
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

UniRep Protocol

Veridise Inc.
August 28, 2023

▶ Prepared For:

Unirep
https://developer.unirep.io/

▶ Prepared By:

Jon Stephens
Hanzhi Liu
Xiangan He

▶ Contact Us: contact@veridise.com

▶ Version History:

May 15, 2023 Initial Draft

© 2023 Veridise Inc. All Rights Reserved.

https://developer.unirep.io/
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 6

4 Vulnerability Report 7
4.1 Detailed Description of Issues . 8

4.1.1 V-UNI-VUL-001: Underconstrained Circuit allows Invalid Comparison . 8
4.1.2 V-UNI-VUL-002: Missing Range Checks on Comparison Circuits 9
4.1.3 V-UNI-VUL-003: Potential Overflow in User State Transition 10
4.1.4 V-UNI-VUL-004: Potential Overflow when Proving Reputation 12
4.1.5 V-UNI-VUL-005: Malformed ReusableMerkleTree Root 13
4.1.6 V-UNI-VUL-006: Potential Attestation Loss 15
4.1.7 V-UNI-VUL-007: Different Definitions of data[SUM_FIELD_COUNT] . 17
4.1.8 V-UNI-VUL-008: Unconstrained Public Input 19
4.1.9 V-UNI-VUL-009: Replacement Data ID validation not Monotonically

Increasing . 20
4.1.10 V-UNI-VUL-010: Manual Signup may be Incorrect 21
4.1.11 V-UNI-VUL-011: Replacement Data IDs may not Monotonically Increase 22
4.1.12 V-UNI-VUL-012: Private Information Stored in Plaintext 23
4.1.13 V-UNI-VUL-013: Unnecessary Num2Bits(254) Constraints 24
4.1.14 V-UNI-VUL-014: Add Template Variable Assertions 25
4.1.15 V-UNI-VUL-015: Potential for Private Information Leakage 26
4.1.16 V-UNI-VUL-016: Wasted Storage . 27
4.1.17 V-UNI-VUL-017: Assumed Replacement Data Ordering 28
4.1.18 V-UNI-VUL-018: Confusing Corner Case Logic 30
4.1.19 V-UNI-VUL-019: Containerize TypeScript Classes 32

5 Formal Verification 35
5.1 Detailed Description of Formal Verification Results 36

5.1.1 V-UNI-SPEC-001: MerkleTreeInclusionProof Functional Correctness . . 36
5.1.2 V-UNI-SPEC-002: EpochKeyHasher Functional Correctness 38
5.1.3 V-UNI-SPEC-003: EpochTreeLeaf Functional Correctness 40
5.1.4 V-UNI-SPEC-004: StateTreeLeaf Functional Correctness 41
5.1.5 V-UNI-SPEC-005: IdentitySecret Functional Correctness 43
5.1.6 V-UNI-SPEC-006: IdentityCommitment Functional Correctness 44
5.1.7 V-UNI-SPEC-007: UpperLessThan Functional Correctness 45
5.1.8 V-UNI-SPEC-008: replFieldEqual Functional Correctness 47
5.1.9 V-UNI-SPEC-009: Signup Functional Correctness 49

Veridise Audit Report: Unirep © 2023 Veridise Inc.

5.1.10 V-UNI-SPEC-010: EpochKeyLite Functional Correctness 51
5.1.11 V-UNI-SPEC-011: EpochKey Functional Correctness 53
5.1.12 V-UNI-SPEC-012: PreventDoubleAction Functional Correctness 56
5.1.13 V-UNI-SPEC-013: ProveReputation Functional Correctness 59
5.1.14 V-UNI-SPEC-014: UserStateTransition Functional Correctness 65

Executive Summary 1
From April 17, 2023 to May 19, 2023, Unirep engaged Veridise to review the security of their
UniRep Protocol. The review covered the protocol’s Zero-Knowledge circuits, on-chain contracts
and client-side typescript library. Veridise conducted the assessment over 15 person-weeks, with
3 engineers reviewing code over 5 weeks on commit 0x0985a28. Due to vulnerabilities found
during the course of the audit, the formal verification was performed on commit 0x510c971
as the buggy implementation could not be formally verified. The auditing strategy involved a
tool-assisted analysis of the source code performed by Veridise engineers as well as extensive
manual auditing. In parallel, the Veridise engineers also formally verified that the UniRep
Protocol circuits adhere to the formal specifications shown in Section 5.

Code assessment. The Unirep developers provided the source code of the UniRep Protocol for
review. This included the on-chain contracts, zero-knowledge circuits and client-side framework
code. All of these components form a non-repudiable attestation system that allows applications
(or attesters) to assign reputation, among other private data, to private identities. To do so, first an
attester must register their application with the UniRep Protocol to initialize the necessary state.
Attesters may then register users by providing their public identity (a semaphore commitment)
and an attestation of their initial state. With this, users may generate some number of private
identities per epoch that are cryptographically generated using private and public information
about the user, attester and epoch. Such private identities may then receive attestations from
the application to change the private data of the associated user, including their reputation.
After the completion of an epoch, users must then incorporate the attestations received on
their private identities into their private data so that they may continue to interact with the
application. Additionally, users can use the UniRep Protocol’s ZK circuits to prove information
about their private data, including their reputation thresholds, private identities.

To facilitate the Veridise auditors’ understanding of the code, the Unirep developers also
provided blog posts that document the high level design of the protocol and developer
documentation describing the low-level components of the protocol. The source code also
contained some documentation in the form of READMEs and documentation comments in-line
with the source-code. The source code contained a test suite, which covered the individual
components of the UniRep Protocol.

Summary of issues detected. The audit uncovered 19 issues, 2 of which are assessed to be
of high or critical severity by the Veridise auditors. Specifically, V-UNI-VUL-001 identifies
an under-constrained range check that could allow attackers to prove incorrect relationships
between values and V-UNI-VUL-002 identifies incorrect uses of the CircomLib’s comparison
components which could also allow the comparisons to be manipulated. The Veridise auditors
also identified several medium-severity issues, including potential overflows (V-UNI-VUL-003,
V-UNI-VUL-004) and logical errors (V-UNI-VUL-006, V-UNI-VUL-007) as well as a number of
minor issues.

Veridise Audit Report: Unirep © 2023 Veridise Inc.

2 1 Executive Summary

Recommendations. After auditing the protocol, the auditors had a few suggestions to improve
the UniRep Protocol. During the audit, Veridise identified several issues that correspond to
intended behavior as it is expected that the applications, attesters or users will prevent them. Such
issues include:

▶ The potential for an attester’s sum data fields to overflow (V-UNI-VUL-003). Note, that a
user’s positive and negative reputation are stored in such fields.

▶ The potential for attestation loss if the state tree is not updated during an epoch (V-UNI-
VUL-006).

▶ The potential for private information leakage through repeated proofs (V-UNI-VUL-015).
▶ The potential for non-users to submit proofs that are accepted by the protocol via the

EpochKeyLite circuit.

We therefore encourage developers building on top of the UniRep Protocol to pay special
attention to these issues and to ensure that their protocol is audited before deployment.
Additionally, we encourage Unirep to create dedicated pages in their documentation that lists
assumptions that they placed on each of these parties as some of the warnings are distributed
across the developer documentation.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

© 2023 Veridise Inc. Veridise Audit Report: Unirep

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
UniRep Protocol 0x0985a28 Circom, Solidity, TS Ethereum

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
April 17 - May 19, 2023 Manual & Tools 3 15 person-weeks

Table 2.3: Vulnerability Summary.

Name Number Resolved
Critical-Severity Issues 2 2
High-Severity Issues 0 0
Medium-Severity Issues 5 5
Low-Severity Issues 5 5
Warning-Severity Issues 7 7
Informational-Severity Issues 0 0
TOTAL 19 19

Table 2.4: Verification Summary.

Type Number
Functional Correctness 14

Table 2.5: Category Breakdown.

Name Number
Logic Error 5
Integer Overflow 2
Data Validation 2
Information Leakage 2
Usability Issue 2
Underconstrained Circuit 1
Missing Range Check 1
Unconstrained Public Input 1
Unnecessary Constraints 1
Storage Optimization 1
Access Control 1

Veridise Audit Report: Unirep © 2023 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of the UniRep Protocol’s ZK
Circuits, on-chain smart contracts and client-side typescript library. In our audit, we sought to
answer the following questions:

▶ Can private information be stolen or leaked?
▶ Are the circuit signals properly constrained?
▶ Can a malicious user prove an invalid data relationship?
▶ Can a user avoid reject or avoid an attestation?
▶ Are updates to a user’s private data consistent with Unirep’s documentation?
▶ Do all public inputs participate in at least one constraint?
▶ Where appropriate, do the developers validate that signals are within an appropriate

range?
▶ Can a user avoid performing a state transition?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a combination of
manual inspection by human experts and automated program analysis & testing. In particular,
we conducted our audit with the aid of the following techniques:

▶ Static analysis. To identify potential common vulnerabilities, we leveraged our custom
Zero-Knowledge circuit static analysis tool. This tool is designed to find instances of
common vulnerabilities in Zero-Knowledge circuits, such as unused public inputs and
dataflow-constraint discrepancies.

▶ Formal Verification. To prove the correctness of the ZK circuits we used a combination of
Coda, our formal verification project based on the Coq interactive theorem prover, and
Picus, our automated verification tool. To do this, we formalized the intended behavior of
the Circom templates and then proved the correctness of the implementation with respect
to the formalized specifications.

Scope. The scope of this audit is limited to the following folders in the repository located at
https://github.com/Unirep/Unirep:

▶ /packages/circuits/circuits/

▶ /packages/contracts/contracts/

▶ /packages/utils/src/

▶ /packages/core/src/

Veridise Audit Report: Unirep © 2023 Veridise Inc.

https://github.com/Unirep/Unirep

6 3 Audit Goals and Scope

Methodology. The Veridise auditors first inspected the provided tests and documentation to
better understand the desired behavior of the provided source code at a more granular level.
They then formalized the intended behavior of the UniRep Protocolcircuits and formally verified
them with the help of Coda. In parallel, they performed a multi-week manual audit of the code
assisted by our static analyzer.

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

In this case, we judge the likelihood of a vulnerability as follows in Table 3.2:

Table 3.2: Likelihood Breakdown

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows in Table 3.3:

Table 3.3: Impact Breakdown

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2023 Veridise Inc. Veridise Audit Report: Unirep

Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowleged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-UNI-VUL-001 Underconstrained Circuit Critical Fixed
V-UNI-VUL-002 Missing Range Checks on Comparison Circuits Critical Fixed
V-UNI-VUL-003 Potential Overflow in User State Transition Medium Intended Behavior
V-UNI-VUL-004 Potential Overflow when Proving Reputation Medium Fixed
V-UNI-VUL-005 Malformed ReusableMerkleTree Root Medium Fixed
V-UNI-VUL-006 Potential Attestation Loss Medium Intended Behavior
V-UNI-VUL-007 Different Definitions of Data Field Medium Fixed
V-UNI-VUL-008 Unconstrained Public Input Low Fixed
V-UNI-VUL-009 Replacement Data ID Validation not Monotonic Low Fixed
V-UNI-VUL-010 Manual Signup may be Incorrect Low Fixed
V-UNI-VUL-011 Replacement Data IDs not Monotonic Low Fixed
V-UNI-VUL-012 Private Information Stored in Plaintext Low Acknowledged
V-UNI-VUL-013 Unnecessary Num2Bits(254) Constraints Warning Fixed
V-UNI-VUL-014 Add Template Variable Assertions Warning Fixed
V-UNI-VUL-015 Potential for Private Information Leakage Warning Acknowledged
V-UNI-VUL-016 Wasted Storage Warning Fixed
V-UNI-VUL-017 Assumed Replacement Data Ordering Warning Fixed
V-UNI-VUL-018 Confusing Corner Case Logic Warning Fixed
V-UNI-VUL-019 Containerize TypeScript Classes Warning Fixed

Veridise Audit Report: Unirep © 2023 Veridise Inc.

8 4 Vulnerability Report

4.1 Detailed Description of Issues

4.1.1 V-UNI-VUL-001: Underconstrained Circuit allows Invalid Comparison

Severity Critical Commit 0985a28

Type Underconstrained Circuit Status Fixed
File(s) bigComparators.circom

Location(s) BigLessThan, UpperLessThan

Due to restrictions on how constraints must be expressed in ZK circuits, it is often useful to
convert signals to their bit representation to perform some computation. To do so, CircomLib
provides a template called Num2Bits(N) that converts a signal to an equivalent representation
as a bit array of size N. The large prime itself, however, is 254 bits, which allows some values
to have multiple representations as a 254 bit array modulo P. For example, 0 can be expressed
either as 0 or as P since converting P from a bit array back to a signal will result in 0 due to an
overflow. As a result, it is unsafe to use Num2Bits(254) as it is technically unconstrained. Instead,
CircomLib provides an alternate template called Num2Bits_strict that performs additional
checks to ensure values are not aliased.

1 template BigLessThan() {
2 ...
3

4 component bits[2];
5 for (var x = 0; x < 2; x++) {
6 bits[x] = Num2Bits(254);
7 bits[x].in <== in[x];
8 }
9

10 ...
11 }

Snippet 4.1: Snippet with an unsafe use of Num2Bits(254)

Impact While Num2Bits(254) is frequently used, most locations contain additional constraints
that prevent the potential for aliasing. However, the UpperLessThan and BigLessThan circuits
contain unsafe uses of Num2Bits to perform comparisons over signals up to the size of the prime.
Additionally, these templates make extensive use out of the binary form produced by Num2Bits.
As a result, users can submit proofs of relationships that do not actually hold. For example, a
user can improperly prove that 1 < 0 by using the 254 bit representation of P rather than 0.

Recommendation Use Num2Bits_strict rather than Num2Bits(254).

© 2023 Veridise Inc. Veridise Audit Report: Unirep

4.1 Detailed Description of Issues 9

4.1.2 V-UNI-VUL-002: Missing Range Checks on Comparison Circuits

Severity Critical Commit 0985a28

Type Missing Range Check Status Fixed
File(s) proveReputation.circom, userStateTransition.circom, ...

Location(s) ProveReputation, UserStateTransition, EpochKeyLite

Some computations, such as comparisons, cannot be directly expressed as constraints in Circom.
Instead, CircomLib provides templates that developers can use so that they don’t have to
implement them from scratch. Importantly, some of these templates make assumptions about
the inputs that the developers must enforce. The LessThan(N), LessEqThan(N), GreaterThan(N)
and GreaterEqThan(N) templates are all examples of such library templates as they all assume
that the inputs are all constrained to be within N bits. If this does not hold, the template output
can be manipulated. As an example, consider the snippet below. The above code does not

1 template EpochKeyLite(EPOCH_KEY_NONCE_PER_EPOCH) {
2 ...
3

4 component nonce_lt = LessThan(8);
5 nonce_lt.in[0] <== nonce;
6 nonce_lt.in[1] <== EPOCH_KEY_NONCE_PER_EPOCH;
7 nonce_lt.out === 1;
8

9 ...
10 }

Snippet 4.2: Snippet of EpochKeyLite with an unsafe use of LessThan

include a check that nonce is within the range of an 8 bit value. This allows a malicious user
to manipulate the circuit by providing a very large nonce, say P - 1, causing an overflow in
the LessThan circuit (where P is the large prime). This will result in the template improperly
reporting that P - 1 is less than EPOCH_KEY_NONCE_PER_EPOCH.

Impact Several templates make extensive use of the comparator templates from CircomLib,
including ProveReputation, UserStateTransition and EpochKeyLite. These circuits implement
critical behaviors in the project and can be manipulated in ways the developers likely do not
intend. For example, the above snippet is used to ensure that a user can only generate a limited
number of keys within an epoch. Without the range check, users can generate about 255 more
keys than intended.

Recommendation While a previous auditor recommended that some of these range checks
should be removed to save constraints, their removal compromises the security of the system,
especially when the inputs are private (as is the case with nonce above). Ensure that a range
check is performed on all inputs to the comparator circuits.

Veridise Audit Report: Unirep © 2023 Veridise Inc.

10 4 Vulnerability Report

4.1.3 V-UNI-VUL-003: Potential Overflow in User State Transition

Severity Medium Commit 0985a28

Type Integer Overflow Status Intended Behavior
File(s) userStateTransition.circom

Location(s) UserStateTransition

The Unirep protocol defines different types of data that will be combined in different ways
when a user transitions their state. One type of data is “Sum Data Fields” that will be combined
by summing the user’s previous attestations as well as all attestations across epoch keys. There
is nothing preventing these data entries from overflowing though, allowing accidental or
intentional harm to users via an attester especially since reputation is stored as a sum field.

1 template UserStateTransition(
2 STATE_TREE_DEPTH,
3 EPOCH_TREE_DEPTH,
4 HISTORY_TREE_DEPTH,
5 EPOCH_KEY_NONCE_PER_EPOCH,
6 FIELD_COUNT,
7 SUM_FIELD_COUNT,
8 REPL_NONCE_BITS
9) {

10 ...
11

12 for (var j = 0; j < SUM_FIELD_COUNT; j++) {
13 if (i == 0) {
14 final_data[i][j] <== data[j] + new_data[i][j];
15 } else {
16 final_data[i][j] <== final_data[i-1][j] + new_data[i][j];
17 }
18 }
19

20 ...
21 }

Snippet 4.3: Location where data accumulation may overflow

Impact This depends partially on how attesters make use of these fields. However, since
positive and negative reputation are stored in separate data fields, it could allow a user to lose
their positive reputation or reset their negative reputation.

Recommendation Consider methods of preventing overflows if they are not desired. Currently
an attester might not know if a data value overflows since the specific data values are private
to the user. For example, in cases like reputation it may be desirable to specify that a value
saturates at the large prime.

Developer Response This behavior is consistent with our documentation. We leave it up to
the attester to ensure that values do not overflow (unless intended). For cases like reputation, we

© 2023 Veridise Inc. Veridise Audit Report: Unirep

4.1 Detailed Description of Issues 11

make attesters aware of this risk and advise them to use (relatively) small reputation increments
so that the likelihood of an overflow occurring is practically non-existent due to the size of the
large prime.

Veridise Audit Report: Unirep © 2023 Veridise Inc.

12 4 Vulnerability Report

4.1.4 V-UNI-VUL-004: Potential Overflow when Proving Reputation

Severity Medium Commit 0985a28

Type Integer Overflow Status Fixed
File(s) proveReputation.circom

Location(s) ProveReputation

The ProveReputation template allows users to prove that their reputation is sufficient to meet
certain conditions set by protocols. For example, this circuit allows users to prove that their
reputation exceeds some lower-bound or that it is less than some upper-bound. As these checks
are performed, however, the circuit has the potential to overflow since there are no checks on
the range of data[0] or data[1].

1 template ProveReputation(STATE_TREE_DEPTH, EPOCH_KEY_NONCE_PER_EPOCH, SUM_FIELD_COUNT
, FIELD_COUNT) {

2 ...
3

4 component min_rep_check = GreaterEqThan(252);
5 min_rep_check.in[0] <== data[0];
6 min_rep_check.in[1] <== data[1] + min_rep;
7

8 ...
9

10 component max_rep_check = GreaterEqThan(252);
11 max_rep_check.in[0] <== data[1];
12 max_rep_check.in[1] <== data[0] + max_rep;
13

14 ...
15 }

Snippet 4.4: Location where arithmetic may overflow in ProveReputation

Impact If the “zero reputation” is chosen poorly or if the user has high enough reputation, it
is possible for an overflow to allow users to prove that they meet a condition when they do not.
Additionally, since it appears that both data[0] and data[1] are private, such errors could not
be detected by the protocol.

Recommendation Perform appropriate range checks on data[0] + max_rep and data[1] +

min_rep to ensure that an overflow does not occur and is constrained to 252 bits as discussed in
V-UNI-VUL-002.

© 2023 Veridise Inc. Veridise Audit Report: Unirep

4.1 Detailed Description of Issues 13

4.1.5 V-UNI-VUL-005: Malformed ReusableMerkleTree Root

Severity Medium Commit 0985a28

Type Logic Error Status Fixed
File(s) ReusableMerkleTree.sol

Location(s) update

As its name implies, the ReusableMerkleTree library allows contracts to create re-usable in-
cremental merkle trees. The content of such trees is stored explicitly in storage and can be
“reset” by setting the number of leaves to 0 and changing the root back to the default root.
The previous elements in the tree are then overwritten as a new tree is created. As this is a
resettable incremental tree, functionality to add to and update the incremental merkle tree
is also included. As the merkle tree may contain entries from prior instantiations of the tree,
though, care must be taken to ensure to not include stale subtrees. In the update logic, however,
this is done by detecting if the latest entry in the subtree is being updated. If it is, additional
logic will determine if a zero value should be used when computing the hash. However, using
zero value hashes is necessary in more than just the case where the latest entry is updated. As
an example, consider a tree with 2 two entries. If the first entry of the tree is updated, it will be
hashed together with the second entry when computing the root. However, on the levels above
the root computation should hash the current for the subtree with the zero root.

Impact If the tree is updated using the existing logic, at least one hash in the tree will be
incorrect until the tree is full. This allows prior entries in the tree to be proven or, in the case
where there were no prior entries, allows any path that hashes to 0 at the current level of the tree.
While impact of this can be severe, in the case of Unirep, leaves of the tree must change even for
specific individuals between resets. As such, for an attacker to take advantage of this, they must
essentially compute new data to hash to one of these additional values. As this is extremely
difficult to do the likelihood of the attack occurring is low (note, however, that this issue also
increase the likelihood of it occurring due to the number of entries that one may collide with).

Recommendation Use the zero value whenever any level of the tree may exceed the current
number of leaves. To reduce the likelihood of mistakes, it may be useful to save the zero value
in the next entry (if a left entry) when adding to the tree.

Veridise Audit Report: Unirep © 2023 Veridise Inc.

14 4 Vulnerability Report

1 function update(
2 ReusableTreeData storage self,
3 uint256 leafIndex,
4 uint256 newLeaf
5) public returns (uint256) {
6 ...
7

8 uint256 hash = newLeaf;
9 bool isLatest = leafIndex == leafCount - 1;

10 for (uint8 i = 0; i < depth;) {
11 self.elements[indexForElement(i, leafIndex, depth)] = hash;
12 uint256[2] memory siblings;
13 if (leafIndex & 1 == 0) {
14 // it’s a left sibling
15 siblings = [
16 hash,
17 isLatest
18 ? defaultZero(i)
19 : self.elements[
20 indexForElement(i, leafIndex + 1, depth)
21]
22];
23 } else {
24 // it’s a right sibling
25 uint256 elementIndex = indexForElement(i, leafIndex - 1, depth);
26 siblings = [self.elements[elementIndex], hash];
27 }
28

29 ...
30 }
31

32 ...
33 }

Snippet 4.5: Location in the update function where root computation can be incorrect.

© 2023 Veridise Inc. Veridise Audit Report: Unirep

4.1 Detailed Description of Issues 15

4.1.6 V-UNI-VUL-006: Potential Attestation Loss

Severity Medium Commit 0985a28

Type Logic Error Status Intended Behavior
File(s) Unirep.sol

Location(s) attest

The Unirep protocol allows attesters to assert that changes should be made to the owners of
particular epoch keys. Over the course of the epoch, these changes are recorded the attester’s
epochTree which is a re-usable incremental merkle tree. When epochs expire, users are expected
to apply the changes recorded in the epochTree by performing a state transition. To do so,
however, the epoch tree root must be saved along with the state tree root in the history tree. In
the Unirep contract, this is done when transitioning to a new epoch but only if an update has
been made to the stateTree. Therefore, if no state tree update has been made the attestations
are discarded.

Impact As the state tree is only changed when a user is added by the attester or when a user
transitions state, it is possible for attestations to be lost. In particular, assuming no users are
updated it is possible for current users of the protocol to collude to discard undesirable updates
to the state (particularly if there are a small number of users). Since this epoch is essentially
discarded and ignored, this users may then transition from the previous epoch to the next epoch
(i.e. users may skip e to transition from e-1 to e+1).

Developer Response It is expected that the attester will validate an epoch key before perform-
ing an attestation. As long as this is done properly, then the epoch tree will be empty if the state
tree is empty.

Veridise Audit Report: Unirep © 2023 Veridise Inc.

16 4 Vulnerability Report

1 function updateEpochIfNeeded(
2 uint160 attesterId
3) public returns (uint48 epoch) {
4 ...
5

6 if (attester.stateTree.numberOfLeaves > 0) {
7 uint256 historyTreeLeaf = PoseidonT3.hash(
8 [attester.stateTree.root, attester.epochTree.root]
9);

10 uint256 root = IncrementalBinaryTree.insert(
11 attester.historyTree,
12 historyTreeLeaf
13);
14 attester.historyTreeRoots[root] = true;
15

16 ReusableMerkleTree.reset(attester.stateTree);
17

18 attester.epochTreeRoots[fromEpoch] = attester.epochTree.root;
19

20 emit HistoryTreeLeaf(attesterId, historyTreeLeaf);
21 }
22

23 ReusableMerkleTree.reset(attester.epochTree);
24

25 emit EpochEnded(epoch - 1, attesterId);
26

27 attester.currentEpoch = epoch;
28 }

Snippet 4.6: Location where the epochTree is reset

© 2023 Veridise Inc. Veridise Audit Report: Unirep

4.1 Detailed Description of Issues 17

4.1.7 V-UNI-VUL-007: Different Definitions of data[SUM_FIELD_COUNT]

Severity Medium Commit 0985a28

Type Logic Error Status Fixed
File(s) proveReputation.circom

Location(s) ProveReputation

The Unirep protocol allows attesters to define custom data that will be associated users. This
data is defined into two types: sum fields and replacement fields. The data entries between
SUM_FIELD_COUNT and FIELD_COUNT are reserved for replacement data, which reserves the upper
bits for an id and the lower bits for the data itself. In the ProveReputation circuit, though, the
entry at data[SUM_FIELD_COUNT] is expected to be a hash as shown below. Note that such a hash
will have a value between 0 and the large prime. At other places in the protocol, such as in the

1 component graffiti_hasher = Poseidon(1);
2 graffiti_hasher.inputs[0] <== graffiti_pre_image;
3

4 component graffiti_eq = IsEqual();
5 graffiti_eq.in[0] <== graffiti_hasher.out;
6 graffiti_eq.in[1] <== data[SUM_FIELD_COUNT];

Snippet 4.7: Location where data[SUM_FIELD_COUNT] is expected to be a hash in the
ProveReputation circuit

UserStateTransition circuit, the same data entry is expected to contain replacement data.

Impact As most locations expect that the data contained at data[SUM_FIELD_COUNT] will contain
replacement data, it is likely that this function will not work as intended.

Veridise Audit Report: Unirep © 2023 Veridise Inc.

18 4 Vulnerability Report

1 for (var i = 0; i < EPOCH_KEY_NONCE_PER_EPOCH; i++) {
2 // first combine the sum data
3 for (var j = 0; j < SUM_FIELD_COUNT; j++) {
4 if (i == 0) {
5 final_data[i][j] <== data[j] + new_data[i][j];
6 } else {
7 final_data[i][j] <== final_data[i-1][j] + new_data[i][j];
8 }
9 }

10 // then combine the replacement data
11 for (var j = 0; j < REPL_FIELD_COUNT; j++) {
12 var field_i = SUM_FIELD_COUNT + j;
13 index_check[i][j] = UpperLessThan(REPL_NONCE_BITS);
14 index_check[i][j].in[0] <== new_data[i][field_i];
15 if (i == 0) {
16 index_check[i][j].in[1] <== data[field_i];
17 } else {
18 index_check[i][j].in[1] <== final_data[i-1][field_i];
19 }
20

21 field_select[i][j] = Mux1();
22 field_select[i][j].s <== index_check[i][j].out;
23 if (i == 0) {
24 field_select[i][j].c[1] <== data[field_i];
25 } else {
26 field_select[i][j].c[1] <== final_data[i-1][field_i];
27 }
28 field_select[i][j].c[0] <== new_data[i][field_i];
29

30 final_data[i][field_i] <== field_select[i][j].out;
31 }
32 }

Snippet 4.8: Location where data[SUM_FIELD_COUNT] is expected to be replacement data

© 2023 Veridise Inc. Veridise Audit Report: Unirep

4.1 Detailed Description of Issues 19

4.1.8 V-UNI-VUL-008: Unconstrained Public Input

Severity Low Commit 0985a28

Type Unconstrained Public Input Status Fixed
File(s) epochKeyLite.circom

Location(s) EpochKeyLite

The EpochKeyLite circuit allows private users to publicly attest values that can be used by
applications. Such values are application-specific and do not need circuit validation. If users are
not careful, however, it may possible for values be manipulated after the proof is generated.
There have been reports of such cases (such as here) however Veridise has been unable to
independently verify this attack even on Circom 2.0 with a fixed version of the circuit shown in
the issue tracker.

1 template EpochKeyLite(EPOCH_KEY_NONCE_PER_EPOCH) {
2 ...
3

4 signal input sig_data;
5

6 ...
7 }

Snippet 4.9: The public input signal that is never used by EpochKeyLite

Impact If the report is correct, this allows potentially malicious users to take a valid proof
and re-verify it with a different public value. Since this will be used in conjunction with DeFi
applications, such unconstrained public signals also provide an opportunity for malicious users
to front-run and change public values. This means that DeFi applications cannot prevent these
attacks by only allowing a single proof to be submitted.

Recommendation Use a dummy square to constrain sig_data as we continue to seek more
clarity about this issue.

Veridise Audit Report: Unirep © 2023 Veridise Inc.

https://github.com/0xPARC/zk-bug-tracker#5-unused-public-inputs-optimized-out

20 4 Vulnerability Report

4.1.9 V-UNI-VUL-009: Replacement Data ID validation not Monotonically
Increasing

Severity Low Commit 0985a28

Type Logic Error Status Fixed
File(s) userStateTransition.circom

Location(s) UserStateTransition

The Unirep protocol allows attesters to declare “Replacement Data” with content that will be
replaced with each attribution. To determine which version of the data should be used, the
protocol uses the higher order bits as an ID, where the data with the highest ID should be
preserved. In the UserStateTransition circuit though, data may be replaced even though the
ID does not increase as shown below.

1 for (var i = 0; i < EPOCH_KEY_NONCE_PER_EPOCH; i++) {
2 ...
3

4 // then combine the replacement data
5 for (var j = 0; j < REPL_FIELD_COUNT; j++) {
6 var field_i = SUM_FIELD_COUNT + j;
7 index_check[i][j] = UpperLessThan(REPL_NONCE_BITS);
8 index_check[i][j].in[0] <== new_data[i][field_i];
9 if (i == 0) {

10 index_check[i][j].in[1] <== data[field_i];
11 } else {
12 index_check[i][j].in[1] <== final_data[i-1][field_i];
13 }
14

15 field_select[i][j] = Mux1();
16 field_select[i][j].s <== index_check[i][j].out;
17 if (i == 0) {
18 field_select[i][j].c[1] <== data[field_i];
19 } else {
20 field_select[i][j].c[1] <== final_data[i-1][field_i];
21 }
22 field_select[i][j].c[0] <== new_data[i][field_i];
23

24 final_data[i][field_i] <== field_select[i][j].out;
25 }
26 }

Snippet 4.10: Location in UserStateTransition where data may be replaced if it has the same ID

Impact This gives users some choice over the data that they want to be preserved if they can
generate data with the same ID. Additionally, if a piece of replacement data has ID 0, it may be
accidentally overwritten if a user does not use one of their epoch keys, as in that case the data is
required to be 0 (which will have an ID of 0).

Recommendation Enforce that IDs must be monotonically increasing in the circuit.

© 2023 Veridise Inc. Veridise Audit Report: Unirep

4.1 Detailed Description of Issues 21

4.1.10 V-UNI-VUL-010: Manual Signup may be Incorrect

Severity Low Commit 0985a28

Type Data Validation Status Fixed
File(s) Unirep.sol

Location(s) manualUserSignUp

The Unirep protocol gives attesters the ability to specify unique initial data if desired by using
the manualUserSignUp function. To do so, the attester must specify the state tree leaf along with
initial data associated with the account. The state tree leaf, however, is the hash of several pieces
of information, including the initial account data. Currently there is no guarantee, however,
that the data provided to manualUserSignUp is the same data that was used to calculate the
stateTreeLeaf.

1 function manualUserSignUp(
2 uint48 epoch,
3 uint256 identityCommitment,
4 uint256 stateTreeLeaf,
5 uint256[] calldata initialData
6) public {
7 _userSignUp(epoch, identityCommitment, stateTreeLeaf);
8 if (initialData.length > fieldCount) revert OutOfRange();
9 for (uint8 x = 0; x < initialData.length; x++) {

10 if (initialData[x] >= SNARK_SCALAR_FIELD) revert InvalidField();
11 if (
12 x >= sumFieldCount &&
13 initialData[x] >= 2 ** (254 - replNonceBits)
14) revert OutOfRange();
15 emit Attestation(
16 type(uint48).max,
17 identityCommitment,
18 uint160(msg.sender),
19 x,
20 initialData[x]
21);
22 }
23 }

Snippet 4.11: Location where an attester can specify alternate initial data

Impact If the data used to calculate the stateTreeLeaf is inconsistent with initalData, a user
will not be able to use the protocol as knowledge of the data is required to allow a user to
properly transition. Therefore, an attester can accidentally or maliciously prevent a user from
using their account. Note, that such a user could always sign up with a separate identify
commitment but it could be an inconvenience (for example, if there were a reason to use the
same identityCommitment between applications).

Recommendation While we recognize that the current calculation of the stateTreeLeaf would
prevent such validation, the leaf calculation could be changed to h(h(data), h(identity_secret

, attester_id, epoch)).

Veridise Audit Report: Unirep © 2023 Veridise Inc.

22 4 Vulnerability Report

4.1.11 V-UNI-VUL-011: Replacement Data IDs may not Monotonically Increase

Severity Low Commit 0985a28

Type Logic Error Status Fixed
File(s) Unirep.sol

Location(s) attest

The Unirep protocol allows attesters to declare “Replacement Data” with content that will be
replaced with each attribution. To determine which version of the data should be used, the
protocol uses an ID where the data with the highest ID should be preserved. Currently, as
shown below, Unirep uses the current timestamp as the replacement data ID. This, however,
will not guaranteed that the IDs will increase as any attestations made in the same block (or
same transaction if batched) will have the same ID. This allows for ambiguity that could be
exploited by users.

1 function attest(
2 uint256 epochKey,
3 uint48 epoch,
4 uint fieldIndex,
5 uint change
6) public {
7 ...
8

9 } else {
10 if (change >= 2 ** (254 - replNonceBits)) {
11 revert OutOfRange();
12 }
13 change += block.timestamp << (254 - replNonceBits);
14 epkData.data[fieldIndex] = change;
15 }
16

17 ...
18 }

Snippet 4.12: Location in the attest function where IDs are assigned to replacement data

Impact This gives users some choice over the data that they want to be preserved if they can
generate data with the same IDs. As avoiding this would require a slow attestation throughput,
it is likely that some replacement data will have the same ID.

Recommendation Use a global counter rather than timestamp.

© 2023 Veridise Inc. Veridise Audit Report: Unirep

4.1 Detailed Description of Issues 23

4.1.12 V-UNI-VUL-012: Private Information Stored in Plaintext

Severity Low Commit 0985a28

Type Information Leakage Status Acknowledged
File(s) UserState.ts

Location(s) N/A

Due to the untrusted nature of most client environments such as browsers or phones, it is
important to protect important secrets against possible theft. Currently, however, the UserState

class in Unirep’s typescript library stores secret user information as plaintext as it is using
Semaphore’s Identity class as shown below.

1 export default class UserState {
2 public id: Identity
3 public sync: Synchronizer
4

5 ...
6 }

Snippet 4.13: The UserState class with a public Semaphore identity that stores secrets as
plaintext

Impact By storing secret information as plaintext, it is possible for malicious applications to
steal user secrets.

Recommendation Implement some method of protecting user secrets.

Developer Response We are currently implementing such a feature for the next release of the
Unirep protocol.

Veridise Audit Report: Unirep © 2023 Veridise Inc.

24 4 Vulnerability Report

4.1.13 V-UNI-VUL-013: Unnecessary Num2Bits(254) Constraints

Severity Warning Commit 0985a28

Type Unnecessary Constraints Status Fixed
File(s) epochKeyLite.circom, modulo.circom, proveReputation.circom

Location(s) EpochKeyLite, Modulo, ProveReputation

Unlike most programming languages, operations in ZK circuits are made over signals that range
from 0 to P where P is the large prime. For this reason, it is important to perform range checks
using Num2Bits to ensure a signal only accepts values of a particular bit width. The developers
have such range check, but rather than checking the bit width using Num2Bits(N) where N is the
number of bits, they instead always use Num2Bits(254) and then check that the upper 254 - N

bits are 0 as shown below.

1 template Modulo() {
2 ...
3

4 // check that remainder and divisor are both < 2**252
5 component remainder_bits = Num2Bits(254);
6 remainder_bits.in <== remainder;
7 for (var x = 252; x < 254; x++) {
8 remainder_bits.out[x] === 0;
9 }

10

11 ...
12 }

Snippet 4.14: An instance where Num2Bits(254) can be be replaced with Num2Bits(252)

Impact As this pattern is used to perform range checks on specific values, it saves constraints
to perform Num2Bits with the desired number of bits.

Recommendation Replace cases that use the above pattern with Num2Bits of the appropriate
bit-width.

© 2023 Veridise Inc. Veridise Audit Report: Unirep

4.1 Detailed Description of Issues 25

4.1.14 V-UNI-VUL-014: Add Template Variable Assertions

Severity Warning Commit 0985a28

Type Data Validation Status Fixed
File(s) Multiple

Location(s) Multiple

Circom allows developers to instantiate templates with static values at compile time. This allows
templates to declare and uses configurable constants so that they can be easily instantiated and
re-used. To prevent unsafe configurations, Circom also allows developers to add assertions over
that template parameter assignments must obey. As several Unirep templates make assumptions
about the instantiated values of these template parameters, the developers should consider
adding assertions over the parameter values.

1 template EpochKeyLite(EPOCH_KEY_NONCE_PER_EPOCH) {
2 ...
3

4 component nonce_lt = LessThan(8);
5 nonce_lt.in[0] <== nonce;
6 nonce_lt.in[1] <== EPOCH_KEY_NONCE_PER_EPOCH;
7 nonce_lt.out === 1;
8

9 ...
10 }

Snippet 4.15: An instance where the developers assume EPOCH_KEY_NONCE_PER_EPOCH < 256

Impact Configuration errors can be costly, as they could lead to exploits and fixing such errors
would require running a new trusted setup ceremony.

Recommendation Such assertions don’t add constraints to the circuit and can prevent potential
configuration errors. Consider adding appropriate assertions over the template parameters.

Veridise Audit Report: Unirep © 2023 Veridise Inc.

26 4 Vulnerability Report

4.1.15 V-UNI-VUL-015: Potential for Private Information Leakage

Severity Warning Commit 0985a28

Type Information Leakage Status Acknowledged
File(s) proveReputation.circom

Location(s) ProveReputation

ZK circuits partition inputs into those that can be publicly revealed and those that should be kept
private as they may contain secret information. In the case of Unirep, a user’s overall reputation
is intended to be private. However, some of the features allow a user to prove facts about this
reputation such as if it is above or below a certain threshold using the ProveReputation circuit.
Such features necessarily leak information about the private input to other users.

1 template ProveReputation(STATE_TREE_DEPTH, EPOCH_KEY_NONCE_PER_EPOCH, SUM_FIELD_COUNT
, FIELD_COUNT) {

2 ...
3

4 component min_rep_check = GreaterEqThan(252);
5 min_rep_check.in[0] <== data[0];
6 min_rep_check.in[1] <== data[1] + min_rep;
7

8 component if_not_prove_min_rep = IsZero();
9 if_not_prove_min_rep.in <== prove_min_rep;

10

11 component output_rep_check = OR();
12 output_rep_check.a <== if_not_prove_min_rep.out;
13 output_rep_check.b <== min_rep_check.out;
14

15 output_rep_check.out === 1;
16

17 ...
18 }

Snippet 4.16: The ProveReputation circuit which can leak information about a user’s reputation

Impact Depending on how the circuit is used, these features could allow a user to accidentally
publish their overall reputation (i.e. data[0]-data[1]) even in cases where they don’t intend to.
Depending on the circumstances (such as the length of the attestation history) this could revel a
user’s epoch key(s) as well.

Recommendation Consider warning users of this possibility so that they are aware of the
risks of revealing too much information about their reputation.

© 2023 Veridise Inc. Veridise Audit Report: Unirep

4.1 Detailed Description of Issues 27

4.1.16 V-UNI-VUL-016: Wasted Storage

Severity Warning Commit 0985a28

Type Storage Optimization Status Fixed
File(s) IUnirep.sol

Location(s) EpochKeyData

The Unirep protocol allows Attesters to declare data that is unique to individual epoch keys
and users. To hold information about this data, the IUnirep interface declares the EpochKeyData

struct which allocates a static array of size 30 to hold the data. The Unirep contract, however,
uses the immutable variable fieldCount as the size of the attester data without comparing it
against 30.

1 struct EpochKeyData {
2 uint256 leaf;
3 uint256[30] data;
4 uint48 leafIndex;
5 uint48 epoch;
6 }

Snippet 4.17: Unnecessarily large data struct field

Impact In the event that fieldCount is less than 30, storage will be wasted as the Unirep

contract maintains an EpochKeyData entry for every epoch key that is attested to. If fieldCount is
greater than 30, the contract will be broken.

Recommendation Ideally change the size of data to be fieldCount. If that is not done, add a
requirement that fieldCount <= 30 in the constructor to prevent potential initialization errors.

Veridise Audit Report: Unirep © 2023 Veridise Inc.

28 4 Vulnerability Report

4.1.17 V-UNI-VUL-017: Assumed Replacement Data Ordering

Severity Warning Commit 0985a28

Type Usability Issue Status Fixed
File(s) UserState.ts

Location(s) getData

The Unirep protocol allows attesters to declare “Replacement Data” with content that will be
replaced with each attribution as dictated by the data’s id. In Unirep’s typescript library, though,
they assume that the latest attribution is the one with the highest id and therefore the one that
should be preserved. While the Unirep developers have switched to a global ID that should
match this expectation, it does not consider the case where users of the protocol override the id
to provide different behaviors.

1 public getData = async (
2 _toEpoch?: number,
3 _attesterId: bigint | string = this.sync.attesterId
4): Promise<bigint[]> => {
5 ...
6

7 if (orClauses.length === 0) return data
8 const attestations = await this.sync._db.findMany(’Attestation’, {
9 where: {

10 OR: orClauses,
11 attesterId: attesterId,
12 },
13 orderBy: {
14 index: ’asc’,
15 },
16 })
17 for (const a of attestations) {
18 const { fieldIndex } = a
19 if (fieldIndex < this.sync.settings.sumFieldCount) {
20 data[fieldIndex] = (data[fieldIndex] + BigInt(a.change)) % F
21 } else {
22 data[fieldIndex] = BigInt(a.change)
23 }
24 }
25 return data
26 }

Snippet 4.18: Location where replacement data is set based on attestation order

Impact As the above function is intended for use by users who will be submitting proofs to
the ZK circuits, if the correct data is not fetched, users will be unable to submit valid proofs to
the ZK circuits.

Recommendation While we do note that this is consistent with Unirep’s behavior after
the switch to a global ID counter, it deviates from the behavior that Unirep has in their
documentation. If this library is intended to be used by those who extend Unirep, the developers

© 2023 Veridise Inc. Veridise Audit Report: Unirep

4.1 Detailed Description of Issues 29

should consider slightly modifying this logic to be consistent with the documentation they have
available for developers.

Veridise Audit Report: Unirep © 2023 Veridise Inc.

30 4 Vulnerability Report

4.1.18 V-UNI-VUL-018: Confusing Corner Case Logic

Severity Warning Commit 0985a28

Type Usability Issue Status Fixed
File(s) Synchronizer.ts,UserState.ts

Location(s) latestStateTreeLeafIndex, genEpochTree

While processing on-chain data, it is possible to reach a state that is unexpected by the typescript
library. In most cases, the Unirep developers throw an error in this case. In a few isolated
locations, such as those shown below, some confusing logic has been added to handle corner
cases.

1 async latestStateTreeLeafIndex(
2 _epoch?: number,
3 _attesterId: bigint | string = this.sync.attesterId
4): Promise<number> {
5 ...
6 if (latestTransitionedEpoch === 0) {
7 ...
8 if (!signup) {
9 throw new Error(’@unirep/core:UserState: user is not signed up’)

10 }
11 **if (signup.epoch !== currentEpoch) {
12 return 0
13 }**
14 ...
15 }
16 ...
17 }

Snippet 4.19: Location where the zero index is returned in what appears to be an error case

Impact In these cases developers may not correctly understand the value being returned, which
could lead to programming errors. In addition, if these checks are solving a specific problem, it
should be documented so Unirep developers do not remove the code while refactoring.

Recommendation Add additional documentation about the expected inputs and outputs of
the APIs, noting in particular corner cases that the developers handle specially.

© 2023 Veridise Inc. Veridise Audit Report: Unirep

4.1 Detailed Description of Issues 31

1 async genEpochTree(
2 _epoch: number | ethers.BigNumberish,
3 attesterId: bigint | string = this.attesterId
4): Promise<IncrementalMerkleTree> {
5 ...
6 if (leaves.length === 0) tree.insert(0)
7 for (const { hash } of leaves) {
8 tree.insert(hash)
9 }

10 return tree
11 }

Snippet 4.20: Location where a leaf is inserted if epoch tree is empty

Veridise Audit Report: Unirep © 2023 Veridise Inc.

32 4 Vulnerability Report

4.1.19 V-UNI-VUL-019: Containerize TypeScript Classes

Severity Warning Commit 0985a28

Type Access Control Status Fixed
File(s) Synchronizer.ts, UserState.ts

Location(s) Synchronizer, UserState

Unirep provides a typescript library that allows users to interact with the protocol. The library
defines a set of classes that collates on-chain data and allows users to easily interact with the
application without needing to track the on-chain state themselves. As shown below, several of
these classes declare important data as public, which could allow accidental modification by
external entities.

1 export class Synchronizer extends EventEmitter {
2 public _db: DB
3 prover: Prover
4 provider: any
5 unirepContract: ethers.Contract
6 private _attesterId: bigint[] = []
7 public settings: any
8 private _attesterSettings: { [key: string]: AttesterSetting } = {}
9 protected defaultStateTreeLeaf: bigint = BigInt(0)

10 protected defaultEpochTreeLeaf: bigint = BigInt(0)
11 private _syncAll = false
12

13 private _eventHandlers: any
14 private _eventFilters: any
15

16 private pollId: string | null = null
17 public pollRate: number = 5000
18 public blockRate: number = 100000
19

20 private setupComplete = false
21

22 private lock = new AsyncLock()
23

24 ...
25 }

Snippet 4.21: Synchronizer class defines contract settings as public, allowing accidental
modification

Recommendation Similar to other protocols like Semaphore, rather than declaring data as
public, containerize the class with getters so that developers cannot accidentally modify crutial
settings.

© 2023 Veridise Inc. Veridise Audit Report: Unirep

https://github.com/semaphore-protocol/semaphore/blob/main/packages/identity/src/identity.ts

4.1 Detailed Description of Issues 33

1 export default class UserState {
2 public id: Identity
3 public sync: Synchronizer
4

5 ...
6 }

Snippet 4.22: UserState class defines private identity as public, allowing accidental
modification

Veridise Audit Report: Unirep © 2023 Veridise Inc.

Formal Verification 5
In this section, we describe the specifications that were used to formally verify the correctness
of the ZK circuits. For each specification, we log its current status (i.e. verified, not verified).
Note that due to the size and complexity of the proofs, we will not include them in the official
report, the circuit definitions and proofs can be found in the following locations:

▶ Coda Circuits:https://github.com/Veridise/Coda/tree/certcom/dsl/circuits/unirep
▶ Proofs:https://github.com/Veridise/Coda/tree/certcom/BigInt/src/Benchmarks/

Unirep

Table 5.1 summarizes the specifications and their verification status:

Table 5.1: Summary of Discovered Vulnerabilities.

ID Description Status
V-UNI-SPEC-001 MerkleTreeInclusionProof Functional Correctness Verified
V-UNI-SPEC-002 EpochKeyHasher Functional Correctness Verified
V-UNI-SPEC-003 EpochTreeLeaf Functional Correctness Verified
V-UNI-SPEC-004 StateTreeLeaf Functional Correctness Verified
V-UNI-SPEC-005 IdentitySecret Functional Correctness Verified
V-UNI-SPEC-006 IdentityCommitment Functional Correctness Verified
V-UNI-SPEC-007 UpperLessThan Functional Correctness Verified
V-UNI-SPEC-008 replFieldEqual Functional Correctness Verified
V-UNI-SPEC-009 Signup Functional Correctness Verified
V-UNI-SPEC-010 EpochKeyLite Functional Correctness Verified
V-UNI-SPEC-011 EpochKey Functional Correctness Verified
V-UNI-SPEC-012 PreventDoubleAction Functional Correctness Verified
V-UNI-SPEC-013 ProveReputation Functional Correctness Verified
V-UNI-SPEC-014 UserStateTransition Functional Correctness Verified

Veridise Audit Report: Unirep © 2023 Veridise Inc.

https://github.com/Veridise/Coda/tree/certcom/dsl/circuits/unirep
https://github.com/Veridise/Coda/tree/certcom/BigInt/src/Benchmarks/Unirep
https://github.com/Veridise/Coda/tree/certcom/BigInt/src/Benchmarks/Unirep

36 5 Formal Verification

5.1 Detailed Description of Formal Verification Results

5.1.1 V-UNI-SPEC-001: MerkleTreeInclusionProof Functional Correctness

Commit 510c971 Status Verified
Files incrementalMerkleTree.circom

Functions MerkleTreeInclusionProof

Description The output of the circuit is the root of the Merkle Tree given the leaf of the tree
and its proof of inclusion.

Formal Definition The following shows the formal definition for the MerkleTreeInclusionProof
template:

1 let mrkl_tree_incl_pf =

2 Circuit

3 { name= "MerkleTreeInclusionProof"

4 ; inputs=

5 [("n_levels", tnat)

6 ; ("leaf", tf)

7 ; ("path_index", tarr_tf n_levels)

8 ; ("path_elements", tarr_tf n_levels)]

9 ; outputs= [("root", t_r)]

10 ; dep= None

11 ; body=

12 elet "leaf_zero" (call "IsZero" [leaf])

13 (elet "u0"

14 (assert_eq (v "leaf_zero") f0)

15 (elet "z" (zip path_index path_elements) (hasher z n_levels leaf)))

16 }

Formal Specification The following shows the formal specification for the MerkleTreeInclusionProof
template:

1 let _i = v "_i"

2 let x = v "x"

3 let m = v "m"

4 let c = v "c"

5 let n_levels = v "n_levels"

6 let leaf = v "leaf"

7 let path_index = v "path_index"

8 let path_elements = v "path_elements"

9 let z = v "z"

10 let u_hasher z init = unint "MrklTreeInclPfHash" [z; init]

11 let u_zip xs ys = unint "zip" [xs; ys]

12 let z_i_0 z = tget (get z _i) 0

13 let z_i_1 z = tget (get z _i) 1

14

15 let lam_mtip z =

© 2023 Veridise Inc. Veridise Audit Report: Unirep

5.1 Detailed Description of Formal Verification Results 37

16 lama "_i" tint

17 (lama "x" tf

18 (elet "u0"

19 (* path_index[i] binary *)

20 (assert_eq (fmul (z_i_0 z) (fsub f1 (z_i_0 z))) f0)

21 (elet "c"

22 (const_array (tarr_tf z2)

23 [const_array tf [x; z_i_1 z]; const_array tf [z_i_1 z; x]])

24 (elet "m"

25 (call "MultiMux1" [z2; c; z_i_0 z])

26 (call "Poseidon" [z2; m])))))

27

28 let hasher z len init =

29 iter z0 len (lam_mtip z) ~init ~inv:(fun i ->

30 tfq (qeq nu (u_hasher (u_take i z) init)))

31

32 (* {F | nu = #MrklTreeInclPfHash (zip pathIndices siblings) leaf } *)

33 let t_r =

34 tfq

35 (qand

36 (qeq nu (u_hasher (u_zip path_index path_elements) leaf))

37 (qnot (qeq (v "leaf") f0)))

Veridise Audit Report: Unirep © 2023 Veridise Inc.

38 5 Formal Verification

5.1.2 V-UNI-SPEC-002: EpochKeyHasher Functional Correctness

Commit 510c971 Status Verified
Files leafHasher.circom

Functions EpochKeyHasher

Description The output of the circuit is the poseidon hash of the user’s identity secret and a
combination of the attester id, epoch and nonce.

Formal Definition The following shows the formal definition for the EpochKeyHasher tem-
plate:

1 let epoch_key_hasher =

2 Circuit

3 { name= "EpochKeyHasher"

4 ; inputs=

5 [("identity_secret", tf)

6 ; ("attester_id", tf)

7 ; ("epoch", tf)

8 ; ("nonce", tf)]

9 ; outputs=

10 [("out", t_epoch_key_hasher identity_secret attester_id epoch nonce)]

11 ; dep= None

12 ; body=

13 call "Poseidon"

14 [z2

15 ; const_array tf

16 [identity_secret

17 ; fadds

18 [attester_id

19 ; fmul (fpow f2 (zn 160)) epoch

20 ; fmul (fpow f2 (zn 208)) nonce]]] }

Formal Specification The following shows the formal specification for the EpochKeyHasher

template:

1 let identity_secret = v "identity_secret"

2 let attester_id = v "attester_id"

3 let epoch = v "epoch"

4 let nonce = v "nonce"

5 (* EpochKeyHasher *)

6

7 let t_epoch_key_hasher identity_secret attester_id epoch nonce =

8 tfq

9 (qeq nu

10 (u_poseidon z2

11 (const_array tf

12 [identity_secret

13 ; fadds

© 2023 Veridise Inc. Veridise Audit Report: Unirep

5.1 Detailed Description of Formal Verification Results 39

14 [attester_id

15 ; fmul (fpow f2 (zn 160)) epoch

16 ; fmul (fpow f2 (zn 208)) nonce]])))

Veridise Audit Report: Unirep © 2023 Veridise Inc.

40 5 Formal Verification

5.1.3 V-UNI-SPEC-003: EpochTreeLeaf Functional Correctness

Commit 510c971 Status Verified
Files leafHasher.circom

Functions EpochTreeLeaf

Description The output of the circuit is the poseidon hash of the user’s secret data and the
epoch key.

Formal Definition The following shows the formal definition for the EpochTreeLeaf template:

1 let epoch_tree_leaf =

2 Circuit

3 { name= "EpochTreeLeaf"

4 ; inputs=

5 [("FIELD_COUNT", tnat); ("epoch_key", tf); ("data", tarr_tf field_count)]

6 ; outputs= [("out", t_epoch_tree_leaf)]

7 ; dep= None

8 ; body= iter z0 field_count lam_eptl ~init:(v "epoch_key") ~inv:inv_eptl }

Formal Specification The following shows the formal specification for the EpochTreeLeaf

template:

1 let field_count = v "FIELD_COUNT"

2

3 let lam_eptl =

4 lama "i" tint

5 (lama "x" tf

6 (call "Poseidon" [z2; const_array tf [v "x"; get (v "data") (v "i")]]))

7

8 let u_epoch_tree_leaf a b = unint "u_epoch_tree_leaf" [a; b]

9

10 let inv_eptl i =

11 tfq (qeq nu (u_epoch_tree_leaf (take (v "data") i) (v "epoch_key")))

12

13 let t_epoch_tree_leaf =

14 tfq (qeq nu (u_epoch_tree_leaf (v "data") (v "epoch_key")))

© 2023 Veridise Inc. Veridise Audit Report: Unirep

5.1 Detailed Description of Formal Verification Results 41

5.1.4 V-UNI-SPEC-004: StateTreeLeaf Functional Correctness

Commit 510c971 Status Verified
Files leafHasher.circom

Functions StateTreeLeaf

Description The output of the circuit is the poseidon hash of the user’s secret data, the user’s
identity secret, and a combination of the attester id and epoch.

Formal Definition The following shows the formal definition for the StateTreeLeaf template:

1 let state_tree_leaf =

2 Circuit

3 { name= "StateTreeLeaf"

4 ; inputs=

5 [("FIELD_COUNT", tnat)

6 ; ("data", tarr_tf field_count)

7 ; ("identity_secret", tf)

8 ; ("attester_id", tf)

9 ; ("epoch", tf)]

10 ; outputs=

11 [("out", t_state_tree_leaf identity_secret attester_id epoch (v "data"))]

12 ; dep= None

13 ; body=

14 elet "out1"

15 (iter z0 (nsub field_count z1) lam_stl

16 ~init:(get (v "data") z0)

17 ~inv:inv_stl)

18 (call "Poseidon"

19 [z3

20 ; const_array tf

21 [identity_secret

22 ; fadd attester_id (fmul (fpow f2 (zn 160)) epoch)

23 ; v "out1"]]) }

Formal Specification The following shows the formal specification for the StateTreeLeaf

template:

1 let data_drop_1 data = drop data z1

2

3 let lam_stl =

4 lama "i" tint

5 (lama "x" tf

6 (call "Poseidon"

7 [z2; const_array tf [v "x"; get (data_drop_1 (v "data")) (v "i")]]))

8

9 let u_state_tree_leaf a b = unint "u_state_tree_leaf" [a; b]

10

11 let inv_stl i =

12 tfq

Veridise Audit Report: Unirep © 2023 Veridise Inc.

42 5 Formal Verification

13 (qeq nu

14 (u_state_tree_leaf (take (data_drop_1 (v "data")) i) (get (v "data") z0)))

15

16 let t_state_tree_leaf identity_secret attester_id epoch data =

17 tfq

18 (qeq nu

19 (u_poseidon z3

20 (const_array tf

21 [identity_secret

22 ; fadd attester_id (fmul (fpow f2 (zn 160)) epoch)

23 ; u_state_tree_leaf (data_drop_1 data) (get data z0)])))

© 2023 Veridise Inc. Veridise Audit Report: Unirep

5.1 Detailed Description of Formal Verification Results 43

5.1.5 V-UNI-SPEC-005: IdentitySecret Functional Correctness

Commit 510c971 Status Verified
Files identity.circom

Functions IdentitySecret

Description The output of the circuit is the poseidon hash of the user’s nullifier and trapdoor.

Formal Definition The following shows the formal definition for the IdentitySecret tem-
plate:

1 let identity_secret1 =

2 Circuit

3 { name= "IdentitySecret"

4 ; inputs= [("nullifier", tf); ("trapdoor", tf)]

5 ; outputs= [("out", t_identity_secret)]

6 ; dep= None

7 ; body= call "Poseidon" [z2; const_array tf [nullifier; trapdoor]] }

Formal Specification The following shows the formal specification for the IdentitySecret

template:

1 let nullifier = v "nullifier"

2 let trapdoor = v "trapdoor"

3

4 let t_identity_secret =

5 tfq (qeq nu (u_poseidon z2 (const_array tf [nullifier; trapdoor])))

Veridise Audit Report: Unirep © 2023 Veridise Inc.

44 5 Formal Verification

5.1.6 V-UNI-SPEC-006: IdentityCommitment Functional Correctness

Commit 510c971 Status Verified
Files identity.circom

Functions IdentityCommitment

Description The output of the circuit is the poseidon hash of the user’s identity secret.

Formal Definition The following shows the formal definition for the IdentityCommitment

template:

1 let identity_commitment =

2 Circuit

3 { name= "IdentityCommitment"

4 ; inputs= [("nullifier", tf); ("trapdoor", tf)]

5 ; outputs=

6 [("secret", t_identity_commitment_secret nullifier trapdoor)

7 ; ("out", t_identity_commitment_out nullifier trapdoor)]

8 ; dep= None

9 ; body=

10 make

11 [call "IdentitySecret" [nullifier; trapdoor]

12 ; call "Poseidon"

13 [z1

14 ; const_array tf

15 [u_poseidon z2 (const_array tf [nullifier; trapdoor])]]] }

Formal Specification The following shows the formal specification for the IdentityCommitment

template:

1 let t_identity_commitment_out nullifier trapdoor =

2 tfq

3 (qeq nu

4 (u_poseidon z1

5 (const_array tf

6 [u_poseidon z2 (const_array tf [nullifier; trapdoor])])))

7

8 let t_identity_commitment_secret nullifier trapdoor =

9 tfq (qeq nu (u_poseidon z2 (const_array tf [nullifier; trapdoor])))

© 2023 Veridise Inc. Veridise Audit Report: Unirep

5.1 Detailed Description of Formal Verification Results 45

5.1.7 V-UNI-SPEC-007: UpperLessThan Functional Correctness

Commit 510c971 Status Verified
Files bigComparators.circom

Functions UpperLessThan

Description The circuit determines whether the upper 𝑁 bits of the first input is less than the
upper 𝑁 bits of the second input and outputs the result of the comparison.

Formal Definition The following shows the formal definition for the UpperLessThan template:

1 let upper_less_than =

2 Circuit

3 { name= "UpperLessThan"

4 ; inputs= [("n", t_n); ("in_", tarr_t_k tf z2)]

5 ; outputs= [("out", t_upper_less_than_out)]

6 ; dep= None

7 ; body=

8 elet "bits_0"

9 (call "Num2Bits" [zn 254; get (v "in_") (zn 0)])

10 (elet "bits_1"

11 (call "Num2Bits" [zn 254; get (v "in_") (zn 1)])

12 (elet "alias0"

13 (call "AliasCheck" [v "bits_0"])

14 (elet "alias1"

15 (call "AliasCheck" [v "bits_1"])

16 (elet "upper_bits_0"

17 (call "Bits2Num"

18 [v "n"; drop (v "bits_0") (nsub (zn 254) (v "n"))])

19 (elet "upper_bits_1"

20 (call "Bits2Num"

21 [v "n"; drop (v "bits_1") (nsub (zn 254) (v "n"))])

22 (elet "lt"

23 (call "LessThan"

24 [v "n"; v "upper_bits_0"; v "upper_bits_1"])

25 (v "lt"))))))) }

Formal Specification The following shows the formal specification for the UpperLessThan

template:

1 let t_n =

2 TRef

3 (tint

4 , QAnd

5 (lift (leq z0 nu)

6 , qand (lift (nu <=. zn 254)) (lift (zn 254 <=. zsub1 CPLen))))

7

8 let t_upper_less_than_out =

9 tfq

10 (ind_dec nu

Veridise Audit Report: Unirep © 2023 Veridise Inc.

46 5 Formal Verification

11 (lt

12 (zdiv (toUZ (get (v "in_") (zn 0))) (zpow z2 (nsub (zn 254) (v "n"))))

13 (zdiv (toUZ (get (v "in_") (zn 1))) (zpow z2 (nsub (zn 254) (v "n"))))))

© 2023 Veridise Inc. Veridise Audit Report: Unirep

5.1 Detailed Description of Formal Verification Results 47

5.1.8 V-UNI-SPEC-008: replFieldEqual Functional Correctness

Commit 510c971 Status Verified
Files bigComparators.circom

Functions replFieldEqual

Description The circuit determines if the lower 𝑁 bits of the first input is equal to the lower
𝑁 bits of the second input and outputs the result of the comparison.

Formal Definition The following shows the formal definition for the replFieldEqual tem-
plate:

1 let repl_field_equal =

2 Circuit

3 { name= "ReplFieldEqual"

4 ; inputs= [("REPL_NONCE_BITS", t_n); ("in_", tarr_t_k tf z2)]

5 ; outputs= [("out", t_repl_field_equal_out)]

6 ; dep= None

7 ; body=

8 elet "bits_0"

9 (call "Num2Bits" [zn 254; get (v "in_") (zn 0)])

10 (elet "bits_1"

11 (call "Num2Bits" [zn 254; get (v "in_") (zn 1)])

12 (elet "alias0"

13 (call "AliasCheck" [v "bits_0"])

14 (elet "alias1"

15 (call "AliasCheck" [v "bits_1"])

16 (elet "repl_bits_0"

17 (call "Bits2Num"

18 [nsub (zn 254) (v "REPL_NONCE_BITS")

19 ; take (v "bits_0")

20 (nsub (zn 254) (v "REPL_NONCE_BITS"))])

21 (elet "repl_bits_1"

22 (call "Bits2Num"

23 [nsub (zn 254) (v "REPL_NONCE_BITS")

24 ; take (v "bits_1")

25 (nsub (zn 254) (v "REPL_NONCE_BITS"))])

26 (elet "eq"

27 (call "IsEqual" [v "repl_bits_0"; v "repl_bits_1"])

28 (v "eq"))))))) }

Formal Specification The following shows the formal specification for the replFieldEqual

template:

1 let t_n =

2 TRef

3 (tint

4 , QAnd

5 (lift (leq z0 nu)

Veridise Audit Report: Unirep © 2023 Veridise Inc.

48 5 Formal Verification

6 , qand (lift (nu <=. zn 254)) (lift (zn 254 <=. zsub1 CPLen))))

7

8 let t_repl_field_equal_out =

9 tfq

10 (ind_dec nu

11 (eq

12 (zmod

13 (toUZ (get (v "in_") (zn 0)))

14 (zpow z2 (nsub (zn 254) (v "REPL_NONCE_BITS"))))

15 (zmod

16 (toUZ (get (v "in_") (zn 1)))

17 (zpow z2 (nsub (zn 254) (v "REPL_NONCE_BITS"))))))

© 2023 Veridise Inc. Veridise Audit Report: Unirep

5.1 Detailed Description of Formal Verification Results 49

5.1.9 V-UNI-SPEC-009: Signup Functional Correctness

Commit 510c971 Status Verified
Files signup.circom

Functions Signup

Description The circuit computes the user’s identity commitment and the initial state tree
leaf for the user where all data is 0. Both the identity commitment and the state tree leaf are
returned.

Formal Definition The following shows the formal definition for the Signup template:

1 let signup =

2 Circuit

3 { name= "Signup"

4 ; inputs=

5 [("FIELD_COUNT", tnat)

6 ; ("attester_id", tf)

7 ; ("epoch", tf)

8 ; ("identity_nullifier", tf)

9 ; ("identity_trapdoor", tf)]

10 ; outputs=

11 [("identity_commitment"

12 , t_identity_commitment_out identity_nullifier identity_trapdoor)

13 ; ("state_tree_leaf"

14 , t_state_tree_leaf

15 (u_poseidon z2

16 (const_array tf [identity_nullifier; identity_trapdoor]))

17 attester_id epoch (v "all_0"))]

18 ; dep= None

19 ; body=

20 elet "all_0"

21 (consts_n (v "FIELD_COUNT") f0)

22 (match_with’ ["ic_secret"; "ic_out"]

23 (call "IdentityCommitment" [identity_nullifier; identity_trapdoor])

24 (make

25 [v "ic_out"

26 ; call "StateTreeLeaf"

27 [v "FIELD_COUNT"

28 ; v "all_0"

29 ; v "ic_secret"

30 ; v "attester_id"

31 ; v "epoch"]])) }

Formal Specification The following shows the formal specification for the Signup template:

1 let identity_nullifier = v "identity_nullifier"

2 let identity_trapdoor = v "identity_trapdoor"

3 let identity_secret = v "identity_secret"

4 let reveal_nonce = v "reveal_nonce"

Veridise Audit Report: Unirep © 2023 Veridise Inc.

50 5 Formal Verification

5 let attester_id = v "attester_id"

6 let epoch = v "epoch"

7 let nonce = v "nonce"

8 let u_state_tree_leaf a b = unint "u_state_tree_leaf" [a; b]

9 let data_drop_1 data = drop data z1

10

11 let t_state_tree_leaf identity_secret attester_id epoch data =

12 tfq

13 (qeq nu

14 (u_poseidon z3

15 (const_array tf

16 [identity_secret

17 ; fadd attester_id (fmul (fpow f2 (zn 160)) epoch)

18 ; u_state_tree_leaf (data_drop_1 data) (get data z0)])))

19

20 let t_identity_commitment_out nullifier trapdoor =

21 tfq

22 (qeq nu

23 (u_poseidon z1

24 (const_array tf

25 [u_poseidon z2 (const_array tf [nullifier; trapdoor])])))

© 2023 Veridise Inc. Veridise Audit Report: Unirep

5.1 Detailed Description of Formal Verification Results 51

5.1.10 V-UNI-SPEC-010: EpochKeyLite Functional Correctness

Commit 510c971 Status Verified
Files epochKeyLite.circom

Functions EpochKeyLite

Description The circuit computes a user’s epoch key leaf as defined by the EpochKeyHasher

with the corresponding nonce. Additionally, the circuit will reveal the attester id, epoch and,
optionally, the nonce used to calculate the epoch key.

Formal Definition The following shows the formal definition for the EpochKeyLite template:

1 let epoch_key_lite =

2 Circuit

3 { name= "EpochKeyLite"

4 ; inputs=

5 [("FIELD_COUNT", tnat)

6 ; ("EPOCH_KEY_NONCE_PER_EPOCH"

7 , tnat_e (leq nu (zsub (zpow (zn 2) (zn 8)) z1)))

8 ; ("identity_secret", tf)

9 ; ("reveal_nonce", tf)

10 ; ("attester_id", tf)

11 ; ("epoch", tf)

12 ; ("nonce", tf)]

13 ; outputs=

14 [("control", t_control reveal_nonce attester_id epoch nonce)

15 ; ("epoch_key"

16 , t_epoch_key_hasher_out identity_secret attester_id epoch nonce)]

17 ; dep= None

18 ; body=

19 elet "reveal_nonce_check"

20 (assert_eq (fmul reveal_nonce (fsub reveal_nonce f1)) f0)

21 (elet "attester_id_check"

22 (call "Num2Bits" [zn 160; v "attester_id"])

23 (elet "epoch_bits"

24 (call "Num2Bits" [zn 48; v "epoch"])

25 (elet "nonce_range_check"

26 (call "Num2Bits" [zn 8; v "nonce"])

27 (elet "nonce_lt"

28 (call "LessThan"

29 [zn 8; v "nonce"; nat2f (v "EPOCH_KEY_NONCE_PER_EPOCH")])

30 (elet "u0"

31 (assert_eq (v "nonce_lt") f1)

32 (elet "ctrl"

33 (fadds

34 [fmul reveal_nonce (fpow f2 (zn 232))

35 ; fmul attester_id (fpow f2 (zn 72))

36 ; fmul epoch (fpow f2 (zn 8))

37 ; fmul reveal_nonce nonce])

38 (make

Veridise Audit Report: Unirep © 2023 Veridise Inc.

52 5 Formal Verification

39 [v "ctrl"

40 ; call "EpochKeyHasher"

41 [v "identity_secret"

42 ; v "attester_id"

43 ; v "epoch"

44 ; v "nonce"]]))))))) }

Formal Specification The following shows the formal specification for the EpochKeyLite

template:

1 let identity_secret = v "identity_secret"

2 let reveal_nonce = v "reveal_nonce"

3 let attester_id = v "attester_id"

4 let epoch = v "epoch"

5 let nonce = v "nonce"

6

7 let t_epoch_key_hasher identity_secret attester_id epoch nonce =

8 tfq

9 (qeq nu

10 (u_poseidon z2

11 (const_array tf

12 [identity_secret

13 ; fadds

14 [attester_id

15 ; fmul (fpow f2 (zn 160)) epoch

16 ; fmul (fpow f2 (zn 208)) nonce]])))

17

18 let t_epoch_key_hasher_out identity_secret attester_id epoch nonce =

19 t_epoch_key_hasher identity_secret attester_id epoch nonce

20

21 let t_control reveal_nonce attester_id epoch nonce =

22 tfq

23 (qeq nu

24 (fadds

25 [fmul reveal_nonce (fpow f2 (zn 232))

26 ; fmul attester_id (fpow f2 (zn 72))

27 ; fmul epoch (fpow f2 (zn 8))

28 ; fmul reveal_nonce nonce]))

© 2023 Veridise Inc. Veridise Audit Report: Unirep

5.1 Detailed Description of Formal Verification Results 53

5.1.11 V-UNI-SPEC-011: EpochKey Functional Correctness

Commit 510c971 Status Verified
Files epochKey.circom

Functions EpochKey

Description The circuit computes a user’s epoch key leaf as defined by the EpochKeyHasher

with the corresponding nonce. Additionally, the circuit will reveal the attester id, epoch and,
optionally, the nonce used to calculate the epoch key. Finally, the circuit computes the user’s state
tree leaf with the input data and calculates the root of the merkle tree with the corresponding
leaf and siblings.

Formal Definition The following shows the formal definition for the EpochKey template:

1 let epoch_key =

2 Circuit

3 { name= "EpochKey"

4 ; inputs=

5 [("STATE_TREE_DEPTH", t_n)

6 ; ("EPOCH_KEY_NONCE_PER_EPOCH", t_n)

7 ; ("FIELD_COUNT", tnat)

8 ; ("state_tree_indexes", tarr_t_k tf (v "STATE_TREE_DEPTH"))

9 ; ("state_tree_elements", tarr_t_k tf (v "STATE_TREE_DEPTH"))

10 ; ("identity_secret", tf)

11 ; ("reveal_nonce", tf)

12 ; ("attester_id", tf)

13 ; ("epoch", tf)

14 ; ("nonce", tf)

15 ; ("data", tarr_t_k tf (v "FIELD_COUNT"))

16 ; ("sig_data", tf)]

17 ; outputs=

18 [("epoch_key"

19 , t_epoch_key_hasher_out identity_secret attester_id epoch nonce)

20 ; ("state_tree_root"

21 , t_r (v "state_tree_indexes") (v "state_tree_elements")

22 identity_secret attester_id epoch (v "data"))

23 ; ("control", t_control reveal_nonce attester_id epoch nonce)]

24 ; dep= None

25 ; body=

26 elet "leaf_hasher"

27 (call "StateTreeLeaf"

28 [v "FIELD_COUNT"

29 ; v "data"

30 ; v "identity_secret"

31 ; v "attester_id"

32 ; v "epoch"])

33 (elet "merkletree"

34 (call "MerkleTreeInclusionProof"

35 [v "STATE_TREE_DEPTH"

36 ; v "leaf_hasher"

Veridise Audit Report: Unirep © 2023 Veridise Inc.

54 5 Formal Verification

37 ; v "state_tree_indexes"

38 ; v "state_tree_elements"])

39 (match_with’ ["control"; "epoch_key"]

40 (call "EpochKeyLite"

41 [v "FIELD_COUNT"

42 ; v "EPOCH_KEY_NONCE_PER_EPOCH"

43 ; v "identity_secret"

44 ; v "reveal_nonce"

45 ; v "attester_id"

46 ; v "epoch"

47 ; v "nonce"])

48 (make [v "epoch_key"; v "merkletree"; v "control"]))) }

Formal Specification The following shows the formal specification for the EpochKey template:

1 let identity_secret = v "identity_secret"

2 let reveal_nonce = v "reveal_nonce"

3 let attester_id = v "attester_id"

4 let epoch = v "epoch"

5 let nonce = v "nonce"

6 let u_hasher z init = unint "MrklTreeInclPfHash" [z; init]

7 let u_zip xs ys = unint "zip" [xs; ys]

8 let u_state_tree_leaf a b = unint "u_state_tree_leaf" [a; b]

9 let data_drop_1 data = drop data z1

10

11 let t_epoch_key_hasher identity_secret attester_id epoch nonce =

12 tfq

13 (qeq nu

14 (u_poseidon z2

15 (const_array tf

16 [identity_secret

17 ; fadds

18 [attester_id

19 ; fmul (fpow f2 (zn 160)) epoch

20 ; fmul (fpow f2 (zn 208)) nonce]])))

21

22 let t_r path_index path_elements identity_secret attester_id epoch data =

23 tfq

24 (qeq nu

25 (u_hasher

26 (u_zip path_index path_elements)

27 (u_poseidon z3

28 (const_array tf

29 [identity_secret

30 ; fadd attester_id (fmul (fpow f2 (zn 160)) epoch)

31 ; u_state_tree_leaf (data_drop_1 data) (get data z0)]))))

32

33 let t_epoch_key_hasher_out identity_secret attester_id epoch nonce =

34 t_epoch_key_hasher identity_secret attester_id epoch nonce

35

36 let t_control reveal_nonce attester_id epoch nonce =

37 tfq

38 (qeq nu

© 2023 Veridise Inc. Veridise Audit Report: Unirep

5.1 Detailed Description of Formal Verification Results 55

39 (fadds

40 [fmul reveal_nonce (fpow f2 (zn 232))

41 ; fmul attester_id (fpow f2 (zn 72))

42 ; fmul epoch (fpow f2 (zn 8))

43 ; fmul reveal_nonce nonce]))

44

45 let t_n =

46 TRef

47 (tint

48 , QAnd

49 (lift (leq z0 nu)

50 , qand (lift (nu <=. zn 254)) (lift (zn 254 <=. zsub1 CPLen))))

Veridise Audit Report: Unirep © 2023 Veridise Inc.

56 5 Formal Verification

5.1.12 V-UNI-SPEC-012: PreventDoubleAction Functional Correctness

Commit 510c971 Status Verified
Files preventDoubleAction.circom

Functions PreventDoubleAction

Description The circuit will essentially an epoch key proof as defined in the EpochKey template.
Additionally, it will compute a nullifier as the poseidon hash of the user’s identity nullifier and
external nullifier. Finally, it will compute a user’s identity commitment.

Formal Definition The following shows the formal definition for the PreventDoubleAction

template:

1 let prevent_double_action =

2 Circuit

3 { name= "PreventDoubleAction"

4 ; inputs=

5 [("STATE_TREE_DEPTH", t_n)

6 ; ("EPOCH_KEY_NONCE_PER_EPOCH", t_n)

7 ; ("FIELD_COUNT", tnat)

8 ; ("state_tree_indexes", tarr_t_k tf (v "STATE_TREE_DEPTH"))

9 ; ("state_tree_elements", tarr_t_k tf (v "STATE_TREE_DEPTH"))

10 ; ("reveal_nonce", tf)

11 ; ("attester_id", tf)

12 ; ("epoch", tf)

13 ; ("nonce", tf)

14 ; ("sig_data", tf)

15 ; ("identity_nullifier", tf)

16 ; ("external_nullifier", tf)

17 ; ("identity_trapdoor", tf)

18 ; ("data", tarr_t_k tf (v "FIELD_COUNT"))]

19 ; outputs=

20 [("epoch_key"

21 , t_epoch_key_hasher_out identity_secret attester_id epoch nonce)

22 ; ("state_tree_root"

23 , t_r (v "state_tree_indexes") (v "state_tree_elements")

24 identity_secret attester_id epoch (v "data"))

25 ; ("nullifier"

26 , tfq

27 (qeq nu

28 (u_poseidon z2

29 (const_array tf

30 [v "identity_nullifier"; v "external_nullifier"]))))

31 ; ("identity_commitment"

32 , t_identity_commitment_out (v "identity_nullifier")

33 (v "identity_trapdoor"))

34 ; ("control"

35 , t_control (v "reveal_nonce") (v "attester_id") (v "epoch")

36 (v "nonce"))]

37 ; dep= None

© 2023 Veridise Inc. Veridise Audit Report: Unirep

5.1 Detailed Description of Formal Verification Results 57

38 ; body=

39 elet "nullifier"

40 (call "Poseidon"

41 [zn 2

42 ; const_array tf [v "identity_nullifier"; v "external_nullifier"]

43])

44 (match_with’ ["identity_secret"; "out"]

45 (call "IdentityCommitment"

46 [v "identity_nullifier"; v "identity_trapdoor"])

47 (elet "leaf_hasher"

48 (call "StateTreeLeaf"

49 [v "FIELD_COUNT"

50 ; v "data"

51 ; v "identity_secret"

52 ; v "attester_id"

53 ; v "epoch"])

54 (elet "merkletree"

55 (call "MerkleTreeInclusionProof"

56 [v "STATE_TREE_DEPTH"

57 ; v "leaf_hasher"

58 ; v "state_tree_indexes"

59 ; v "state_tree_elements"])

60 (match_with’ ["control"; "epoch_key"]

61 (call "EpochKeyLite"

62 [v "FIELD_COUNT"

63 ; v "EPOCH_KEY_NONCE_PER_EPOCH"

64 ; v "identity_secret"

65 ; v "reveal_nonce"

66 ; v "attester_id"

67 ; v "epoch"

68 ; v "nonce"])

69 (make

70 [v "epoch_key"

71 ; v "merkletree"

72 ; v "nullifier"

73 ; v "out"

74 ; v "control"]))))) }

Formal Specification The following shows the formal specification for the PreventDoubleAction
template:

1 let identity_secret = v "identity_secret"

2 let reveal_nonce = v "reveal_nonce"

3 let attester_id = v "attester_id"

4 let epoch = v "epoch"

5 let nonce = v "nonce"

6

7 let t_identity_commitment_out nullifier trapdoor =

8 tfq

9 (qeq nu

10 (u_poseidon z1

11 (const_array tf

12 [u_poseidon z2 (const_array tf [nullifier; trapdoor])])))

Veridise Audit Report: Unirep © 2023 Veridise Inc.

58 5 Formal Verification

13

14 let t_control reveal_nonce attester_id epoch nonce =

15 tfq

16 (qeq nu

17 (fadds

18 [fmul reveal_nonce (fpow f2 (zn 232))

19 ; fmul attester_id (fpow f2 (zn 72))

20 ; fmul epoch (fpow f2 (zn 8))

21 ; fmul reveal_nonce nonce]))

22

23 let u_hasher z init = unint "MrklTreeInclPfHash" [z; init]

24

25 let u_zip xs ys = unint "zip" [xs; ys]

26

27 let t_n =

28 TRef

29 (tint

30 , QAnd

31 (lift (leq z0 nu)

32 , qand (lift (nu <=. zn 254)) (lift (zn 254 <=. zsub1 CPLen))))

33

34 let t_epoch_key_hasher identity_secret attester_id epoch nonce =

35 tfq

36 (qeq nu

37 (u_poseidon z2

38 (const_array tf

39 [identity_secret

40 ; fadds

41 [attester_id

42 ; fmul (fpow f2 (zn 160)) epoch

43 ; fmul (fpow f2 (zn 208)) nonce]])))

44

45 let t_epoch_key_hasher_out identity_secret attester_id epoch nonce =

46 t_epoch_key_hasher identity_secret attester_id epoch nonce

47

48 let u_state_tree_leaf a b = unint "u_state_tree_leaf" [a; b]

49

50 let data_drop_1 data = drop data z1

51

52 let t_r path_index path_elements identity_secret attester_id epoch data =

53 tfq

54 (qeq nu

55 (u_hasher

56 (u_zip path_index path_elements)

57 (u_poseidon z3

58 (const_array tf

59 [identity_secret

60 ; fadd attester_id (fmul (fpow f2 (zn 160)) epoch)

61 ; u_state_tree_leaf (data_drop_1 data) (get data z0)]))))

© 2023 Veridise Inc. Veridise Audit Report: Unirep

5.1 Detailed Description of Formal Verification Results 59

5.1.13 V-UNI-SPEC-013: ProveReputation Functional Correctness

Commit 510c971 Status Verified
Files proveReputation.circom

Functions ProveReputation

Description The circuit will compute an epoch key proof according to the EpochKey template.
It will also optionally prove information about a user’s reputation, including that it above some
threshold, below some threshold or is zero. Finally, the circuit will optionally prove that the
user’s graffiti data value is equal to an input value.

Formal Definition The following shows the formal definition for the ProveReputation tem-
plate:

1 let prove_reputation =

2 Circuit

3 { name= "ProveReputation"

4 ; inputs=

5 [("STATE_TREE_DEPTH", t_n)

6 ; ("EPOCH_KEY_NONCE_PER_EPOCH", t_n)

7 ; ("SUM_FIELD_COUNT", tnat_e (nu <. v "FIELD_COUNT"))

8 ; ("FIELD_COUNT", tnat)

9 ; ("REPL_NONCE_BITS", t_n)

10 ; ("identity_secret", tf)

11 ; ("state_tree_indexes", tarr_t_k tf (v "STATE_TREE_DEPTH"))

12 ; ("state_tree_elements", tarr_t_k tf (v "STATE_TREE_DEPTH"))

13 ; ("data", tarr_t_k tf (v "FIELD_COUNT"))

14 ; ("prove_graffiti", tf)

15 ; ("graffiti", tf)

16 ; ("reveal_nonce", tf)

17 ; ("attester_id", tf)

18 ; ("epoch", tf)

19 ; ("nonce", tf)

20 ; ("min_rep", tf)

21 ; ("max_rep", tf)

22 ; ("prove_min_rep", tf)

23 ; ("prove_max_rep", tf)

24 ; ("prove_zero_rep", tf)

25 ; ("sig_data", tf)]

26 ; outputs=

27 [("epoch_key"

28 , t_epoch_key_hasher_out identity_secret attester_id epoch nonce)

29 ; ("state_tree_root"

30 , t_r (v "state_tree_indexes") (v "state_tree_elements")

31 identity_secret attester_id epoch (v "data"))

32 ; ("control", tarr_t_q_k tf u_control z2)]

33 ; dep= Some u_prove_reputation

34 ; body=

35 elet "min_rep_bits"

36 (call "Num2Bits" [zn 64; v "min_rep"])

Veridise Audit Report: Unirep © 2023 Veridise Inc.

60 5 Formal Verification

37 (elet "max_rep_bits"

38 (call "Num2Bits" [zn 64; v "max_rep"])

39 (elet "u0"

40 (assert_eq

41 (fmul (v "prove_graffiti") (fsub (v "prove_graffiti") f1))

42 f0)

43 (elet "u1"

44 (assert_eq

45 (fmul (v "prove_min_rep") (fsub (v "prove_min_rep") f1))

46 f0)

47 (elet "u2"

48 (assert_eq

49 (fmul (v "prove_max_rep")

50 (fsub (v "prove_max_rep") f1))

51 f0)

52 (elet "u3"

53 (assert_eq

54 (fmul (v "prove_zero_rep")

55 (fsub (v "prove_zero_rep") f1))

56 f0)

57 (elet "control_1"

58 (fadds

59 [fmuls [v "prove_graffiti"; fpow (fn 2) (zn 131)]

60 ; fmuls [v "prove_zero_rep"; fpow (fn 2) (zn 130)]

61 ; fmuls [v "prove_max_rep"; fpow (fn 2) (zn 129)]

62 ; fmuls [v "prove_min_rep"; fpow (fn 2) (zn 128)]

63 ; fmuls [v "max_rep"; fpow (fn 2) (zn 64)]

64 ; v "min_rep"])

65 (elet "epoch_range_check"

66 (call "Num2Bits" [zn 48; v "epoch"])

67 (elet "attester_id_check"

68 (call "Num2Bits" [zn 160; v "attester_id"])

69 (elet "epoch_key_gen"

70 (call "EpochKey"

71 [v "STATE_TREE_DEPTH"

72 ; v "EPOCH_KEY_NONCE_PER_EPOCH"

73 ; v "FIELD_COUNT"

74 ; v "state_tree_indexes"

75 ; v "state_tree_elements"

76 ; v "identity_secret"

77 ; v "reveal_nonce"

78 ; v "attester_id"

79 ; v "epoch"

80 ; v "nonce"

81 ; v "data"

82 ; v "sig_data"])

83 (elet "epoch_key"

84 (tget (v "epoch_key_gen") 0)

85 (elet "state_tree_root"

86 (tget (v "epoch_key_gen") 1)

87 (elet "control_0"

88 (tget (v "epoch_key_gen") 2)

89 (elet "data_0_check"

© 2023 Veridise Inc. Veridise Audit Report: Unirep

5.1 Detailed Description of Formal Verification Results 61

90 (call "Num2Bits"

91 [zn 64; get (v "data") z0])

92 (elet "data_1_check"

93 (call "Num2Bits"

94 [zn 64; get (v "data") z1])

95 (elet "min_rep_check"

96 (call "GreaterEqThan"

97 [zn 66

98 ; get (v "data") z0

99 ; fadd

100 (get (v "data") z1)

101 (v "min_rep")])

102 (elet "if_not_prove_min_rep"

103 (call "IsZero"

104 [v "prove_min_rep"])

105 (elet "output_rep_check"

106 (call "Or"

107 [v "if_not_prove_min_rep"

108 ; v "min_rep_check"

109])

110 (elet "u4"

111 (assert_eq

112 (v "output_rep_check")

113 f1)

114 (elet "max_rep_check"

115 (call "GreaterEqThan"

116 [zn 66

117 ; get

118 (v "data")

119 z1

120 ; fadd

121 (get

122 (v "data")

123 z0)

124 (v "max_rep")

125])

126 (elet "if_not_prove_max_rep"

127 (call "IsZero"

128 [v "prove_max_rep"

129])

130 (elet "max_rep_check_out"

131 (call "Or"

132 [v "if_not_prove_max_rep"

133 ; v "max_rep_check"

134])

135 (elet "u5"

136 (assert_eq

137 (v "max_rep_check_out")

138 f1)

139 (elet "zero_rep_check"

140 (call "IsEqual"

141 [get

142 (v "data")

Veridise Audit Report: Unirep © 2023 Veridise Inc.

62 5 Formal Verification

143 z0

144 ; get

145 (v "data")

146 z1

147])

148 (elet "if_not_prove_zero_rep"

149 (call "IsZero"

150 [v "prove_zero_rep"

151])

152 (elet "zero_rep_check_out"

153 (call "Or"

154 [v "if_not_prove_zero_rep"

155 ; v "zero_rep_check"

156])

157 (elet "u6"

158 (assert_eq

159 (v "zero_rep_check_out")

160 f1)

161 (elet "if_not_check_graffiti"

162 (call "IsZero"

163 [v "prove_graffiti"

164])

165 (elet "repl_field_equal"

166 (call "ReplFieldEqual"

167 [v "REPL_NONCE_BITS"

168 ; cons

169 (v "graffiti")

170 (cons

171 (get

172 (v "data")

173 (v "SUM_FIELD_COUNT

"))

174 cnil)

175])

176 (elet "check_graffiti"

177 (call "Or"

178 [v "

if_not_check_graffiti"

179 ; v "repl_field_equal

"

180])

181 (elet "u7"

182 (assert_eq

183 (v "check_graffiti"

)

184 f1)

185 (make

186 [v "epoch_key"

187 ; v "

state_tree_root"

188 ; cons

189 (v "control_0")

190 (cons

© 2023 Veridise Inc. Veridise Audit Report: Unirep

5.1 Detailed Description of Formal Verification Results 63

191 (v "control_1")

192 cnil)

193])))))))))

))

194 }

Formal Specification The following shows the formal specification for the ProveReputation

template:

1 let identity_secret = v "identity_secret"

2 let reveal_nonce = v "reveal_nonce"

3 let attester_id = v "attester_id"

4 let epoch = v "epoch"

5 let nonce = v "nonce"

6

7 let t_n =

8 TRef

9 (tint

10 , QAnd

11 (lift (leq z0 nu)

12 , qand (lift (nu <=. zn 254)) (lift (zn 254 <=. zsub1 CPLen))))

13

14 let u_state_tree_leaf a b = unint "u_state_tree_leaf" [a; b]

15

16 let data_drop_1 data = drop data z1

17

18 let u_prove_reputation =

19 ands

20 [lift (is_binary (v "prove_graffiti"))

21 ; lift (is_binary (v "prove_min_rep"))

22 ; lift (is_binary (v "prove_max_rep"))

23 ; lift (is_binary (v "prove_zero_rep"))

24 ; lift (toUZ (v "min_rep") <. zpow (zn 2) (zn 64))

25 ; lift (toUZ (v "max_rep") <. zpow (zn 2) (zn 64))

26 ; lift (toUZ (v "epoch") <. zpow (zn 2) (zn 48))

27 ; lift (toUZ (v "attester_id") <. zpow (zn 2) (zn 160))]

28

29 let u_hasher z init = unint "MrklTreeInclPfHash" [z; init]

30

31 let u_zip xs ys = unint "zip" [xs; ys]

32

33 let u_control =

34 ands

35 [qeq (get nu z0)

36 (fadds

37 [fmul reveal_nonce (fpow f2 (zn 232))

38 ; fmul attester_id (fpow f2 (zn 72))

39 ; fmul epoch (fpow f2 (zn 8))

40 ; fmul reveal_nonce nonce])

41 ; qeq (get nu z1)

42 (fadds

43 [fmuls [v "prove_graffiti"; fpow (fn 2) (zn 131)]

44 ; fmuls [v "prove_zero_rep"; fpow (fn 2) (zn 130)]

Veridise Audit Report: Unirep © 2023 Veridise Inc.

64 5 Formal Verification

45 ; fmuls [v "prove_max_rep"; fpow (fn 2) (zn 129)]

46 ; fmuls [v "prove_min_rep"; fpow (fn 2) (zn 128)]

47 ; fmuls [v "max_rep"; fpow (fn 2) (zn 64)]

48 ; v "min_rep"])]

49

50 let t_epoch_key_hasher identity_secret attester_id epoch nonce =

51 tfq

52 (qeq nu

53 (u_poseidon z2

54 (const_array tf

55 [identity_secret

56 ; fadds

57 [attester_id

58 ; fmul (fpow f2 (zn 160)) epoch

59 ; fmul (fpow f2 (zn 208)) nonce]])))

60

61 let t_r path_index path_elements identity_secret attester_id epoch data =

62 tfq

63 (qeq nu

64 (u_hasher

65 (u_zip path_index path_elements)

66 (u_poseidon z3

67 (const_array tf

68 [identity_secret

69 ; fadd attester_id (fmul (fpow f2 (zn 160)) epoch)

70 ; u_state_tree_leaf (data_drop_1 data) (get data z0)]))))

71

72 let t_epoch_key_hasher_out identity_secret attester_id epoch nonce =

73 t_epoch_key_hasher identity_secret attester_id epoch nonce

© 2023 Veridise Inc. Veridise Audit Report: Unirep

5.1 Detailed Description of Formal Verification Results 65

5.1.14 V-UNI-SPEC-014: UserStateTransition Functional Correctness

Commit 510c971 Status Verified
Files userStateTransition.circom

Functions UserStateTransition

Description The circuit computes a user’s state tree leaf with the input data and calculates the
root of the merkle tree with the corresponding leaf and siblings. The root of the state tree and
the input root of the epoch tree are then hashed together to produce the history tree leaf, which
is then used to calculate the root of the history tree using the leaf and the input siblings.

Formal Definition The following shows the formal definition for the UserStateTransition

template:

1 let user_state_transition =

2 Circuit

3 { name= "UserStateTransition"

4 ; inputs=

5 [("STATE_TREE_DEPTH", tnat)

6 ; ("EPOCH_TREE_DEPTH", tnat)

7 ; ("HISTORY_TREE_DEPTH", tnat)

8 ; ("EPOCH_KEY_NONCE_PER_EPOCH", tnat)

9 ; ("FIELD_COUNT", tnat)

10 ; ("SUM_FIELD_COUNT", tnat)

11 ; ("REPL_NONCE_BITS", tnat)

12 ; ("from_epoch", tf)

13 ; ("to_epoch", tf)

14 ; ("identity_secret", tf)

15 ; ("state_tree_indexes", tarr_t_k tf (v "STATE_TREE_DEPTH"))

16 ; ("state_tree_elements", tarr_t_k tf (v "STATE_TREE_DEPTH"))

17 ; ("history_tree_indices", tarr_t_k tf (v "HISTORY_TREE_DEPTH"))

18 ; ("history_tree_elements", tarr_t_k tf (v "HISTORY_TREE_DEPTH"))

19 ; ("attester_id", tf)

20 ; ("data", tarr_t_k tf (v "FIELD_COUNT"))

21 ; ("new_data"

22 , tarr_t_k

23 (tarr_t_k tf (v "FIELD_COUNT"))

24 (v "EPOCH_KEY_NONCE_PER_EPOCH"))

25 ; ("epoch_tree_root", tf)

26 ; ("epoch_tree_elements"

27 , tarr_t_k

28 (tarr_t_k tf (v "EPOCH_TREE_DEPTH"))

29 (v "EPOCH_KEY_NONCE_PER_EPOCH"))

30 ; ("epoch_tree_indices"

31 , tarr_t_k

32 (tarr_t_k tf (v "EPOCH_TREE_DEPTH"))

33 (v "EPOCH_KEY_NONCE_PER_EPOCH"))]

34 ; outputs=

35 [("history_tree_root"

36 , t_r’ (v "history_tree_indices")

Veridise Audit Report: Unirep © 2023 Veridise Inc.

66 5 Formal Verification

37 (v "history_tree_elements")

38 identity_secret attester_id (v "from_epoch") (v "data"))

39 ; ("state_tree_leaf", tf)

40 ; ("epks", tarr_t_k tf (v "EPOCH_KEY_NONCE_PER_EPOCH"))]

41 ; dep= None

42 ; body=

43 elet "from_epoch_check"

44 (call "Num2Bits" [zn 48; v "from_epoch"])

45 (elet "to_epoch_check"

46 (call "Num2Bits" [zn 48; v "to_epoch"])

47 (elet "epoch_check"

48 (call "GreaterThan" [zn 48; v "to_epoch"; v "from_epoch"])

49 (elet "u0"

50 (assert_eq (v "epoch_check") f1)

51 (elet "attester_id_check"

52 (call "Num2Bits" [zn 160; v "attester_id"])

53 (elet "leaf_hasher"

54 (call "StateTreeLeaf"

55 [v "FIELD_COUNT"

56 ; v "data"

57 ; identity_secret

58 ; attester_id

59 ; v "from_epoch"])

60 (elet "state_merkletree"

61 (call "MerkleTreeInclusionProof"

62 [v "STATE_TREE_DEPTH"

63 ; v "leaf_hasher"

64 ; v "state_tree_indexes"

65 ; v "state_tree_elements"])

66 (elet "history_leaf_hasher"

67 (call "Poseidon"

68 [z2

69 ; const_array tf

70 [v "state_merkletree"; v "epoch_tree_root"]

71])

72 (elet "history_merkletree"

73 (call "MerkleTreeInclusionProof"

74 [v "HISTORY_TREE_DEPTH"

75 ; v "history_leaf_hasher"

76 ; v "history_tree_indices"

77 ; v "history_tree_elements"])

78 (make

79 [v "history_merkletree"

80 ; f0

81 ; consts_n

82 (v "EPOCH_KEY_NONCE_PER_EPOCH")

83 f0]))))))))) }

Formal Specification The following shows the formal specification for the UserStateTransition
template:

1 let identity_secret = v "identity_secret"

2 let reveal_nonce = v "reveal_nonce"

© 2023 Veridise Inc. Veridise Audit Report: Unirep

5.1 Detailed Description of Formal Verification Results 67

3 let attester_id = v "attester_id"

4 let epoch = v "epoch"

5 let nonce = v "nonce"

6 let u_hasher z init = unint "MrklTreeInclPfHash" [z; init]

7 let u_zip xs ys = unint "zip" [xs; ys]

8 let u_state_tree_leaf a b = unint "u_state_tree_leaf" [a; b]

9 let data_drop_1 data = drop data z1

10

11 let t_r’ path_index path_elements identity_secret attester_id epoch data =

12 tfq

13 (qeq nu

14 (u_hasher

15 (u_zip path_index path_elements)

16 (u_poseidon z2

17 (const_array tf

18 [u_hasher

19 (u_zip (v "state_tree_indexes") (v "state_tree_elements"))

20 (u_poseidon z3

21 (const_array tf

22 [identity_secret

23 ; fadd attester_id (fmul (fpow f2 (zn 160)) epoch)

24 ; u_state_tree_leaf (data_drop_1 data) (get data z0)

25]))

26 ; v "epoch_tree_root"]))))

Veridise Audit Report: Unirep © 2023 Veridise Inc.

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	V-UNI-VUL-001: Underconstrained Circuit allows Invalid Comparison
	V-UNI-VUL-002: Missing Range Checks on Comparison Circuits
	V-UNI-VUL-003: Potential Overflow in User State Transition
	V-UNI-VUL-004: Potential Overflow when Proving Reputation
	V-UNI-VUL-005: Malformed ReusableMerkleTree Root
	V-UNI-VUL-006: Potential Attestation Loss
	V-UNI-VUL-007: Different Definitions of data[SUM_FIELD_COUNT]
	V-UNI-VUL-008: Unconstrained Public Input
	V-UNI-VUL-009: Replacement Data ID validation not Monotonically Increasing
	V-UNI-VUL-010: Manual Signup may be Incorrect
	V-UNI-VUL-011: Replacement Data IDs may not Monotonically Increase
	V-UNI-VUL-012: Private Information Stored in Plaintext
	V-UNI-VUL-013: Unnecessary Num2Bits(254) Constraints
	V-UNI-VUL-014: Add Template Variable Assertions
	V-UNI-VUL-015: Potential for Private Information Leakage
	V-UNI-VUL-016: Wasted Storage
	V-UNI-VUL-017: Assumed Replacement Data Ordering
	V-UNI-VUL-018: Confusing Corner Case Logic
	V-UNI-VUL-019: Containerize TypeScript Classes
	Formal Verification
	Detailed Description of Formal Verification Results

	Detailed Description of Formal Verification Results
	V-UNI-SPEC-001: MerkleTreeInclusionProof Functional Correctness
	V-UNI-SPEC-002: EpochKeyHasher Functional Correctness
	V-UNI-SPEC-003: EpochTreeLeaf Functional Correctness
	V-UNI-SPEC-004: StateTreeLeaf Functional Correctness
	V-UNI-SPEC-005: IdentitySecret Functional Correctness
	V-UNI-SPEC-006: IdentityCommitment Functional Correctness
	V-UNI-SPEC-007: UpperLessThan Functional Correctness
	V-UNI-SPEC-008: replFieldEqual Functional Correctness
	V-UNI-SPEC-009: Signup Functional Correctness
	V-UNI-SPEC-010: EpochKeyLite Functional Correctness
	V-UNI-SPEC-011: EpochKey Functional Correctness
	V-UNI-SPEC-012: PreventDoubleAction Functional Correctness
	V-UNI-SPEC-013: ProveReputation Functional Correctness
	V-UNI-SPEC-014: UserStateTransition Functional Correctness

