/upgrades/aBNBc_R1.sol

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

In this case, we judge the likelihood of a vulnerability as follows:

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows:

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2022 Veridise Inc. Veridise Audit Report: ANKR

Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowleged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-ANS-VUL-001 Users Charged Twice by ERC20 Staking Pool Critical Fixed
V-ANS-VUL-002 Locked Funds in Staking Pool High Fixed
V-ANS-VUL-003 Potential Reentrancy Medium Fixed
V-ANS-VUL-004 Missing Requirements on Unstaking Amount Medium Open
V-ANS-VUL-005 Unguarded External Function Low Fixed
V-ANS-VUL-006 Incorrect Gap Tracking Low Fixed
V-ANS-VUL-007 Min Delegation Requirement Bypassed Low Intended Behavior
V-ANS-VUL-008 Inconsistent Values Provided to Function Low Fixed
V-ANS-VUL-009 Potential Unlock DoS Low Fixed
V-ANS-VUL-010 Potential Theft from Queue Low Fixed
V-ANS-VUL-011 Potential Underpay for Shares Low Open
V-ANS-VUL-012 Wasting Gas via External Call Warning Fixed
V-ANS-VUL-013 Double Converting between Shares and Bonds Warning Intended Behavior
V-ANS-VUL-014 Unused State Warning Intended Behavior
V-ANS-VUL-015 Duplicated Code Warning Invalid
V-ANS-VUL-016 Potential Overflow on Downcast Warning Fixed
V-ANS-VUL-017 Potentially Unsafe Conditional Warning Open

Veridise Audit Report: ANKR © 2022 Veridise Inc.

8 4 Vulnerability Report

4.1 Detailed Description of Bugs

4.1.1 V-ANS-VUL-001: Users Charged Twice by ERC20 Staking Pool

Severity Critical Commit c298180
Type Locked Funds Status Fixed
Files ERC20LiquidTokenStakingPool

Functions _beforeStake

The ERC20LiquidTokenStakingPool contract extends the LiquidTokenStakingPool so that users
can pay with ERC20 tokens rather than native tokens. To do so, the developers override the
_beforeStake utility function to accept ERC20 payments from users as shown below.

1 function _beforeStake(

2 address account,

3 uint256 amount,

4 uint256 /* shares */

5) internal virtual override {

6 require(

7 _stakeableToken.transferFrom(account, address(this), amount),

8 "failed to receive stakeableToken"

9);

10 }

Snippet 4.1: The override of _beforeStake to accept ERC20 payments

The contract, however, does not override the staking functionality that it inherits from the
LiquidTokenStakingPool contract. As shown below, however, these functions require payment
in native tokens.

1 function stakeBonds()

2 external

3 payable

4 override

5 nonReentrant

6 bondStakingUnpaused

7 {

8 _stakeBonds(msg.sender, msg.value);

9 }

10

11 function stakeCerts() external payable override nonReentrant {

12 _stakeCerts(msg.sender, msg.value);

13 }

Snippet 4.2: The functions used to stake funds in the Liquid Staking Pool

Impact Given that the staking functions require payment in native token, and that this contract
transfers ERC20 tokens from the user without crediting them additional funds, the contract

© 2022 Veridise Inc. Veridise Audit Report: ANKR

4.1 Detailed Description of Bugs 9

essentially charges users twice. In addition, if _unsafeTransfer is used to pay the user back on
an unstake (as done in other extensions), these users will only be refunded the ERC20 tokens.

Recommendation Add a separate API specifically for ERC20 tokens so that users will not
need to pay ERC20 tokens and native tokens. In addition, if the intention is to only accept ERC20
tokens move the staking functionality from LiquidTokenStakingPool to one of the extensions.

Veridise Audit Report: ANKR © 2022 Veridise Inc.

10 4 Vulnerability Report

4.1.2 V-ANS-VUL-002: Locked Funds in Staking Pool

Severity High Commit c298180
Type Locked Funds Status Fixed
Files QueueLiquidTokenStakingPool.sol

Functions _distributePendingRewards

If the LiquidStakingPool does not have sufficient funds to pay all unstaking users, those
users will be placed in a queue to wait for more funds to become available. Refunds are then
distributed by popping users off the queue and sending the appropriate refund. If the funds
are not successfully sent, the user is moved out of the queue and their funds must be claimed
manually by the user. During the process in which funds are marked as manually claimed,
however, a user’s _pendingClaimerUnstakes state is not updated to reflect that they no longer
have funds in the queue to claim as shown below.

1 function _distributePendingRewards() internal {

2 ...

3

4 while (

5 i < _pendingClaimers.length &&

6 poolBalance > 0 &&

7 gasleft() > _DISTRIBUTE_GAS_LIMIT

8) {

9 address claimer = _pendingClaimers[i];

10 ...

11 uint256 toDistribute = _pendingClaimerUnstakes[claimer];

12 ...

13 bool success = _unsafeTransfer(claimer, toDistribute, true);

14 /* when we delete items from array we generate new gap, lets remember how

many gaps we did to skip them in next claim */

15 if (!success) {

16 toDistribute = _pendingClaimerUnstakes[claimer];

17 // already accounted in var _stashedForManualClaims

18 _pendingTotalUnstakes -= toDistribute;

19 _setForManualClaim(claimer, toDistribute);

20 gaps++;

21 i++;

22 continue;

23 }

24 ...

25 }

26 ...

27 emit RewardsDistributed(claimers, amounts);

28 }

Snippet 4.3: Snippet of the refund distribution function that handles situations where funds
are not successfully sent

© 2022 Veridise Inc. Veridise Audit Report: ANKR

4.1 Detailed Description of Bugs 11

Since the _pendingClaimerUnstakes state is non-zero if a user must ever perform a manual claim,
future attempts to add a user will update the user’s refund state but will not add the user to the
queue as shown below.

1 function _addIntoQueue(address claimer, uint256 amount) internal {

2 require(

3 claimer != address(0),

4 "LiquidTokenStakingPool: claimer is zero address"

5);

6 if (_pendingClaimerUnstakes[claimer] == 0) {

7 _pendingClaimers.push(claimer);

8 }

9 _pendingTotalUnstakes += amount;

10 _pendingClaimerUnstakes[claimer] += amount;

11 emit PendingUnstake(claimer, claimer, amount);

12 }

Snippet 4.4: The function that adds users to the refund queue.

Impact Since users who have required manual claims in the past will not be added to the
refund queue array, their funds will be locked within the contract.

Recommendation When a user must manually claim funds, ensure _pendingClaimerUnstakes

is properly updated.

Veridise Audit Report: ANKR © 2022 Veridise Inc.

12 4 Vulnerability Report

4.1.3 V-ANS-VUL-003: Potential Reentrancy

Severity Medium Commit c298180
Type Reentrancy Status Fixed
Files ManualClaimLiquidTokenStakingPool.sol

Functions claimManually

It is common practice to guard against reentrancy vulnerabilities by modifying state before
making potentially dangerous calls to untrusted sources. The claimManually function, however,
makes an external call to some receiver and then adjust the contract state as shown below.

1 function claimManually(uint256 id) external nonReentrant {

2 ...

3

4 bool result = _unsafeTransfer(receiverAddress, amount, false);

5 require(

6 result,

7 "LiquidTokenStakingPool: failed to send rewards to receiverAddress"

8);

9 _stashedForManualClaims -= amount;

10 _manualClaims[receiverAddress] = 0;

11 _markedForManualClaim[id] = address(0);

12 emit RewardsClaimed(receiverAddress, msg.sender, amount);

13 }

Snippet 4.5: The claimManually function makes an unsafe call before modifying state.

Impact While a majority of the external functions are guarded with a reentrancy guard, a
few functions are not guarded. In addition, several view functions and modifiers could use
stale values, such as: getFreeBalance, getStashedForManualClaims, getForManualClaimOf and
getForManualClaimOf.

Recommendation Perform the state modifications before the given external call.

© 2022 Veridise Inc. Veridise Audit Report: ANKR

4.1 Detailed Description of Bugs 13

4.1.4 V-ANS-VUL-004: Missing Requirements on Unstaking Amount

Severity Medium Commit c298180
Type Locked Funds Status Open
Files LiquidTokenStakingPool.sol

Functions _unstakeCertsFor

In LiquidTokenStakingPool.sol, the functions _unstakeBondsFor and _unstakeCertsFor lack
lower bounds on the amount to be unstaked. This is a problem because it allows users to first
stake some amount of shares, then unstake an amount just under the value of a share without
losing any staked shares. To understand, consider the following code from _unstakeBondsFor:

1 function _unstakeBondsFor(address receiverAddress, uint256 amount)

2 internal

3 {

4 address ownerAddress = msg.sender;

5 uint256 shares = _bearingToken.bondsToShares(amount);

6 ...

7 _certificateToken.burn(address(_bearingToken), shares);

8 _bearingToken.burn(ownerAddress, shares);

9 _afterUnstake(ownerAddress, receiverAddress, amount);

10 ...

11 }

Since bondsToShares rounds, it’s possible that the amount returned to the user when unstaking
is incorrect.

Impact Without the restriction on amount, it’s possible that a user may unstake almost an entire
share’s worth of ether for free, or accidentally lose a share with almost no ether returned to
them.

Recommendation In both the _unstakeBondsFor and _unstakeCertsFor functions, include the
following requirement on the amount to unstake:

1 require(amount >= getMinStake() && amount % getMinStake() == 0)

Alternatively, convert the number of shares to burn back to bonds to determine the actual value
of the burnt shares.

Veridise Audit Report: ANKR © 2022 Veridise Inc.

14 4 Vulnerability Report

4.1.5 V-ANS-VUL-005: Unguarded External Function

Severity Low Commit c298180
Type Reentrancy Status Fixed
Files ReferralLiquidTokenStakingPool.sol

Functions stakeBondsWithCode, stakeCertsWithCode

A majority of the liquid staking pools in the earn repository use a ReentrancyGuard to prevent
potential reentrancy vulnerabilities. The ReferralLiquidTokenStakingPool contract, however,
does not use such a reentrancy guard and is inherited by MixedLiquidTokenStakingPool
which does have suitable reentrancy protections. Since there are several locations where
control is transferred to the user, we would recommend protecting these functions with a
ReentrancyGuard.

1 function stakeBondsWithCode(bytes32 code) external payable override {

2 _stakeBonds(msg.sender, msg.value);

3 emit ReferralCode(code);

4 }

5

6 function stakeCertsWithCode(bytes32 code) external payable override {

7 _stakeCerts(msg.sender, msg.value);

8 emit ReferralCode(code);

9 }

Snippet 4.6: The functions within ReferralLiquidTokenStakingPool that are not protected by a
reentrancy guard.

Impact Such unprotected external functions could leave the protocol open to reentrancy
attacks.

Recommendation Guard all external functions with a ReentrancyGuard.

© 2022 Veridise Inc. Veridise Audit Report: ANKR

4.1 Detailed Description of Bugs 15

4.1.6 V-ANS-VUL-006: Incorrect Gap Tracking

Severity Low Commit c298180
Type Logic Error Status Fixed
Files QueueLiquidTokenStakingPool.sol

Functions _distributePendingRewards

The gap variable is not correctly tracked in all potential branches in the following code snippet
of _distributePendingRewards function:

1 function _distributePendingRewards() internal {

2 ...

3 uint256 gaps = 0;

4 uint256 i = _pendingGap;

5

6 while (

7 i < _pendingClaimers.length &&

8 poolBalance > 0 &&

9 gasleft() > _DISTRIBUTE_GAS_LIMIT

10) {

11 address claimer = _pendingClaimers[i];

12 // if claimer for manual distribute skip him and increase ’i’

13 if (this.isMarkedForManualClaim(claimer)) {

14 i++;

15 continue;

16 }

17 uint256 toDistribute = _pendingClaimerUnstakes[claimer];

18 if (claimer == address(0) || toDistribute == 0) {

19 i++;

20 gaps++;

21 continue;

22 }

23

24 ...

25 if (!success) {

26 toDistribute = _pendingClaimerUnstakes[claimer];

27 // already accounted in var _stashedForManualClaims

28 _pendingTotalUnstakes -= toDistribute;

29 _setForManualClaim(claimer, toDistribute);

30 gaps++;

31 i++;

32 continue;

33 }

34 ...

35 i++;

36 gaps++;

37 }

38 _pendingGap += gaps;

39 ...

40 }

Snippet 4.7: Snippet of the _distributePendingRewards function where gap is updated

Veridise Audit Report: ANKR © 2022 Veridise Inc.

16 4 Vulnerability Report

In particular, when a claimer is skipped due to being marked for manual claim, the corresponding
gap is not increased which causes miscalculation of the gaps in the array _pendingClaimers.

Impact For an array of _pendingClaimers that has at least one claimer that is marked for
manual claim and skipped in the middle of the while iteration, the next time the function
_distributePendingRewards is invoked, the very last (few) claimer processed in the previous call
to this function will be processed again.

Recommendation The gap variable is not needed since it synchronizes with i; use i instead to
track the gaps on the array.

© 2022 Veridise Inc. Veridise Audit Report: ANKR

4.1 Detailed Description of Bugs 17

4.1.7 V-ANS-VUL-007: Min Delegation Requirement Bypassed

Severity Low Commit c298180
Type Logic Error Status Intended Behavior
Files BNBStakingPool.sol

Functions undelegate

When using the BNBStakingPool, there is a requirement on the minimum amount allowed to
be delegated. However, this requirement can be circumvented by performing the following
operations:

1. delegate the amount minDelegation + e

2. undelegate the amount minDelegation

Since undelegate does not check that the resulting amount delegated is at least minDelegation
(only that the amount undelegated is at least minDelegation), this may result in a state where
the amount delegated is e, which may be less than minDelegation

1 function undelegate(address validator, uint256 amount) {

2 ...

3 uint256 minDelegate = _stakingContract.getMinDelegation();

4 require(

5 amount >= minDelegate,

6 "BNBStakingPool: amount less than minDelegate amount"

7);

8 ...

9 }

Snippet 4.8: The undelegate function that does not ensure the minimum amount is delegated.

Impact Allowing stakers to delegate less than the minDelegation amount may violate properties
of the consensus protocol.

Recommendation Add additional constraints to undelegate that ensures either zero or at least
minDelegation funds remain.

Developer Response The minDelegate variable is not used to indicate the minimum value
that should be delegated but rather the smallest amount that can be delegated or undelegated
at once.

Veridise Audit Report: ANKR © 2022 Veridise Inc.

18 4 Vulnerability Report

4.1.8 V-ANS-VUL-008: Inconsistent Values Passed to Token Transfer Utility
Functions

Severity Low Commit c298180
Type Logic Error Status Fixed
Files BearingToken.sol

Functions _transfer, _mint, _burn

Similar to OpenZeppelin’s ERC20 contract, the BearingToken contract allows inherited con-
tracts to add behaviors to a token transfer using two functions: _beforeTokenTransfer and
_afterTokenTransfer. Unlike an ERC20 contract, however, the BearingToken tracks two values
(bonds and shares) using a single token. When calling _beforeTokenTransfer and _afterTokenTransfer

in some cases bonds are passed to the function while in others shares are passed to the function
as shown below.

1 function _transfer(

2 address from,

3 address to,

4 uint256 amount

5) internal virtual override {

6 uint256 shares = bondsToShares(amount);

7 require(from != address(0), "ERC20: transfer from the zero address");

8 require(to != address(0), "ERC20: transfer to the zero address");

9 _beforeTokenTransfer(from, to, amount);

10 ...

11 _afterTokenTransfer(from, to, amount);

12 }

Snippet 4.9: Definition of the _transfer function that calls the utility functions with bonds.

1 function _mint(address account, uint256 shares) internal virtual override {

2 uint256 amount = sharesToBonds(shares);

3 require(account != address(0), "ERC20: mint to the zero address");

4 _beforeTokenTransfer(address(0), account, shares);

5 ...

6 _afterTokenTransfer(address(0), account, shares);

7 }

8

9 function _burn(address account, uint256 shares) internal virtual override {

10 uint256 amount = sharesToBonds(shares);

11 require(account != address(0), "ERC20: burn from the zero address");

12 _beforeTokenTransfer(account, address(0), shares);

13 ...

14 _afterTokenTransfer(account, address(0), shares);

15 }

Snippet 4.10: Definition of the _mint and _burn functions that calls the utility functions with
shares.

© 2022 Veridise Inc. Veridise Audit Report: ANKR

4.1 Detailed Description of Bugs 19

Impact Any functionality that is added to transfer using these functions in the future is
extremely likely to introduce errors as the function has no way of determining if shares or bonds
are provided.

Recommendation Either only pass bonds to these functions or only pass shares.

Veridise Audit Report: ANKR © 2022 Veridise Inc.

20 4 Vulnerability Report

4.1.9 V-ANS-VUL-009: Potential Unlock DoS

Severity Low Commit c298180
Type Denial of Service Status Fixed
Files BearingToken.sol

Functions _mint

The BearingToken allows users to lock and unlock CertificateTokens within the contract. When
these tokens are locked, they are transferred to the BearingToken contract and new BearingTokens
are minted for the user. They can then unlocked which burns the BearingTokens and transfers
CertificateTokens back to the user. Since the CertificateTokens are owned by the BearingToken
and transferred to the user on an unlock, it is possible that if BearingTokens are unbacked by
CertificateTokens, every holder of BearingTokens could not unlock. Since there is a separate
mint function that does not check if new BearingTokens are backed by CertificateTokens it is
possible that this can happen in the future.

1 function _mint(address account, uint256 shares) internal virtual override {

2 uint256 amount = sharesToBonds(shares);

3 require(account != address(0), "ERC20: mint to the zero address");

4 _beforeTokenTransfer(address(0), account, shares);

5 _totalSupply += shares;

6 _shares[account] += shares;

7 emit Transfer(address(0), account, amount);

8 _afterTokenTransfer(address(0), account, shares);

9 }

Snippet 4.11: The _mint function that does not ensure minted tokens are backed.

Impact If a user is able to receive unbacked BearingTokens, they could intentionally unlock

them as a Denial of Service attack against the unlocking functionality of the BearingToken

Recommendation Currently the mint API is used correctly in that Certificate Tokens are
minted to the BearingToken when BearingTokens are minted for a user. However, we would
recommend that the developers add a check in the mint function to ensure that the BearingToken

is backed by a sufficient number of CertificateTokens to prevent any future mistakes.

© 2022 Veridise Inc. Veridise Audit Report: ANKR

4.1 Detailed Description of Bugs 21

4.1.10 V-ANS-VUL-010: Potential Theft from Queue

Severity Low Commit c298180
Type Theft Status Fixed
Files QueueLiquidTokenStakingPool

Functions _addIntoQueue

If the LiquidStakingPool does not have sufficient funds to pay all unstaking users, those users
will be placed in a queue to wait for more funds to become available. Currently the queue
maintains an array of users to be repaid and mapping of amounts to repay individual users.
When added to the queue, a check is performed to see if a user has a pending refund. If they
don’t, they will be added to the end of the array. In addition their pending refund amount will
be increased. This implementation has an implicit assumption that any user in the queue also
has a non-zero refund amount. As shown below though, there is no check to prevent a user
from being added to the queue with a refund of 0.

1 function _addIntoQueue(address claimer, uint256 amount) internal {

2 require(

3 claimer != address(0),

4 "LiquidTokenStakingPool: claimer is zero address"

5);

6 if (_pendingClaimerUnstakes[claimer] == 0) {

7 _pendingClaimers.push(claimer);

8 }

9 _pendingTotalUnstakes += amount;

10 _pendingClaimerUnstakes[claimer] += amount;

11 emit PendingUnstake(claimer, claimer, amount);

12 }

Snippet 4.12: The function that adds users to the refund queue.

Impact Since addToQueue will allow a user to be added with a refund amount of 0, an attacker
could be added multiple times with a zero refund amount so that they appear in the queue
multiple times. They could then be added one more time with a non-zero refund to potentially
receive multiple non-zero refunds from the pool.

Recommendation While the current implementation won’t allow a user to be added to the
queue with a zero refund due to a conditional in another function,

Veridise Audit Report: ANKR © 2022 Veridise Inc.

22 4 Vulnerability Report

4.1.11 V-ANS-VUL-011: Potential Underpay for Shares

Severity Low Commit c298180
Type Theft Status Open
Files LiquidTokenStakingPool.sol

Functions _stakeBonds

When staking some amount, it’s possible for users to underpay for shares due to the nature of
the bondsToShares conversion. The following code from LiquidTokenStakingPool calculates the
number of shares to stake for a given amount of bonds:

1 function _stakeBonds(address staker, uint256 amount) internal {

2 uint256 shares = _bearingToken.bondsToShares(amount);

3 _stake(staker, amount, shares, true);

4 _afterStake(staker, amount, shares);

5 }

However, since bondsToShares rounds up, it is possible to stake a small amount of bonds and
still acquire a share. This is possible whenever getMinStake() % sharesToBonds(1) != 0

Impact Users may acquire shares for cheaper than expected, resulting in a loss of funds.

Recommendation Add a requirement that the amount staked should be a positive multiple of
sharesToBonds(1). This can be implemented in a variety of ways, but we recommend doing so
by maintaining the invariant getMinStake() % sharesToBonds(1) == 0 && getMinStake() > 0.
This could be done by:

1. Adding the following requirement to the setMinimumStake function: require(newValue %

sharesToBonds(1) == 0 && newValue > 0)

2. Adding the following call to the setInternetBondRatioFeed function: _liquidStakingPool.
setMinimumStake(sharesToBonds(1))

Alternatively, getMinStake could return sharesToBonds(1) * M where M is number set by
setMinStake to indicate how many multiples someone must stake.

Since _stake already has the requirement amount%getMinStake()==0 && amount>=getMinStake(),
this will ensure the invariant that any number of shares N staked has been paid for by the
appropriate number of bonds from the user.

© 2022 Veridise Inc. Veridise Audit Report: ANKR

4.1 Detailed Description of Bugs 23

4.1.12 V-ANS-VUL-012: Wasting Gas via External Call

Severity Warning Commit c298180
Type Gas Optimization Status Fixed
Files Multiple

Functions Multiple

In several contracts, external functions are being invoked using the form this.fn(...) as shown
below. Such invocations cause the function to be invoked via an external call rather than a
function call.

1 function getFreeBalance() external view virtual override returns (uint256) {

2 return

3 address(this).balance < this.getStashedForManualClaims()

4 ? 0

5 : address(this).balance - this.getStashedForManualClaims();

6 }

Snippet 4.13: Example code that invokes a function using this

Impact Invoking external calls costs more gas than invoking a call to a function inside the
contract causing gas to be wasted.

Recommendation Make the required view functions public rather than external and then call
them without this.

Veridise Audit Report: ANKR © 2022 Veridise Inc.

24 4 Vulnerability Report

4.1.13 V-ANS-VUL-013: Double Converting between Shares and Bonds

Severity Warning Commit c298180
Type Logic Error Status Intended Behavior
Files aBNBb.sol, BearingToken.sol

Functions burnAndSetPending

Before calling _burn from BearingToken.sol, functions burnAndSetPending and burnAndSetPendingFor

in aBNBb.sol convert from bonds to shares in order to compute the number of shares to burn.
However, _burn internally converts from shares to bonds. This double conversion can lead to
rounding errors, and thus the incorrect number of shares/bonds may be burned.

1 function burnAndSetPending(address account, uint256 amount)

2 external

3 override

4 whenNotPaused

5 onlyLiquidStakingPool

6 {

7 _pendingBurn[account] += amount;

8 pendingBurnsTotal += amount;

9 uint256 sharesToBurn = bondsToShares(amount);

10 _burn(account, sharesToBurn);

11 emit Transfer(account, address(0), amount);

12 }

Snippet 4.14: burnAndSetPending converts from bonds to shares

1 function _burn(address account, uint256 shares) internal virtual override {

2 uint256 amount = sharesToBonds(shares);

3 ...

4 emit Transfer(account, address(0), amount);

5 ...

6 }

Snippet 4.15: _burn converts from shares to bonds

Impact Double converting in this case can result in unwanted truncation, thus burning fewer
tokens than intended.

Recommendation Within BearingToken, include an additional _burnBonds function that takes
bonds rather than shares. This way, bonds can be burned directly without the need to convert
from shares to bonds.

© 2022 Veridise Inc. Veridise Audit Report: ANKR

4.1 Detailed Description of Bugs 25

4.1.14 V-ANS-VUL-014: Unused State

Severity Warning Commit c298180
Type Dead Code Status Intended Behavior
Files BearingToken.sol

Functions N/A

The bearing token declares several variables that are never used, including:

▶ _lockedShares

▶ _balances via ERC20Upgradable
▶ _totalSupply via ERC20Upgradable
▶ _owner via OwnableUpgradable

Impact Unused variables such as _lockedShares can lead to bugs in the future as one may
expect they hold specific values when they do not. Other unused variables, such as _balances

can cause issues if an inherited function that uses these variables is called.

Recommendation Remove unused variables in the contract such as _lockedShares. In addition,
since very few behaviors are inherited from ERC20Upgradable (we believe it is just allowance
tracking) we would recommend copying the remaining behaviors from the contract and then
extend IERC20Upgradable.

Developer Response Since these tokens are already deployed to the blockchain as upgradable
contracts, these variables cannot be removed.

Veridise Audit Report: ANKR © 2022 Veridise Inc.

26 4 Vulnerability Report

4.1.15 V-ANS-VUL-015: Duplicated Code

Severity Warning Commit c298180
Type Dead Code Status Invalid
Files MixedLiquidTokenStakingPool.sol

Functions _beforeUnstake

The MixedLiquidTokenStakingPool overrides the _beforeUnstake function as follows:

1 function _beforeUnstake(

2 address, /* ownerAddress */

3 address receiverAddress,

4 uint256 /* amount */

5)

6 internal

7 virtual

8 override(LiquidTokenStakingPool, ManualClaimLiquidTokenStakingPool)

9 {

10 require(

11 !this.isMarkedForManualClaim(receiverAddress),

12 "LiquidTokenStakingPool: receiver is marked for manual claim"

13);

14 }

Snippet 4.16: The _beforeUnstake function declared in the MixedLiquidTokenStakingPool
contract

The function it overrides, however is the following:

1 function _beforeUnstake(

2 address, /* ownerAddress */

3 address receiverAddress,

4 uint256 /* amount */

5) internal virtual override(LiquidTokenStakingPool) {

6 require(

7 !this.isMarkedForManualClaim(receiverAddress),

8 "LiquidTokenStakingPool: receiver is marked for manual claim"

9);

10 }

Snippet 4.17: The _beforeUnstake function declared in the
ManualClaimLiquidTokenStakingPool contract

Note that these functions are the same so the override in MixedLiquidTokenStakingPool is
unnecessary.

Developer Response This was done to prevent a compiler warning.

© 2022 Veridise Inc. Veridise Audit Report: ANKR

4.1 Detailed Description of Bugs 27

4.1.16 V-ANS-VUL-016: Potential Overflow on Downcast

Severity Warning Commit c298180
Type Overflow Status Fixed
Files LiquidTokenStakingPool.sol

Functions setMinimumStake

The setMinimumStake function allows the pool governance to change the minimum value that
a user is allowed to stake at once. To save space, the stake is expressed as a multiple of gwei,
allowing the value to be stored using a smaller integer. If the new value is greater than or equal
to 1844674407370955161600000000000 the downcast to a uint64 could overflow.

1 function setMinimumStake(uint256 newValue)

2 external

3 override

4 onlyGovernance

5 {

6 require(

7 newValue % 1 gwei == 0,

8 "LiquidTokenStakingPool: value should be multiplied of gwei"

9);

10 uint256 prevValue = getMinStake();

11 minimumStake = uint64(newValue / 1 gwei);

12 emit MinimumStakeChanged(prevValue, newValue);

13 }

Snippet 4.18: Location in setMinimumStake where a downcast is performed

Impact Such an admin error could cause the minimum stake to be lower than intended.

Recommendation Check that minimumStake * 1 gwei == newValue

Veridise Audit Report: ANKR © 2022 Veridise Inc.

28 4 Vulnerability Report

4.1.17 V-ANS-VUL-017: Potentially Unsafe Conditional

Severity Warning Commit c298180
Type Data Validation Status Open
Files ERC20LiquidTokenStakingPool.sol

Functions _unsafeTransfer

The _unsafeTransfer function in the ERC20LiquidTokenStakingPool contract emulates the
behavior of the function of the same name in the LiquidTokenStakingPool contract. To do so, the
function transfers ERC20 tokens to the indicated user and returns whether or not the transfer
was successful by checking both the return value and that the transfer didn’t revert. To support
tokens that don’t properly implement the ERC20 specification, the contract allows no value to
be returned.

1 function _unsafeTransfer(

2 address receiverAddress,

3 uint256 amount,

4 bool /* limit */

5) internal virtual override returns (bool) {

6 require(

7 address(_stakeableToken) != address(0),

8 "LiquidTokenStakingPool: token is not set"

9);

10 // bytes4(keccak256(bytes(’transfer(address,uint256)’)));

11 (bool success, bytes memory data) = address(_stakeableToken).call(

12 abi.encodeWithSelector(0xa9059cbb, receiverAddress, amount)

13);

14 return success && (data.length == 0 || abi.decode(data, (bool)));

15 }

Snippet 4.19: Definition of the _unsafeTransfer function

Impact When performing an external call, the fallback function will be executed if a function
could not be found with a matching selector. In such a case, the function could execute
successfully and likely wouldn’t return a value.

Recommendation We would recommend excluding the data.length == 0 condition for tokens
that implement the ERC20 specification correctly.

© 2022 Veridise Inc. Veridise Audit Report: ANKR

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Bugs

	Detailed Description of Bugs
	V-ANS-VUL-001: Users Charged Twice by ERC20 Staking Pool
	V-ANS-VUL-002: Locked Funds in Staking Pool
	V-ANS-VUL-003: Potential Reentrancy
	V-ANS-VUL-004: Missing Requirements on Unstaking Amount
	V-ANS-VUL-005: Unguarded External Function
	V-ANS-VUL-006: Incorrect Gap Tracking
	V-ANS-VUL-007: Min Delegation Requirement Bypassed
	V-ANS-VUL-008: Inconsistent Values Passed to Token Transfer Utility Functions
	V-ANS-VUL-009: Potential Unlock DoS
	V-ANS-VUL-010: Potential Theft from Queue
	V-ANS-VUL-011: Potential Underpay for Shares
	V-ANS-VUL-012: Wasting Gas via External Call
	V-ANS-VUL-013: Double Converting between Shares and Bonds
	V-ANS-VUL-014: Unused State
	V-ANS-VUL-015: Duplicated Code
	V-ANS-VUL-016: Potential Overflow on Downcast
	V-ANS-VUL-017: Potentially Unsafe Conditional

