
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

Prime Protocol

Veridise Inc.
June 16, 2023

▶ Prepared For:

Prime Protocol Inc.
https://www.primeprotocol.xyz/

▶ Prepared By:

Ajinkya Rajput
Bryan Tan

▶ Contact Us: contact@veridise.com

▶ Version History:

Jun. 16, 2023 V1.1 - Updated fix statuses
Jun. 09, 2023 V1

© 2023 Veridise Inc. All Rights Reserved.

https://www.primeprotocol.xyz/
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 6

4 Vulnerability Report 7
4.1 Detailed Description of Issues . 8

4.1.1 V-PRI3-VUL-001: Inconsistency in liquidation seize token units 8
4.1.2 V-PRI3-VUL-002: Reentrancy attack vector in claimRewards with callback-

supporting ERC20s . 10
4.1.3 V-PRI3-VUL-003: Underlying disbursement uses stale external exchange

rate . 11
4.1.4 V-PRI3-VUL-004: Inconsistent borrow asset exchange rate for USP under-

lying . 16
4.1.5 V-PRI3-VUL-005: Missing gas limit checks for liquidation requests . . . 18
4.1.6 V-PRI3-VUL-006: Missing call to _exitLoanMarket in liquidation 19
4.1.7 V-PRI3-VUL-007: PTokenBase and AavePToken send ptoken amounts

instead of underlying . 20
4.1.8 V-PRI3-VUL-008: Incorrect data validation in modifyLoanAsset 21
4.1.9 V-PRI3-VUL-009: Potential subtraction overflow in setBorrowRate branch-

ing logic . 22
4.1.10 V-PRI3-VUL-010: User flows do not update accrued interest for collateral 24
4.1.11 V-PRI3-VUL-011: Check for USP underlying does not check chain ID . . 29
4.1.12 V-PRI3-VUL-012: Extra conversion to ptokens in in completeWithdraw . 30
4.1.13 V-PRI3-VUL-013: Redundant comparison against 0 32
4.1.14 V-PRI3-VUL-014: Contradictory comments on RequestController.withdraw 33
4.1.15 V-PRI3-VUL-015: Potentially missing special case for USP in getUnderly-

ingPrice . 34
4.1.16 V-PRI3-VUL-016: _syncUserRewards always applies to msg.sender . . . 35
4.1.17 V-PRI3-VUL-017: MAX_SIZE can be defined in terms of other constants 36
4.1.18 V-PRI3-VUL-018: setAssetKey does not check whether feed exists 37
4.1.19 V-PRI3-VUL-019: Price bounds are magic constants 38
4.1.20 V-PRI3-VUL-020: Unused mappings in PrimeOracleStorage 39
4.1.21 V-PRI3-VUL-021: Confusing naming in supportSatelliteLoanMarket . . 40
4.1.22 V-PRI3-VUL-022: Inconsistent naming in TreasuryAdmin methods . . . 41

Veridise Audit Report: Prime Protocol Inc. © 2023 Veridise Inc.

Executive Summary 1
From May 15, 2023 to May 26, 2023, Prime Protocol Inc. engaged Veridise to review the security
of their Prime Protocol. The review was conducted as a follow-up in response to the issues
discovered during a previous audit that Veridise conducted for Prime Protocol Inc. two months
earlier in March 2023*. In addition to the files covered in the previous audit, this audit also
covers the smart contract source code that was not in scope in the last audit, which includes
the oracle module, the treasury module, and the staking module. Veridise auditors were also
specifically requested to prioritize a security assessment of the rebasing logic support, which
was related to many of the issues uncovered during the previous audit. Veridise conducted the
assessment over 4 person-weeks, with 2 engineers reviewing code over 2 weeks on Git commit
ea69944. The auditing strategy involved a tool-assisted analysis of the source code performed
by Veridise engineers as well as extensive manual auditing.

Code assessment. The Prime Protocol developers provided the source code of the Prime
Protocol contracts for review. Based on the Veridise auditors’ assessment, the code is largely
unchanged compared to the version audited previously. We refer the reader to the previous
audit report for the code assessment.

Summary of issues detected. The audit uncovered 22 issues, 1 of which are assessed to be of
high or critical severity by the Veridise auditors. Specifically, inconsistent unit conversions may
cause liquidators to receive fewer of the seized tokens than they should have (V-PRI3-VUL-001).
The Veridise auditors also identified several medium- and low-severity issues, including a
reentrancy attack vector in the StakingPool component (V-PRI3-VUL-002) and a potential
subtraction overflow when updating interest rates (V-PRI3-VUL-009). Additionally, the auditors
reported 9 warnings and 3 informational issues.

The Prime Protocol developers resolved all issues.

Recommendations. After auditing the protocol, the auditors had a few suggestions to improve
the Prime Protocol. First, we recommend that the Prime Protocol developers address the
recommendations in the previous audit report. Second, as this audit discovered more issues
related to rebasing tokens, including the 1 high-severity issue, we recommend that the Prime
Protocol developers ensure that rebasing tokens are thoroughly tested before they are enabled
on the protocol.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

* The previous audit report can be found on Veridise’s website at https://veridise.com/veridise-audits/

Veridise Audit Report: Prime Protocol Inc. © 2023 Veridise Inc.

https://veridise.com/veridise-audits/

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
Prime Protocol ea69944 Solidity Ethereum

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
May 15 - May 26, 2023 Manual & Tools 2 4 person-weeks

Table 2.3: Vulnerability Summary.

Name Number Resolved
Critical-Severity Issues 0 0
High-Severity Issues 1 1
Medium-Severity Issues 1 1
Low-Severity Issues 8 8
Warning-Severity Issues 9 9
Informational-Severity Issues 3 3
TOTAL 22 22

Table 2.4: Category Breakdown.

Name Number
Logic Error 9
Maintainability 7
Data Validation 4
Reentrancy 1
Arithmetic Overflow 1

Veridise Audit Report: Prime Protocol Inc. © 2023 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of Prime Protocol’s smart contracts.
In our audit, we sought to answer the following questions:

▶ Do all user flows correctly convert between ptokens and underlying tokens?
▶ Do the oracles correctly interact with third-party code such as in Chainlink, DIA, and

Redstone?
▶ Are there any consistency issues in the way external exchange rates are transmitted, and

can they result in bugs?
▶ Are there any reentrancy attack vectors when performing same-chain transactions on the

master chain?
▶ Are appropriate interest amounts accumulated at the right times?
▶ Do rebasing PToken contracts correctly account for rebases?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a combination of
human experts and automated program analysis & testing tools. In particular, we conducted
our audit with the aid of the following techniques:

▶ Static analysis. To identify potential common vulnerabilities, we leveraged our custom
smart contract analysis tool Vanguard, as well as the open-source tool Slither. These
tools are designed to find instances of common smart contract vulnerabilities, such as
reentrancy and uninitialized variables.

▶ Fuzzing/Property-based Testing. We also leverage fuzz testing to determine if the protocol
may deviate from the expected behavior. To do this, we formalize the desired behavior of
the protocol as [V] specifications and then use our fuzzing framework OrCa to determine
if a violation of the specification can be found.

Scope. The scope of this audit is limited to the Solidity source files in the contracts folder of
the source code provided by the Prime Protocol developers, which contains the smart contract
implementation of the Prime Protocol. One folder/component, Wormhole.sol, was excluded
from the scope of the audit as the Prime Protocol developers indicated that that component has
to be reimplemented.

Methodology. Veridise auditors reviewed the reports of previous audits for Prime Protocol,
inspected the provided tests, and read the Prime Protocol documentation. They then began a
manual audit of the code assisted by both static analyzers and automated testing. During the
audit, the Veridise auditors regularly met with the Prime Protocol developers to ask questions
about the code.

Veridise Audit Report: Prime Protocol Inc. © 2023 Veridise Inc.

6 3 Audit Goals and Scope

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

In this case, we judge the likelihood of a vulnerability as follows in Table 3.2:

Table 3.2: Likelihood Breakdown

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows in Table 3.3:

Table 3.3: Impact Breakdown

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2023 Veridise Inc. Veridise Audit Report: Prime Protocol Inc.

Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowleged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-PRI3-VUL-001 Inconsistency in liquidation seize token units High Fixed
V-PRI3-VUL-002 Reentrancy attack vector in claimRewards with c. . . Medium Fixed
V-PRI3-VUL-003 Underlying disbursement uses stale external exc. . . Low Acknowledged
V-PRI3-VUL-004 Inconsistent borrow asset exchange rate for USP. . . Low Fixed
V-PRI3-VUL-005 Missing gas limit checks for liquidation requests Low Fixed
V-PRI3-VUL-006 Missing call to _exitLoanMarket in liquidation Low Fixed
V-PRI3-VUL-007 PTokenBase and AavePToken send ptoken amounts i. . .Low Fixed
V-PRI3-VUL-008 Incorrect data validation in modifyLoanAsset Low Fixed
V-PRI3-VUL-009 Potential subtraction overflow in setBorrowRate. . . Low Fixed
V-PRI3-VUL-010 User flows do not update accrued interest for c. . . Low Intended Behavior
V-PRI3-VUL-011 Check for USP underlying does not check chain ID Warning Fixed
V-PRI3-VUL-012 Extra conversion to ptokens in in completeWith. . . Warning Fixed
V-PRI3-VUL-013 Redundant comparison against 0 Warning Fixed
V-PRI3-VUL-014 Contradictory comments on RequestController.wit. . .Warning Fixed
V-PRI3-VUL-015 Potentially missing special case for USP in get. . . Warning Intended Behavior
V-PRI3-VUL-016 _syncUserRewards always applies to msg.sender Warning Fixed
V-PRI3-VUL-017 MAX_SIZE can be defined in terms of other const. . .Warning Acknowledged
V-PRI3-VUL-018 setAssetKey does not check whether feed exists Warning Acknowledged
V-PRI3-VUL-019 Price bounds are magic constants Warning Fixed
V-PRI3-VUL-020 Unused mappings in PrimeOracleStorage Info Fixed
V-PRI3-VUL-021 Confusing naming in supportSatelliteLoanMarket Info Fixed
V-PRI3-VUL-022 Inconsistent naming in TreasuryAdmin methods Info Fixed

Veridise Audit Report: Prime Protocol Inc. © 2023 Veridise Inc.

8 4 Vulnerability Report

4.1 Detailed Description of Issues

4.1.1 V-PRI3-VUL-001: Inconsistency in liquidation seize token units

Severity High Commit ea69944
Type Logic Error Status Fixed

File(s) MasterInternals.sol, RebasePTokenMessageHandler.sol
Location(s) _liquidateBorrow(), seize()

Liquidation requests are routed to MasterInternals._liquidateBorrow(), which will determine
whether the liquidation should proceed and how much of the liquidated collateral (”seize
tokens”) to reward to the liquidator. If the liquidation is approved, the master chain will send a
message to the satellite chain of the seized collateral to grant the collateral to the liquidator.
However, the units for the seized token amount are inconsistent between the master and
satellite.

There are three places that exhibit the inconsistency:

1. The seize token amount is calculated in _liqudiateCalculateSeizeTokens(), where the
returned seizeAmount is in terms of underlying tokens for that collateral. This seizeAmount
is the number that will be sent over to the satellite to reward to the liquidator.

2. The seizeAmount is deducted from the markets[..][..].totalSupplyfield in _liquidateBorrow

(), but the totalSupply field is denominated in terms of ptokens.

1 markets[seizeMarket.chainId][seizeMarket.asset].totalSupply -= seizeAmount;

Snippet 4.1: Location in liquidateBorrow() where the totalSupply field is adjusted.

3. The RebasePTokenMessageHandler.seize() and the PTokenMessageHandler.seize() meth-
ods assume that the seizeTokens field of the SLiquidateBorrow packet is in terms of
ptokens. This is inconsistent with the units of seizeAmount, which should be in terms of
underlying. Furthermore, when underlying tokens are transferred to the liquidator, the
ptoken amount is transferred, not the underlying amount. Note that the seize() method of

1 function seize(
2 IHelper.SLiquidateBorrow memory params
3) external payable virtual override onlyMid() {
4 if (isFrozen) revert MarketIsFrozen(address(this));
5

6 totalSupply -= params.seizeTokens;
7

8 uint256 actualSeizeTokens = (params.seizeTokens * params.externalExchangeRate) /
10**EXCHANGE_RATE_DECIMALS;

9

10 _doTransferOut(params.liquidator, underlying, actualSeizeTokens);
11 }

Snippet 4.2: Implementation of RebasePTokenMessageHandler.seize(); the implementation in
PTokenMessageHandler is similar.

© 2023 Veridise Inc. Veridise Audit Report: Prime Protocol Inc.

4.1 Detailed Description of Issues 9

CompoundPTokenMessageHandler, unlike in the other “message handler” contracts, assumes
that the seizeTokens field is in terms of underlying.

Impact As mentioned above, the inconsistencies are related to the liquidation user flow. These
have the following effects:

▶ When the external exchange rate is not 1:1, then an incorrect amount of seize tokens will
be transferred to liquidators. This typically applies to RebasePToken implementations, in
which case:

• An external exchange rate above one underlying-per-ptoken may lead to a denial
of service issue in seize(), as it is possible for totalSupply to be smaller than
params.seizeTokens or for the actualSeizeTokens to exceed the actual balance of the
contract.

• An external exchange rate below one underlying-per-ptoken may lead to an under-
payment issue. The protocol will considered the whole seize amount to be transferred,
but in reality, only a fraction of the intended seize token amount will be transferred
to the liquidator. The remaining amount that should’ve been transferred will instead
be “given” to the remaining depositors of the PToken.

▶ For money market PTokens, the seizeAmount deducted from the .totalSupply field
in _liquidateBorrow() will not include the accumulated interest. Thus, the deducted
seizeAmount will only partially account for the amount of seized collateral removed from
the protocol. Consequently, .totalSupply (which is denominated in ptokens) will be
higher than it should be; this will bias future underlying-per-ptoken exchange rates to
favor the underlying side.

Recommendation The developer should clarify the expected units of the seize token amounts
and resolve the inconsistencies.

Developer Response The developers stated that the seizeAmount should be denominated in
underlying tokens, and they have changed the implementation of RebasePTokenMessageHandler.
seize(). They also confirmed the issue with the markets[...][...].totalSupply subtraction and
have changed the calculation so that the _exchangeRate() is first applied to the seizeAmount.

Veridise Audit Report: Prime Protocol Inc. © 2023 Veridise Inc.

10 4 Vulnerability Report

4.1.2 V-PRI3-VUL-002: Reentrancy attack vector in claimRewards with
callback-supporting ERC20s

Severity Medium Commit ea69944
Type Reentrancy Status Fixed

File(s) StakingPool.sol

Location(s) claimRewards()

The claimRewards() function allows a staker to claim accrued reward tokens (which are ERC20
tokens). The accumulated reward balance is maintained in the userRewards mapping. The

1 function claimRewards(address rewardsToken, uint256 rewardsAmount) external {
2 _syncRewardsMarkets();
3 _syncUserReward(rewardsToken);
4 uint256 userRewardsBalance = userRewards[msg.sender][rewardsToken].

accumulatedRewards;
5 if (rewardsAmount == type(uint256).max) {
6 rewardsAmount = userRewardsBalance;
7 }
8 if(userRewardsBalance < rewardsAmount) revert InsufficientRewards();
9 if(rewardsAmount > 0){

10 _doTransferOut(msg.sender, rewardsToken, rewardsAmount);
11 userRewards[msg.sender][rewardsToken].accumulatedRewards -= rewardsAmount;
12 emit RewardsClaimed(msg.sender, rewardsToken, rewardsAmount);
13 }
14 }

Snippet 4.3: Implementation of StakingPool.claimRewards()

function first calculates the rewardsAmount being claimed and checks that there are sufficient
accrued rewards to grant. Next, if rewardsAmount is greater than zero, the rewards are first
transferred out, and then the balance in userRewards mapping is deducted by the rewards
amount.

If the reward token supports callbacks, then the ordering of the operations makes the function
vulnerable to a reentrancy attack.

Impact If the reward token supports callbacks and the staker is a malicious smart contract, then
the staker can make a reentering call into claimRewards(). Note that because the userRewards

entry is not updated until after the transfer is finished executing, this means that the staker will be
granted additional reward tokens a second time. The staker can reenter into the claimRewards()

function multiple times to obtain multiples of the amount that they wanted to claim.

Recommendation To reduce the risk of a reentrancy attack, the userRewards entry should be
updated before the transfer occurs.

© 2023 Veridise Inc. Veridise Audit Report: Prime Protocol Inc.

4.1 Detailed Description of Issues 11

4.1.3 V-PRI3-VUL-003: Underlying disbursement uses stale external exchange rate

Severity Low Commit ea69944
Type Logic Error Status Acknowledged

File(s) PTokenMessageHandler.sol, RebasePTokenMessageHandler.sol,
AavePTokenMessageHandler.sol

Location(s) completeWithdraw(), seize()

A rebasing token is handled by the RebasePToken contract, which has special logic to account
for changes to the contract’s token balance as a result of a rebase. Specifically, whenever a
user deposits the underlying rebasing token, they will be granted a proportional amount of
non-rebasing “ptokens”. The user can then use the withdraw flow to redeem ptokens for the
underlying token.

As part of the conversion between ptokens and underlying, the protocol tracks an “external
exchange rate” for the underlying token, which is the ratio of the underlying token balance to
the amount of ptokens. For example, if there are 100 ptokens and 100 underlying in the PToken
contract, then the external exchange rate is 1 (i.e., 1:1). If a rebase occurs and the underlying
balance increases to 120, then the external exchange rate is 1.2 underlying-per-ptoken. Based on

1 function _getExternalExchangeRate() internal virtual override returns (uint256
externalExchangeRate) {

2 if (totalSupply == 0) {
3 externalExchangeRate = 10**EXCHANGE_RATE_DECIMALS;
4 } else {
5 IERC20 token = IERC20(underlying);
6 uint256 cash = token.balanceOf(address(this));
7 externalExchangeRate = (cash * 10**EXCHANGE_RATE_DECIMALS) / totalSupply;
8 }
9

10 if (currentExchangeRate != externalExchangeRate) currentExchangeRate =
externalExchangeRate;

11 }

Snippet 4.4: Definition of _getExternalExchangeRate(), which computes the external exchange
rate.

the way that the external exchange rate is used in the protocol, withdrawals and liquidations
are subject to consistency issues caused by replication lag, in a distributed systems sense:

▶ Satellite replicates external exchange rate to master on deposits. During the deposit
flow, the user-provided underlying amount is converted into ptokens using the current
external exchange rate. Both the underlying amount and the external exchange rate will
be sent to the master state, which will update the bookkeeping. Notably, the master state
will record the external exchange rate it received from the satellite.

▶ Master uses the replicated external exchange rate for withdrawals and liquidations.
During the withdraw flow, a user will send a withdraw request to master state (potentially
from a satellite chain different from that of the PToken being withdrawn from), where
they will indicate the amount of ptokens to withdraw. The master state will use the
previously recorded external exchange rate to calculate the amount of underlying to
credit to recipient, and then it send the underlying amount and the previously recorded

Veridise Audit Report: Prime Protocol Inc. © 2023 Veridise Inc.

12 4 Vulnerability Report

1 uint256 externalExchangeRate = _getExternalExchangeRate();
2 uint256 actualTransferAmount = _doTransferIn(underlying, user, amount);
3 uint256 actualDepositAmount = (actualTransferAmount * 10**EXCHANGE_RATE_DECIMALS) /

externalExchangeRate;
4

5 _sendDeposit(
6 route,
7 user,
8 underlying == address(0)
9 ? msg.value - actualTransferAmount

10 : msg.value,
11 actualTransferAmount,
12 externalExchangeRate
13);
14

15 totalSupply += actualDepositAmount;

Snippet 4.5: Lines in RebasePToken.depositBehalf() that will send the current external
exchange rate to the master state.

external exchange rate to the satellite chain of the PToken. This underlying amount will
be transferred to the recipient, and the PToken will update its bookkeeping based on the
previously recorded external exchange rate. In the liquidation flow, the liquidator will be
granted the liquidated collateral (called the “seize tokens”). The seize token amount is
calculated similar to how it is done in the withdraw flow.

▶ Master uses the replicated external exchange rate for pricing. The master state records
collateral balances as ptokens, not as underlying. In order to calculate the US$ price of the
collateral, it needs to compute the equivalent underlying amount of each ptoken using
the external exchange rate.

Note that because external exchange rate is only updated on master during a deposit, this means
that the calculation of the underlying amount for withdrawals, liquidations, and pricing may be
based on a stale exchange rate.

Impact on withdrawals and liquidations Using a stale external exchange rate can lead to
at least two problems, including overdrafting and locked funds. As one concrete example,
consider the following scenario where overdrafting arises when the rebasing token reduces
token balances:

1. Assume initially that there is a RebasePToken contract for a rebasing token (underlying),
where the current external exchange rate is 1:1. Further assume that the RebasePToken and
the underlying token are both located on a satellite chain.

2. Suppose some user Alice has no ptokens and no deposited collateral, the underlying
balance of the RebasePToken is X, and the total supply of ptokens is X (they are equal
because the external exchange rate is 1:1).

3. Alice deposits 100 underlying tokens into the RebasePToken contract; since the current
exchange rate is 1, she receives 100 ptokens. The new underlying balance and ptoken total
supply of the RebasePToken are both X + 100. After the master state receives the deposit
message, it records the ptoken balance as X + 100 and the external exchange rate as 1.

© 2023 Veridise Inc. Veridise Audit Report: Prime Protocol Inc.

4.1 Detailed Description of Issues 13

1 function completeWithdraw(
2 IHelper.FBWithdraw memory params
3) external payable virtual override onlyMid() {
4 if (isFrozen) revert MarketIsFrozen(address(this));
5

6 emit WithdrawApproved(
7 params.user,
8 address(this),
9 params.withdrawAmount,

10 true
11);
12

13 uint256 pTokenWithdrawAmount = (params.withdrawAmount * 10**
EXCHANGE_RATE_DECIMALS) / params.externalExchangeRate;

14

15 totalSupply -= pTokenWithdrawAmount;
16

17 _doTransferOut(params.user, underlying, params.withdrawAmount);
18 }

Snippet 4.6: Definition of RebasePTokenMessageHandler.completeWithdraw(). Note that the
params.withdrawAmount is in terms of underlying, and that the

params.externalExchangeRate is the one sent from the master state.

1 (uint256 exchangeRate,) = _exchangeRate(pToken, pTokenChainId);
2 // Pre-compute a conversion factor from tokens -> usp (should be 1e18)
3 tokensToDenom = exchangeRate * collateralFactor * oraclePrice / 10**

factorDecimals / 10**oracleDecimals;
4 }
5

6 uint256 pTokenDecimals = 10**markets[pTokenChainId][pToken].decimals;
7 uint256 collateralValue;
8 {
9 // Note: We don’t use ‘_collateralBalanceStored()‘ here since the exchangeRate

has already been applied in ‘tokensToDenom‘
10 uint256 collBal = pTokenCollateralBalances[pTokenChainId][user][pToken];
11

12 collateralValue = tokensToDenom * collBal / pTokenDecimals;
13 }

Snippet 4.7: Relevant lines in MasterInternals._getValueOfCollateral() for pricing. If the
pToken is a rebasing PToken, then the result of _exchangeRate() will be equal to

the previously saved external exchange rate. The user’s ptoken (collateral) balance
will be multiplied by the saved external exchange rate to convert it to underlying
tokens, which will then be multiplied by the oracle price to obtain the US$ value.

Veridise Audit Report: Prime Protocol Inc. © 2023 Veridise Inc.

14 4 Vulnerability Report

4. The rebasing token triggers a rebase so that each account has only 80% of its original token
balance. The balance of the RebasePToken is now 0.8 * X + 80; the ptoken total supply
remains as X + 100.

5. On a satellite chain different from that of the RebasePToken, Alice sends a withdraw request
of 100 ptokens to the master state. The master state approves; because the last recorded
external exchange rate is 1, the approved withdraw amount is 100 underlying tokens.

6. When the satellite chain receives the response, it calls RebasePToken.completeWithdraw().
This will deduct the original amount of ptokens requested from the totalSupply of ptokens,
so that the new ptoken total supply is X. For underlying, there are two possible outcomes:

a) If the current underlying balance 0.8 * X + 80 is less than 100, then the function
will revert as the contract will attempt to transfer 100 underlying to the recipient,
even though the underlying balance is less than that.

b) Otherwise, 100 underlying will be transferred to the recipient. The external exchange
rate before the withdraw is (0.8 * X + 80) / (X + 100) = 0.8, so the underlying
amount corresponding to Alice’s requested withdrawal of 100 ptokens is only 80
underlying tokens. Conceptually, this means that the actual transferred amount
is larger than what should have been transferred, as it will consist of both Alice’s
original deposit of 80 underlying as well as an excess 20 underlying that is drawn
from other depositors of the contract.
Furthermore, the external exchange rate after the withdraw will be (0.8 * X - 20)

/ X = 0.8 - 20 / X. As the rate is now lower, any following deposits will grant a
higher amount of ptokens for each underlying token. For example, Alice can decide
to deposit back the 100 underlying tokens and theoretically receive up to 167 ptokens
(depending on how small X is), which is much larger than the 100 ptokens that
Alice had started with. This would then lock in the external exchange rate, to the
detriment of existing depositors (who would not gain as much underlying per ptoken
on withdrawals as Alice did).

If we take the above scenario and consider when the rebasing token increases token balances,
then the situation is a locked funds issue: less underlying will be transferred compared to what
should have been transferred, so that some amount of underlying will effectively be transferred
to all other depositors of the PToken contract.

The issues discussed above also occur for tokens seized during a liquidation.

Impact on borrowing The external exchange rate is directly proportional to the calculated
US$ of collateral. Thus, a stale external exchange may cause the collateral to be overvalued or
undervalued by the master state. If the collateral is overvalued by the master state (current rate
is lower than last recorded rate), this may lead to loans being approved when a user uses a
rebasing token as collateral when the collateral is technically insufficient for the loan. The next
deposit would update the external exchange rate and then cause the user to become liquidatable.
In contrast, if the collateral is undervalued by the master state, than the user will be required to
provide more collateral than may be required.

Recommendation Resolving the pricing issue would seem to require large changes to the
protocol, so we leave decisions regarding the pricing issue to the discretion of the developers.

© 2023 Veridise Inc. Veridise Audit Report: Prime Protocol Inc.

4.1 Detailed Description of Issues 15

For the withdraw and liquidation issues, we recommend that the developers either address
the consistency issue in the external exchange rate, or provide mitigations in the event that the
external exchange rate is inconsistent. Some potential mitigations, each with different tradeoffs,
include:

▶ Calculate the underlying amount on the PToken side using the current external exchange
rate instead of calculating it on the master state with the stale external exchange rate. This
can help avoid consistency issues with withdrawals and liquidations.

▶ Change the withdraw & liquidation flows to use an atomic commitment protocol, such
that a withdraw or liquidate transaction will be aborted if there is a change in the external
exchange rate, an oracle price update, or other side effect on the same account while the
transaction is being executed. This will prevent stale exchange rates from being used;
however it will introduce significant complexity to the protocol and will increase latency
during withdrawals and liquidations.

▶ Force withdraw & liquidation requests to be first routed through the satellite chain of
the corresponding PToken, so that it can attach the current external exchange rate to the
withdraw/liquidation request before sending it to the master chain. This strategy will likely
cause the external exchange rate to be up-to-date if no deposits have occurred in a long
time, but it will not correctly handle a rebase that occurs after the withdraw/liquidation
request is sent to but not yet received by the master state. Again, it will also incur additional
latency as an extra message may need to be sent.

Developer Response The developers noted that they only plan to use rebasing tokens whose
supply can only increase. They also noted that they expect these rebasing tokens to be interest-
bearing tokens, so a stale exchange rate will cause the depositor to forfeit their accrued interest
to the other depositors. Lastly, they indicated that the interest rates are expected to be low, so
the effect will likely be small.

Veridise Audit Report: Prime Protocol Inc. © 2023 Veridise Inc.

16 4 Vulnerability Report

4.1.4 V-PRI3-VUL-004: Inconsistent borrow asset exchange rate for USP underlying

Severity Low Commit ea69944
Type Logic Error Status Fixed

File(s) PrimeOracle.sol

Location(s) getBorrowAssetExchangeRate()

The PrimeOracle.getBorrowAssetExchangeRate() method is used to calculate an exchange ratio
between two assets, “overlying” and “underlying”. In the general case, this divides the oracle
price of the overlying by the oracle price of the underlying. However, when the underlying is
the Prime protocol’s USP token, then the method directly returns the US$ price of USP from the
oracle. Overlying is not considered at all, which seems strange. Furthermore, the units in these
two cases are different—one is a ratio between overlying and underlying, and the other has US$
per underlying.

1 function getBorrowAssetExchangeRate(
2 address overlying,
3 uint256 overlyingChainId,
4 address underlying,
5 uint256 underlyingChainId
6) external view override returns (uint256 ratio, uint8 decimals) {
7 if (uspAddress == address(0)) revert UspAddressZero();
8

9 if (underlying == uspAddress) {
10 return _getAssetPrice(block.chainid, underlying);
11 }
12

13 (uint256 numAnswer, uint8 numDecimals) = _getAssetPrice(overlyingChainId,
overlying);

14 (uint256 denAnswer, uint8 denDecimals) = _getAssetPrice(underlyingChainId,
underlying);

15

16 if (numAnswer >= 0 && denAnswer >= 0) {
17 ratio = numAnswer * 10**(denDecimals + RATIO_DECIMALS) / denAnswer / 10**

numDecimals;
18 }
19

20 decimals = RATIO_DECIMALS;
21 }

Snippet 4.8: Implementation of getBorrowAssetExchangeRate()

Impact getBorrowAssetExchangeRate() is used in several places:

▶ to calculate collateral amounts seized during liquidations in MasterInternals._liquidateCalculateSeizeTokens

(); the underlying is the collateral being seized
▶ to calculate loan market premiums in getLoanMarketPremium(), where the underlying is

the loan asset’s underlying
▶ for setting the borrow rate in StairIRM.setBorrowRate(), where the underlying is the loan

asset’s underlying

© 2023 Veridise Inc. Veridise Audit Report: Prime Protocol Inc.

4.1 Detailed Description of Issues 17

If USP is the underlying in any of these cases, incorrect values may be computed.

Recommendation The developers should clarify the intended behavior of the USP underlying
case and fix the implementation to match the intended behavior.

Developer Response The developers changed the method so that it will “return price of
overlying if underlying is USP, since USP price is always 1 for the protocol as well as set
numerator to 1 if USP is underlying.” The auditors noted that the fix does not account for the
case where both are USP; however, the developers stated that there will be no situation in which
both overlying and underlying are USP.

Veridise Audit Report: Prime Protocol Inc. © 2023 Veridise Inc.

18 4 Vulnerability Report

4.1.5 V-PRI3-VUL-005: Missing gas limit checks for liquidation requests

Severity Low Commit ea69944
Type Data Validation Status Fixed

File(s) RequestController.sol

Location(s) liquidate()

The Prime developers recently added gas limit checks to the deposit and repay user flows
in RequestController to ensure that users supply sufficient gas. Based on a discussion with
the developers, this was done to prevent flows that require user funds from getting “stuck”
if insufficient gas is supplied. Such validation is present in the deposit(), repayBorrow() and
repayBorrowBehalf() methods, but not in liquidate(). Liquidation requires the liquidator to
repay the loan on the satellite before a message is sent to the master.

1 function repayBorrowBehalf(
2 address borrower,
3 address route,
4 address loanMarketAsset,
5 uint256 repayAmount
6) external payable virtual override returns (uint256) {
7 if (block.chainid == masterCID && uint256(gasleft()) < uint256(550000)) revert

GasLimitTooLow(uint256(gasleft()));
8 if (repayAmount == 0) revert ExpectedRepayAmount();

Snippet 4.9: Example of the gas limit check in repayBorrowBehalf()

Impact Liquidators may run into the same gas issue (and “stuck” transactions) that depositors
and borrowers ran into.

Recommendation Add a similar gas limit check for liquidations. Based on a discussion with
the developers, the gas limit may need to be higher for liquidations as it involves more logic.

© 2023 Veridise Inc. Veridise Audit Report: Prime Protocol Inc.

4.1 Detailed Description of Issues 19

4.1.6 V-PRI3-VUL-006: Missing call to _exitLoanMarket in liquidation

Severity Low Commit ea69944
Type Logic Error Status Fixed

File(s) MasterInternals.sol

Location(s) _liquidateBorrow()

A liquidator can request to liquidate an insolvent borrower by repaying the borrow’s loan on the
satellite chain of that loaned asset and specifying which of the borrower’s collateral they would
like to seize in return. However, there is a discrepancy between the repay user flow’s handling
in _repay() and the liquidation user flow’s handling in _liquidateBorrow(). The repay flow will
invoke _exitLoanMarket() if the repayer pays off the loan entirely, whereas the liquidation flow
does not appear to have any similar code.

1 if (accountLoanMarketBorrows[borrower][targetMarket.loanAsset][targetMarket.chainId].
principal == 0) {

2 if (!_exitLoanMarket(
3 borrower,
4 targetMarket
5)) revert ExitLoanMarketFailed();
6 }

Snippet 4.10: The snippet of code in _repay() that appears to be missing in _liquidateBorrow().

Impact This issue currently does not appear to have any impact other than higher gas
consumption, but it may cause potential problems if the developers want to extend or modify
the code.

The _exitLoanMarket() affects two storage variables: isLoanMarketMember and accountLoanMarkets

. The former indicates whether an account has taken borrowed any funds from a loan market,
and it is only used in _enterLoanMarket(). The latter tracks the loan markets that an account has
borrowed from, so that the protocol can track the US$ value of collateral and loaned assets. The
missing call to _exitLoanMarket() will not have any effect on those calculations, as the principal
amount will be zero in this scenario.

Recommendation The developers should update _liquidateBorrow()with a call to _exitLoanMarket

() if the final principal amount is zero.

Veridise Audit Report: Prime Protocol Inc. © 2023 Veridise Inc.

20 4 Vulnerability Report

4.1.7 V-PRI3-VUL-007: PTokenBase and AavePToken send ptoken amounts instead
of underlying

Severity Low Commit ea69944
Type Logic Error Status Fixed

File(s) PTokenBase.sol, AavePToken.sol
Location(s) depositBehalf()

The depositBehalf() method is used to invoke the deposit user flow. This requires sending a
message to the master state with the number of underlying tokens that have been deposited
by the user, along cross-chain transaction gas fee (in msg.value). However, the actual amount
of underlying tokens is in actualTransferAmount, whereas the amount transferred over is
the equivalent ptoken amount actualDepositAmount. Furthermore, if the underlying token
is the native currency, then the ptoken amount will be deducted from the gas fee, not the
native currency amount. In comparison, the RebasePToken implementation correctly sends over

1 function depositBehalf(
2 address route,
3 address user,
4 uint256 amount
5) public virtual override payable sanityDeposit(amount, user) {
6 uint256 externalExchangeRate = _getExternalExchangeRate();
7 uint256 actualTransferAmount = _doTransferIn(underlying, user, amount);
8 uint256 actualDepositAmount = (actualTransferAmount * 10**EXCHANGE_RATE_DECIMALS)

/ externalExchangeRate;
9

10 _sendDeposit(
11 route,
12 user,
13 underlying == address(0)
14 ? msg.value - actualDepositAmount
15 : msg.value,
16 actualDepositAmount,
17 externalExchangeRate
18);
19 }

Snippet 4.11: Implementation of depositBehalf()

underlying tokens. The CompoundPToken does not use ptokens in its implementation.

Impact The default implementation of PTokenBase._getExternalExchangeRate() returns 1
(with the correct precision), so the external exchange rate of PTokenBase and its subclass
AavePToken will always be 1. Thus, this bug currently has no impact, but the bug may be
triggered if the developers decide to add a PToken that has a non-1:1 exchange rate that extends
from PTokenBase. In this situation, the amount sent over will be ptokens and not underlying,
which may result in a discrepancy in the bookkeeping of the protocol.

Recommendation Change actualDepositAmount to actualTransferAmount in all occurrences
in the call to _sendDeposit().

© 2023 Veridise Inc. Veridise Audit Report: Prime Protocol Inc.

4.1 Detailed Description of Issues 21

4.1.8 V-PRI3-VUL-008: Incorrect data validation in modifyLoanAsset

Severity Low Commit ea69944
Type Data Validation Status Fixed

File(s) TreasuryAdmin.sol

Location(s) modifyLoanAsset()

The modifyLoanAsset() method suffers from several data validation issues:

1. There is no check that for whether the trade asset is actually supported, i.e. whether
supportedTradeAssets[_localLoanAsset][_tradeAsset] is true.

2. The function appears to support a _mintPrice and _burnPrice parameter of 0, correspond-
ing to a no-op; however, the bounds check does not allow the _mintPrice and _burnPrice

to be zero. They are restricted to the range described in the comments.

1 function modifyTradeAsset(
2 address _localLoanAsset,
3 address _tradeAsset,
4 uint256 _mintPrice,
5 uint256 _burnPrice
6) external onlyAdmin() {
7 unchecked {
8 /* Min: 1e8 */
9 /* Max: 105e6 */

10 if (_mintPrice - 1e8 > 5e6) revert ParamOutOfBounds();
11 if (_burnPrice - 1e8 > 5e6) revert ParamOutOfBounds();
12 }
13 if (_mintPrice != 0) localLoanAsset[_localLoanAsset][_tradeAsset].mintPrice =

_mintPrice;
14 if (_burnPrice != 0) localLoanAsset[_localLoanAsset][_tradeAsset].burnPrice =

_burnPrice;
15 }

Snippet 4.12: Implementation of modifyLoanAsset()

Impact

1. Without the check for a valid trade asset / loan asset pair, it may be possible for the admin
to accidentally call modifyTradeAsset on an invalid pair.

2. An admin will be required to provide both _mintPrice and _burnPrice to modifyTradeAsset

(). If the admin only intends to set one of the prices, they will still be required to provide
both. This may be error prone, as they will have to look up the existing price if they do
not want to change it.

Recommendation First, the developers should insert a check that the trade asset / loan asset
pair is supported. Second, the bounds checks should be pushed into the branches, so that
the corresponding check only occurs if the price is nonzero. Lastly, to improve readability, we
recommend that the developers indicate that the price parameters can be set to zero.

Veridise Audit Report: Prime Protocol Inc. © 2023 Veridise Inc.

22 4 Vulnerability Report

4.1.9 V-PRI3-VUL-009: Potential subtraction overflow in setBorrowRate branching
logic

Severity Low Commit ea69944
Type Arithmetic Overflow Status Fixed

File(s) StairIRM.sol

Location(s) setBorrowRate()

The StairIRM is an interest rate model such that whenever the interest rate falls outside of a
“stable range”, it will be adjusted back towards the stable range by a fixed discrete amount (the
basisPointsTickSize) at regular intervals. This adjustment is performed by the setBorrowRate()

method, where it handles the adjustment in a chain of if-else statements. Two of these cases
may be prone to integer overflow:

1. Subtraction overflow will occur if the basisPointsTickSize is greater than the basisPointsUpperTick
.

1 // decrease interest below stable range

2 else if (ratio < lowerTargetRatio) {

3 if (_borrowInterestRatePerBlock <= (basisPointsUpperTick -

basisPointsTickSize)) {

4 _borrowInterestRatePerBlock += basisPointsTickSize;

5 }

2. Subtraction overflow will occur if the basisPointsTickSize is greater than the _borrowInterestRatePerBlock
.

1 //tick back towards baseline inside stable range

2 } else if (_borrowInterestRatePerBlock > borrowInterestRateBaseline) {

3 // avoid oscillation below baseline

4 if (_borrowInterestRatePerBlock - basisPointsTickSize <

borrowInterestRateBaseline)

5 _borrowInterestRatePerBlock = borrowInterestRateBase;

6 else {

Impact If subtraction overflow occurs in setBorrowRate(), then the transaction will revert. The
setBorrowRate() method is used by MasterInternals._accrueInterestOnSingleLoanMarket(),
which is called by all of the user flows except for the deposit user flow. Specifically, this will
lead to a denial-of-service issue when all of the conditions are true:

▶ The affected StairIRM is the interest rate model for a loan market (which we will call the
“affected” loan market);

▶ There is an account (which we will call the “affected account”) participating in that loan
market (i.e., they have an outstanding loan for that market).

▶ And one of the following is true:

• The affected account is the withdrawer in the withdraw user flow.
• The affected account in the borrower in the borrow user flow, and the target market

to borrow from is the affected loan market.
• The affected account is the repayer in the repay user flow, and the target market

being repaid is the affected loan market.

© 2023 Veridise Inc. Veridise Audit Report: Prime Protocol Inc.

4.1 Detailed Description of Issues 23

• The affected account is the borrower in the liquidation user flow, and the target
market being repaid is the affected loan market.

The issue is exacerbated by V-PRI3-VUL-006.

Recommendation To avoid subtraction overflow, the subtraction of basisPointsTickSize can
be converted into an addition on the other side of the comparison.

Veridise Audit Report: Prime Protocol Inc. © 2023 Veridise Inc.

24 4 Vulnerability Report

4.1.10 V-PRI3-VUL-010: User flows do not update accrued interest for collateral

Severity Low Commit ea69944
Type Logic Error Status Intended Behavior

File(s) MasterInternals.sol

Location(s) See description

In all user flows, interest is not accrued for money market assets used as collateral unless
borrows, repayments, or liquidations are occurring on those same money market assets. This
affects all user flows. The root cause of this issue is described below.

First, the bookkeeping for a collateral market keeps the “ptokens” in the markets[][].totalSupply
field and the amount of interest-accumulated amount of underlying tokens in the loanMarkets

[][].totalSupplied field. In the context of a collateral market, a ptoken is like a “share”, where
they can be redeemed for the principal amount of underlying token plus accumulated interest.

A money market asset is represented by a PToken contract on a satellite chain. On the master state,
underlying amounts are converted to ptoken amounts (and vice versa) using the _exchangeRate

(), denominated in terms of underlying-per-ptoken. Note that the underlying amount in the
_exchangeRate() includes the principal plus the interest. Lastly, the withdraw, borrow, repay, and

1 // Lines in _exchangeRate() where the exchange is calculated for a money market asset
.

2 uint256 totalSupply = markets[pTokenChainId][pToken].totalSupply;
3 uint256 totalSupplied = /* irrelevant */;
4 {
5 LoanMarketMetadata memory targetMarket = mappedLoanAssets[pTokenChainId][pToken];
6 if (targetMarket.chainId != 0) {
7 totalSupplied = loanMarkets[targetMarket.loanAsset][targetMarket.chainId].

totalSupplied * normalizeFactor;
8 }
9 }

10 if (totalSupplied == 0 || totalSupplied == type(uint256).max) return (
normalizeFactor, normalizeFactor);

11 uint256 exchangeRate = totalSupplied / totalSupply;
12 return (exchangeRate, normalizeFactor);

Snippet 4.13: Relevant lines in _exchangeRate(). For a money market asset, the
mappedLoanAssets entry will be defined, so the final exchange rate is the

.totalSupplied of the loan market divided by the .totalSupply of the collateral
market.

liquidate user flows all start by calling the internal functions _accrueInterestOnAllLoanMarkets
() and _accrueInterestOnSingleLoanMarket(). Given an account, these two internal functions
update the accrued interest amounts for the loan markets that the account has borrowed from.
Specifically, interest from the total borrowed amount .totalBorrows is accumulated into the
.totalSupplied that is available to be loaned out. However, we note that these functions are
only ever called on amounts being loaned/borrowed, and never for collateral amounts.

Impact Ultimately, this means that money market assets used as a collateral will be undervalued
if there is little borrow, repay, or liquidation action for those money market assets. Specifically,

© 2023 Veridise Inc. Veridise Audit Report: Prime Protocol Inc.

4.1 Detailed Description of Issues 25

1 function _accrueInterestOnSingleLoanMarket(
2 LoanMarketMetadata memory targetMarket
3) public virtual override {
4 LoanMarket memory loanMarket = loanMarkets[targetMarket.loanAsset][targetMarket.

chainId];
5

6 if (loanMarket.accrualBlockNumber != block.number) {
7 /* ... */
8 uint256 interestAccumulated;
9 {

10 /* ... */
11 interestAccumulated = simpleInterestFactor * loanMarket.totalBorrows /

normalizeFactor;
12 /* ... */
13 }
14 /* ... */
15 loanMarket.totalBorrows += interestAccumulated;
16 {
17 uint256 adminFee = loanMarket.adminFee;
18 uint256 feeNormalizeFactor = 10**FEE_PRECISION;
19 if (loanMarket.totalSupplied != type(uint256).max && adminFee !=

feeNormalizeFactor) {
20 uint256 supplyInterestAccumulated = interestAccumulated * (

feeNormalizeFactor - adminFee) / feeNormalizeFactor;
21 loanMarket.totalSupplied += supplyInterestAccumulated;
22 }

Snippet 4.14: Relevant lines in _accrueInterestOnSingleLoanMarket() that update the accrued
interest amounts.

missing interest accruals on collateral will result in the following effects:

▶ Because the .totalSupplied is in the numerator when calculating the _exchangeRate()

for a money market asset, a missing update to the accrued interest will result in a lower
underlying-per-ptoken exchange rate than expected.

▶ The _getValueOfCollateral() method calculates the US$ value of a collateral token. The
calculation involves a multiplication with the value of the _exchangeRate() function for
that token. This means that if the accrued interest has not been updated since the last
borrow or repay (directly or through a liquidation), then the US$ value will be lower than
expected. Consequently, borrows may be rejected or liquidations may be approved when
they should not be.

▶ When a user deposits (underlying) collateral into a money market, the bookkeeping for
that money market asset will not include the most recently accrued interest since the last
borrow or repay (directly or through a liquidation). This means that the user will receive
a higher amount of ptokens for their underlying deposit than they should have, since the
underlying-per-ptoken exchange rate will be lower than expected.

▶ When a user withdraws underlying tokens of a money market asset by supplying the
corresponding ptokens, the interest of the money market asset since the last borrow or
repay (directly or through a liquidation) will not be accrued. This has two effects: 1)
when calculating the hypothetical liquidity of the user’s account, money market assets
that are used as collateral may be undervalued because the accrued interest will not be
updated; 2) the disbursed underlying token amount will be lower than expected, since

Veridise Audit Report: Prime Protocol Inc. © 2023 Veridise Inc.

26 4 Vulnerability Report

1 (uint256 exchangeRate, uint256 normalizeFactor) = _exchangeRate(pToken, pTokenChainId
);

2 actualDepositAmount = depositAmount * normalizeFactor / exchangeRate;

Snippet 4.15: Relevant lines in _deposit() where the ptoken amount is calculated. The
depositAmount is the amount of underlying supplied by the user on the satellite
side. The actualDepositAmount is the number of ptokens granted to the user for

the deposit

the underlying-per-ptoken exchange rate will be lower.

1 (uint256 exchangeRate, uint256 normalizeFactor) = _exchangeRate(
2 pToken,
3 pTokenChainId
4);
5

6 actualWithdrawAmount = pTokenWithdrawAmount * exchangeRate / normalizeFactor;

Snippet 4.16: Relevant lines in _withdrawAllowed() where the underlying amount is calculated.

▶ When a user’s loan is liquidated and the collateral being seized is a money market asset,
the interest for the money market asset will not be accrued. This means that 1) the collateral
is undervalued when the borrower’s account liquidity is calculated; and 2) the amount of
underlying tokens seized will be lower than expected.

Theoretical Scenarios To quantify the effect of the missing interest accrual updates, we
provide a few hypothetical examples below. The examples below suggest that errors are possible
in theory, but negligible in practice with the parameters that the developers intend to use.

Initial parameters:

▶ Users in the scenario: Depositor, Borrower
▶ Money market collateral C1 worth 100 USD per C1.
▶ Lendable asset C2 worth 1 USD per C2.
▶ The scenario begins at zero deposit and zero borrows at time T=0
▶ Interest rate is 0.01 per time step. Note that this is a greatly exaggerated interest rate; if we

take a “time step” to mean a block, this would correspond to about 1000% interest per
year.

Protocol setup:

1. At time T = 0, Depositor deposits 100 C1. The protocol issues 100 C1 ptokens.
2. At time T = 5, Borrower borrows 50 C1. Since there are currently no borrows of C1, zero

interest is accrued.
3. The remaining steps occur at time T = 100.

Exaggerated Withdrawal Scenario Suppose the Depositor attempts to withdraw 10 C1
ptokens.

▶ In the current implementation, the exchange rate is calculated as 1 C1 underlying per C1
ptoken. Thus, the depositor receives 10 C1 underlying tokens.

© 2023 Veridise Inc. Veridise Audit Report: Prime Protocol Inc.

4.1 Detailed Description of Issues 27

▶ If instead the interest for C1 is accrued at the beginning of the withdrawal, the accumulated
interest is (50 / 100) * 0.01 * (100 - 5) = 47.5 C1 tokens, bringing the loan market’s
totalSupplied to 147.5. Thus, the exchange rate is 1.475, so the Depositor receives 14.75
C1 tokens.

Thus, the Depositor loses out on 4.75 C1 tokens (32%) of the 14.75 C1 tokens they should have
received.

Exaggerated Borrow Scenario Suppose the Depositor requests a loan worth 11000 C2.

▶ In the current implementation, the exchange rate is calculated as 1 C1 underlying per C1
ptoken. Thus, the total liquidity of the Depositor is 100 C1 ptokens * 1 C1 underlying

/ C1 ptoken * 100 C1/USD = 10000 USD. Because the request loan amount is larger than
the liquidity, the loan request is rejected.

▶ If instead the interest for C1 is accrued at the beginning of the withdrawal, the total loan
market C1 underlying token amount after accumulating interest is 147.5 C1 tokens. The
exchange rate is 1.475, so the total liquidity of the Depositor is 100 C1 ptokens * 1.475

C1 underlying / C1 ptoken * 100 C1/USD = 14750 USD. The liquidity is larger than the
requested loan amount, so the loan request is granted.

Here, the Depositor only has 68% of the liquidity that they should have at the time of the
borrow.

Semi-Realistic Withdraw Scenario Lastly, we considered a semi-realistic scenario involving a
modified version of the protocol setup above:

▶ We take a “time step” to mean a block. Assuming 7000 blocks per year and 10% APY,
we calculate the interest rate per block to be 3.914 ∗ 10−8 per block (as a factor, not as a
percentage).

▶ The initial amount of C1 deposited into the protocol is 999000 C1 ptokens, 1 million C1
underlying tokens, and 600000 C1 underlying tokens borrowed.

Then suppose the following occurs (we omit the calculations for brevity):

1. At time T = 0, the Depositor deposits 100 C1 tokens.
2. At time T = 5 days, the Borrower borrows 50 C2 tokens.
3. At time T = 1 year, the Depositor decides to withdraw 10 C1 tokens.

In the current implementation, the amount of underlying tokens that the Depositor would
receive is 10.018 C1 tokens. If instead the interest for C1 is accrued at the beginning of the
withdrawal, then the Depositor would instead receive 10.611 C1 tokens. The Depositor loses out
approximately 5.6% of the C1 tokens due to the missing interest accrual. However, we want
to emphasize again that this assumes that there is no borrow, repay, or liquidation activity for
C1 for the entire duration of a year, which is likely untrue if users are actively using C1 on the
protocol.

Recommendation If the missing accrued interest updates are unintended behavior, then the
developers should ensure that the accrued interest of each money market asset used as collateral
is updated before any calls to _exchangeRate() and _getValueOfCollateral().

Veridise Audit Report: Prime Protocol Inc. © 2023 Veridise Inc.

28 4 Vulnerability Report

Developer Response The developers stated that the current implementation is the intended
behavior:

This is how every lending protocol in DeFi works (check Compound’s implemen-
tation as an example). Accruing interest on every market for every action would
dramatically spike gas costs for the user and make the protocol unusable by hitting
the max gas per block limit. This is also unnecessary because the amount of interest
accrued is typically so small that it would not make a meaningful difference to the
user’s liquidity profile. Accrual is done before all actions that would cause a state
change of that asset balance, so the user never loses funds they are entitled to when
withdrawing. Furthermore, the protocol is not exposed to any risk because interest
is always positive, and accruing a user’s interest will only increase their balance. We
do not believe this is an issue and in practice has no noticeable effect.

© 2023 Veridise Inc. Veridise Audit Report: Prime Protocol Inc.

4.1 Detailed Description of Issues 29

4.1.11 V-PRI3-VUL-011: Check for USP underlying does not check chain ID

Severity Warning Commit ea69944
Type Data Validation Status Fixed

File(s) PrimeOracle.sol

Location(s) getBorrowAssetExchangeRate()

The getBorrowAssetExchangeRate() has a special case for USP underlying. However, the check for
this case only compares the underlying address against the USP address. In other methods such
getUnderlyingPriceBorrow(), the special case for USP underlying also compares the underlying
chain ID with the USP chain ID.

Impact It may be possible for an underlying address on one chain to collide with the USP
address on another chain, in which case the wrong result will be returned.

Recommendation Check the chain ID of USP in getBorrowAssetExchangeRate().

Veridise Audit Report: Prime Protocol Inc. © 2023 Veridise Inc.

30 4 Vulnerability Report

4.1.12 V-PRI3-VUL-012: Extra conversion to ptokens in in completeWithdraw

Severity Warning Commit ea69944
Type Logic Error Status Fixed

File(s) PTokenMessageHandler.sol

Location(s) completeWithdraw()

A user can request a collateral withdrawal by calling the RequestController.withdraw() function.
Given the amount of ptokens to withdraw, the withdraw() method will send a withdrawal
request to the master chain, where it will be processed by MasterInternals._withdrawAllowed

(). The master state will update its bookkeeping and send back both the approval status
and the actualWithdrawAmount amount of underlying collateral to send to the recipient of the
withdraw request. When the satellite receives the response, the response will be routed to the
completeWithdraw() method of the PToken contract. In PTokenMessageHandler.completeWithdraw

1 pTokenCollateralBalances[pTokenChainId][withdrawer][pToken] -= pTokenWithdrawAmount;
2 (uint256 exchangeRate, uint256 normalizeFactor) = _exchangeRate(
3 pToken,
4 pTokenChainId
5);
6 actualWithdrawAmount = pTokenWithdrawAmount * exchangeRate / normalizeFactor;

Snippet 4.17: Calculation of actualWithdrawAmount in MasterInternals._withdrawAllowed().
The ptokenWithdrawAmount is the amount of ptokens specified by the user;
multiplying it by the exchange rate converts it into underlying collateral.

(), the actualWithdrawAmount from the master state will be stored in params.withdrawAmount.
This is multiplied by the external exchange rate (which was stored on the master state) to
calculate the actualWithdrawAmount of underlying tokens to transfer to the withdraw recipient.
The params.withdrawAmount is in units of underlying, which is inconsistent with the params.

externalExchangeRate, which is in terms of underlying per ptoken. Furthermore, the calculation
of actualWithdrawAmount already has a multiplication with the externalExchangeRate (which is
part of the _exchangeRate()).

1 function completeWithdraw(
2 IHelper.FBWithdraw memory params
3) external payable virtual override onlyMid() {
4 if (isFrozen) revert MarketIsFrozen(address(this));
5 emit WithdrawApproved(
6 params.user,
7 address(this),
8 params.withdrawAmount,
9 true

10);
11 uint256 actualWithdrawAmount = (params.withdrawAmount * params.

externalExchangeRate) / 10**EXCHANGE_RATE_DECIMALS;
12 _doTransferOut(params.user, underlying, actualWithdrawAmount);
13 }

Snippet 4.18: Implementation of PTokenMessageHandler.completeWithdraw()

© 2023 Veridise Inc. Veridise Audit Report: Prime Protocol Inc.

4.1 Detailed Description of Issues 31

Impact There is no impact in the current version, because it is assumed that PTokenMessageHandler
will be used with non-rebasing tokens, which have an external exchange rate of 1:1. However, if
this assumption is violated in the future, this may lead to wrong amounts of underlying tokens
being transferred to users.

Recommendation Fix the inconsistencies.

Developer Response The developers noted that the correct behavior is to send the underlying
amount from master, and they have changed the code in completeWithdraw().

Veridise Audit Report: Prime Protocol Inc. © 2023 Veridise Inc.

32 4 Vulnerability Report

4.1.13 V-PRI3-VUL-013: Redundant comparison against 0

Severity Warning Commit ea69944
Type Logic Error Status Fixed

File(s) DIAFeedGetter.sol

Location(s) getAssetPrice()

In getAssetPrice(), the answer from the DIA oracle is an unsigned integer, so the expression
answer < 0 will always evaluate to false. This means that return (0, 0) is dead code.

1 (
2 uint128 answer,
3 /* uint128 timestampe */
4) = feed.getValue(key);
5

6 if (answer < 0) return (0,0);

Snippet 4.19: Location of the comparison in getAssetPrice()

Recommendation Change the check to answer <= 0 (if attempting to guard against invalid
prices) or remove the check altogether.

© 2023 Veridise Inc. Veridise Audit Report: Prime Protocol Inc.

4.1 Detailed Description of Issues 33

4.1.14 V-PRI3-VUL-014: Contradictory comments on RequestController.withdraw

Severity Warning Commit ea69944
Type Maintainability Status Fixed

File(s) RequestController.sol

Location(s) withdraw()

A documentation comment on RequestController.withdraw() indicates that a deposit can call
it with ptokens in exchange for underlying assets. However, the comment on withdrawAmount

states that the amount is denominated in underlying collateral tokens. Furthermore, based on
the way the variable is used when it is sent over to the master contract, it appears to actually be
in terms of ptokens in practice. This comment could mislead the developers into introducing
unit conversion bugs in the future.

1 /**
2 * @notice Depositor withdraws pTokens in exchange for a specified amount of

underlying asset
3 * @param withdrawAmount The amount of underlying to withdraw from the protocol
4 * @param route Route through which to request to withdraw tokens
5 */
6 function withdraw(
7 address route,
8 uint256 withdrawAmount,
9 address pToken,

10 uint256 targetChainId
11) external override payable nonReentrant() {

Snippet 4.20: Comments on the withdraw() method

Impact The developers should resolve the contradictory comments and fix the intended
behavior if needed.

Developer Response The developers noted that withdrawAmount is in terms of ptokens.

Veridise Audit Report: Prime Protocol Inc. © 2023 Veridise Inc.

34 4 Vulnerability Report

4.1.15 V-PRI3-VUL-015: Potentially missing special case for USP in
getUnderlyingPrice

Severity Warning Commit ea69944
Type Logic Error Status Intended Behavior

File(s) PrimeOracle.sol

Location(s) getUnderlyingPrice()

In getUnderlyingPriceBorrow() and getBorrowAssetExchangeRate(), there are special cases for
the USP token. For example, getUnderlyingPriceBorrow() will directly return 1 as the price for
the USP token instead of consulting an oracle. However, the getUnderlyingPrice() is missing a
similar special case for USP.

1 function getUnderlyingPrice(
2 uint256 chainId,
3 address collateralMarketUnderlying
4) external view override returns (uint256, uint8) {
5 return _getAssetPrice(chainId, collateralMarketUnderlying);
6 }
7

8 function getUnderlyingPriceBorrow(
9 uint256 chainId,

10 address loanMarketUnderlying
11) external view override returns (uint256, uint8) {
12 if (uspAddress == address(0)) revert UspAddressZero();
13

14 if (loanMarketUnderlying == uspAddress && chainId == block.chainid) {
15 uint8 uspDecimals = ERC20(uspAddress).decimals();
16 return (10**uspDecimals, uspDecimals);
17 } else {
18 return _getAssetPrice(chainId, loanMarketUnderlying);
19 }
20 }

Snippet 4.21: Implementation of getUnderlyingPrice() and getUnderlyingPriceBorrow()

Recommendation The developer should clarify the intended behavior and role of the USP
token in this contract.

Developer Response The developers noted that this is intended:

getUnderlyingPrice() is used internally in _getValueofCollateral() and _syncAsset-
Value(), which both only call getUnderlyingPrice() on PTokens, so a special case for
USP would be dead code as it would never execute as USP can’t be used as collateral

© 2023 Veridise Inc. Veridise Audit Report: Prime Protocol Inc.

4.1 Detailed Description of Issues 35

4.1.16 V-PRI3-VUL-016: _syncUserRewards always applies to msg.sender

Severity Warning Commit ea69944
Type Maintainability Status Fixed

File(s) StakingPoolInternals.sol

Location(s) _syncUserRewards()

The StakingPool allows users to stake assets and collect rewards for them. At every user
interaction, the pool contract calls an internal function _syncUserRewards(), which calculates the
accrued rewards for the msg.sender since the last update for the msg.sender. In the current version,

1 function _syncUserReward(address rewardsToken) internal {
2 uint256 rewardsIndexDiff = (rewardMarkets[rewardsToken].marketIndex - userRewards

[msg.sender][rewardsToken].rewardsIndex);
3 uint256 rewardsAccumulated = rewardsIndexDiff * userBalances[msg.sender] / 10**

STAKING_REWARDS_DECIMALS;
4 userRewards[msg.sender][rewardsToken].accumulatedRewards += rewardsAccumulated;
5 userRewards[msg.sender][rewardsToken].rewardsIndex = rewardMarkets[rewardsToken].

marketIndex;
6 }

Snippet 4.22: Function _syncUserReward in StakingPoolInternals.sol

the function is called whenever a user stakes, unstakes, or claims rewards. _syncRewardsUser()
assumes that the msg.sender is always the user for whom the rewards should be updated.

Impact The issue described above currently has no impact; however, if the developers intend
to add additional functionality, such as the ability to stake on behalf of another user, then they
may forget to that _syncUserReward() only applies to the msg.sender.

Recommendation The _syncUserRewards() should explicitly take the address of the user for
whom the rewards should be updated for.

Veridise Audit Report: Prime Protocol Inc. © 2023 Veridise Inc.

36 4 Vulnerability Report

4.1.17 V-PRI3-VUL-017: MAX_SIZE can be defined in terms of other constants

Severity Warning Commit ea69944
Type Maintainability Status Acknowledged

File(s) ECC.sol

Location(s) See description

The ECC contract has three constants MAX_SIZE, METADATA_SIZE, and USABLE_SIZE corresponding
to the total size of a message, the size of the metadata part, and the maximum size of the payload
part, respectively. However, they are all defined as hardcoded constants, even though there is
an implicit assumption that MAX_SIZE == METADATA_SIZE + USABLE_SIZE.

Impact If the developers change either METADATA_SIZE or USABLE_SIZE, they may forget to
update MAX_SIZE. This may result in serious errors, as the MAX_SIZE determines the storage layout
of the messages stored in the contract.

Recommendation Define MAX_SIZE as:

1 uint256 internal constant MAX_SIZE = METADATA_SIZE + USABLE_SIZE

Developer Response The developers noted:

The ECC contract currently on Mainnet cannot be upgraded, so to maintain consis-
tency between live contracts and our repository we won’t be making these changes
locally. However in future versions, or in a case where we need to redeploy this
contract, we will make these updates to improve readability/maintainability.

© 2023 Veridise Inc. Veridise Audit Report: Prime Protocol Inc.

4.1 Detailed Description of Issues 37

4.1.18 V-PRI3-VUL-018: setAssetKey does not check whether feed exists

Severity Warning Commit ea69944
Type Data Validation Status Acknowledged

File(s) DIAFeedGetter.sol

Location(s) setAssetKey()

The setAssetKey() function can be called by an admin to set the key that will be looked up for a
particular DIA feed. However, it does not validate whether the corresponding feed actually
exists.

1 function setAssetKey(
2 uint256 chainId,
3 address asset,
4 string memory key
5) external onlyAdmin() {
6 assetKeys[chainId][asset] = key;
7 emit AssetKeyUpdated(chainId, asset, key);
8 }

Snippet 4.23: Implementation of setAssetKey()

Impact An admin may make the mistake of setting an asset key for a feed that does not exist,
and there is nothing preventing this mistake from happening.

Recommendation Require that assetFeeds[chainId][asset] is nonzero.

Developer Response The developers noted that this function is meant to be called during
deployment, and they do not want to enforce a strict order between calls to setAssetFeed()

(used to set the assetFeeds[chainId][asset] entry) and setAssetKey().

Furthermore, they stated that:

For DIA feeds both the feed and key need to be set for them to properly work, so
adding just a check on setAssetKey doesn’t make sense without also having one on
setAssetFeed. The problem with this is at runtime, there is no guarantee the order
in which the admin will call these setters, so there’s not a maintainable way to add
such sanity checks.

Veridise Audit Report: Prime Protocol Inc. © 2023 Veridise Inc.

38 4 Vulnerability Report

4.1.19 V-PRI3-VUL-019: Price bounds are magic constants

Severity Warning Commit ea69944
Type Maintainability Status Fixed

File(s) TreasuryAdmin.sol

Location(s) supportLoanAsset(), modifyTradeAsset()

The supportLoanAsset() and modifyTradeAsset() methods both provide a _mintPrice argument
and a _burnPrice argument, which are fixed point integers with FACTOR_DECIMALS (a constant
equal to 8) decimals. However, the validation in both methods use magic constants 1e8 and 5e6.
These magic constants are equal to 10**FACTOR_DECIMALS and 5 * 10**(FACTOR_DECIMALS - 2),
respectively.

1 /* Min: 1e8 */
2 /* Max: 105e6 */
3 if (_mintPrice - 1e8 > 5e6) revert ParamOutOfBounds();
4 if (_burnPrice - 1e8 > 5e6) revert ParamOutOfBounds();

Snippet 4.24: The range checks for _mintPrice and _burnPrice.

Impact If the FACTOR_DECIMALS is modified, and the developers forget to update these magic
constants, then the bounds checks will be incorrect.

Recommendation Replace the magic constants with appropriately named constant variables.

© 2023 Veridise Inc. Veridise Audit Report: Prime Protocol Inc.

4.1 Detailed Description of Issues 39

4.1.20 V-PRI3-VUL-020: Unused mappings in PrimeOracleStorage

Severity Info Commit ea69944
Type Maintainability Status Fixed

File(s) PrimeOracleStorage.sol

Location(s) See description

The storage variables exchangeRatePrimaryFeeds and exchangeRateSecondaryFeedsof the PrimeOracleStorage
abstract contract are not used anywhere. Since the PrimeOracle is not based on an upgradable
proxy, these storage variables can be safely removed.

Veridise Audit Report: Prime Protocol Inc. © 2023 Veridise Inc.

40 4 Vulnerability Report

4.1.21 V-PRI3-VUL-021: Confusing naming in supportSatelliteLoanMarket

Severity Info Commit ea69944
Type Maintainability Status Fixed

File(s) MasterAdmin.sol

Location(s) supportSatelliteLoanMarket()

The auditors found the naming of the parameters of the MasterAdmin.supportSatelliteLoanMarket
() method to be very confusing. We recommend that the developers clarify the naming and add
documentation comments explaining what the parameters are and how the method is meant to
be used.

© 2023 Veridise Inc. Veridise Audit Report: Prime Protocol Inc.

4.1 Detailed Description of Issues 41

4.1.22 V-PRI3-VUL-022: Inconsistent naming in TreasuryAdmin methods

Severity Info Commit ea69944
Type Maintainability Status Fixed

File(s) TreasuryAdmin.sol

Location(s) See description

The TreasuryAdmin contract contains three methods named supportLoanAsset(), removeTradeAssetToLoanAsset
(), and modifyTradeAsset(), which operate over the same data structures. The name of
modifyTradeAsset() is inconsistent with the other two names.

Developer Response The developers renamed supportLoanAsset to supportTradeAsset and
removeTradeAssetToLoanAsset to removeTradeAsset.

Veridise Audit Report: Prime Protocol Inc. © 2023 Veridise Inc.

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	V-PRI3-VUL-001: Inconsistency in liquidation seize token units
	V-PRI3-VUL-002: Reentrancy attack vector in claimRewards with callback-supporting ERC20s
	V-PRI3-VUL-003: Underlying disbursement uses stale external exchange rate
	V-PRI3-VUL-004: Inconsistent borrow asset exchange rate for USP underlying
	V-PRI3-VUL-005: Missing gas limit checks for liquidation requests
	V-PRI3-VUL-006: Missing call to _exitLoanMarket in liquidation
	V-PRI3-VUL-007: PTokenBase and AavePToken send ptoken amounts instead of underlying
	V-PRI3-VUL-008: Incorrect data validation in modifyLoanAsset
	V-PRI3-VUL-009: Potential subtraction overflow in setBorrowRate branching logic
	V-PRI3-VUL-010: User flows do not update accrued interest for collateral
	V-PRI3-VUL-011: Check for USP underlying does not check chain ID
	V-PRI3-VUL-012: Extra conversion to ptokens in in completeWithdraw
	V-PRI3-VUL-013: Redundant comparison against 0
	V-PRI3-VUL-014: Contradictory comments on RequestController.withdraw
	V-PRI3-VUL-015: Potentially missing special case for USP in getUnderlyingPrice
	V-PRI3-VUL-016: _syncUserRewards always applies to msg.sender
	V-PRI3-VUL-017: MAX_SIZE can be defined in terms of other constants
	V-PRI3-VUL-018: setAssetKey does not check whether feed exists
	V-PRI3-VUL-019: Price bounds are magic constants
	V-PRI3-VUL-020: Unused mappings in PrimeOracleStorage
	V-PRI3-VUL-021: Confusing naming in supportSatelliteLoanMarket
	V-PRI3-VUL-022: Inconsistent naming in TreasuryAdmin methods

