
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

Prime Protocol

Veridise Inc.
April 11, 2023

▶ Prepared For:

Prime Protocol
https://www.primeprotocol.xyz/

▶ Prepared By:

Bryan Tan
Ajinkya Rajput

▶ Contact Us: contact@veridise.com

▶ Version History:

Apr. 11, 2023 V1
Apr. 5, 2023 Initial Draft

© 2023 Veridise Inc. All Rights Reserved.

https://www.primeprotocol.xyz/
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 6

4 Vulnerability Report 9
4.1 Detailed Description of Issues . 10

4.1.1 V-PRI2-VUL-001: protocolIncentive divided by wrong precision factor . 10
4.1.2 V-PRI2-VUL-002: Liquidity check compares different units in _with-

drawAllowed . 11
4.1.3 V-PRI2-VUL-003: Satellite loan market exchange rate calculation uses

wrong units . 13
4.1.4 V-PRI2-VUL-004: _getValueOfCollateral multiplies wrong units 15
4.1.5 V-PRI2-VUL-005: Native currency collateral repayment always reverts . 19
4.1.6 V-PRI2-VUL-006: Loan market totalSupplied inconsistency after call to

supportSatelliteLoanMarket() . 21
4.1.7 V-PRI2-VUL-007: Rounding error may cause Aave PToken withdraw to

revert . 24
4.1.8 V-PRI2-VUL-008: RequestController.deposit does not forward msg.value 26
4.1.9 V-PRI2-VUL-009: Liquidating loan asset of zero locks native currency

collateral . 28
4.1.10 V-PRI2-VUL-010: Potential rounding error causes revert in queryUserRe-

wardsBalance . 30
4.1.11 V-PRI2-VUL-011: changeProtocolIncentive does not validate bounds . . 32
4.1.12 V-PRI2-VUL-012: withdrawReserves refunds gas to wrong account . . . 33
4.1.13 V-PRI2-VUL-013: PToken does not validate decimals of underlying . . . 34
4.1.14 V-PRI2-VUL-014: Minor rounding error when calculating liquidation

repay amount . 36
4.1.15 V-PRI2-VUL-015: supportMarket can be called on a previously listed

market . 37
4.1.16 V-PRI2-VUL-016: Associated loan market not validated before use 39
4.1.17 V-PRI2-VUL-017: Same hash hardcoded in two locations 41
4.1.18 V-PRI2-VUL-018: Duplicated logic in PToken deposit, depositBehalf . . 42
4.1.19 V-PRI2-VUL-019: Missing events in RewardControllerAdmin 43
4.1.20 V-PRI2-VUL-020: Duplicated initialization logic in PToken implementa-

tions . 44
4.1.21 V-PRI2-VUL-021: Buffer overflow in MiddleLayer._mreceive 46
4.1.22 V-PRI2-VUL-022: Potentially incorrect cast in unlockLiquidationRefund 48

Veridise Audit Report: Prime © 2023 Veridise Inc.

4.1.23 V-PRI2-VUL-023: Unfairness while withdrawing collateral in low-liquidity
situations . 49

4.1.24 V-PRI2-VUL-024: Inconsistent comments in DoubleLinearIRMStorage . 50
4.1.25 V-PRI2-VUL-025: collateralBalances is confusingly named 51
4.1.26 V-PRI2-VUL-026: Liquidation response can forward msg.value twice . . 52
4.1.27 V-PRI2-VUL-027: Implicit interface is shared by PToken and LoanAsset 54
4.1.28 V-PRI2-VUL-028: Missing events on interest accrual 56
4.1.29 V-PRI2-VUL-029: Consider documenting units in calculations 57

Executive Summary 1
From Mar. 9, 2023 to Mar. 31, 2023, Prime engaged Veridise to review the security of their Prime
Protocol. The review covered an extension to the Prime Protocol that implements a new money
markets feature that allows users to borrow from collateral token deposits*. Compared to the
previous version, which Veridise has audited previously†, the code has been significantly revised
to accommodate the new feature. Veridise conducted the assessment over 6 person-weeks, with
2 engineers reviewing code over 3 weeks on Git commit b1ee399. The auditing strategy involved
a tool-assisted analysis of the source code performed by Veridise engineers as well as extensive
manual auditing.

Code assessment. The Prime developers provided the source code of the Prime Protocol
contracts for review. To facilitate the Veridise auditors’ understanding of the code, the Prime
developers shared a whitepaper describing the high-level functionality of the protocol as well
as internal documentation of some of the protocol’s implementation details. The source code
also contained some documentation in the form of READMEs and documentation comments
on functions and storage variables.

The source code contained a test suite, which the Veridise auditors noted only provides partial
coverage, particularly in the newly added code as we note in the suggestions below. Several files
in the source code also indicate that the developers use linting and static analysis tools such as
Solhint and Slither, respectively.

Summary of issues detected. The audit uncovered 29 issues, the majority of which are related
to bugs in the implementation. Among all issues, 6 are assessed to be of high or critical severity
by the Veridise auditors, including an issue where users may be unable to withdraw collateral
after an admin lists a new loan market that uses that collateral (V-PRI2-VUL-006); multiple issues
where numerical units are inconsistent (V-PRI2-VUL-002, V-PRI2-VUL-003, V-PRI2-VUL-004)
in a way that disrupts the intended behavior of the protocol; as well as another issue where
users will be unable to repay loans that use native currency as collateral (V-PRI2-VUL-005). The
Veridise auditors also identified several medium-severity issues, including rounding errors
leading to reverts (V-PRI2-VUL-007) and potential locked funds due to missing data validation
(V-PRI2-VUL-009). Additionally, the auditors reported a number of minor issues, including 7
low-severity issues and 13 warnings.

The Prime developers fixed all of the issues reported by the auditors.

Recommendations. After auditing the protocol, the auditors had a few suggestions to improve
the protocol’s long term safety.

* The money markets feature is described in the blog post: https://medium.com/prime-protocol/
introducing-money-markets-on-prime-protocol-dcabf6472b93

† The previous audit report can be found on Veridise’s website at https://veridise.com/veridise-audits/

Veridise Audit Report: Prime © 2023 Veridise Inc.

https://medium.com/prime-protocol/introducing-money-markets-on-prime-protocol-dcabf6472b93
https://medium.com/prime-protocol/introducing-money-markets-on-prime-protocol-dcabf6472b93
https://veridise.com/veridise-audits/

2 1 Executive Summary

Test coverage. Several issues relate to missing data validation and/or bugs in the core calculations,
such as V-PRI2-VUL-005, V-PRI2-VUL-008, and V-PRI2-VUL-009. We believe these issues could
have been caught while testing realistic user behaviors, such as:

▶ Cases where native currency is used as collateral for a loan.
▶ Cases where a PToken with an external exchange rate greater than 1 is used as collateral

and/or loaned out as a money market asset.
▶ Cases where users mistakenly provide bad or invalid PToken or lendable asset addresses

as parameters.
▶ Cases where users interact with multiple assets that are each configured differently (e.g.,

borrowing a first-party loan asset by using a rebasing token as collateral).

PTokens with an external exchange rate. Several of the high severity issues discovered by the
Veridise auditors involve the cases where the collateral-per-PToken exchange rate is not equal
to one. As such, we recommend that the developers thoroughly test and debug such PTokens
end-to-end before they attempt to deploy such PTokens.

Maintainability. The Veridise auditors observed that some of the issues discovered in the audit
may have been a consequence of maintainability issues. In particular, V-PRI2-VUL-002 may have
been caused by ambiguous variables names such as actualWithdrawAmount causing confusion
during development. We recommend naming ambiguous variables and field names such as
totalSupply and totalSupplied to clearer, unambiguous names such as totalPtokenSupply and
totalCollateralSupply.

Additionally, the auditors encountered multiple locations in the code where the developers make
implicit assumptions about invariants that should hold (e.g., see V-PRI2-VUL-013 and developer
responses in V-PRI2-VUL-002 and V-PRI2-VUL-003). To reduce the possibility that a future
change violates these assumptions and introduce bugs, we recommend that the developers
clearly document such assumptions in the code and check that the invariants hold during
testing.

Furthermore, to prevent unit conversion or fixed point arithmetic issues such as V-PRI2-VUL-001
from occurring in the future, we recommend that the developers document the units and
precision of each parameter and state variable, and that they should also insert comments where
unit and/or precision conversions may occur (V-PRI2-VUL-029).

Finally, the Veridise auditors observed that the new changes have introduced higher degrees
of branching and special cases, which results in higher code complexity overall compared to
the previous version. This has made the code more error-prone (e.g., V-PRI2-VUL-006) and
susceptible to mistakes when performing upgrades. If possible, we recommend that the Prime
developers simplify their protocol by removing as many special cases as possible. For example,
they could remove the native currency underlying special case in the PToken contracts and
instead use a wrapped native currency token as underlying.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

© 2023 Veridise Inc. Veridise Audit Report: Prime

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
Prime Protocol b1ee399 Solidity Ethereum

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
Mar. 9 - Mar. 31, 2023 Manual & Tools 2 6 person-weeks

Table 2.3: Vulnerability Summary.

Name Number Resolved
Critical-Severity Issues 0 0
High-Severity Issues 6 6
Medium-Severity Issues 3 3
Low-Severity Issues 7 7
Warning-Severity Issues 13 13
Informational-Severity Issues 0 0
TOTAL 29 29

Table 2.4: Category Breakdown.

Name Number
Logic Error 10
Maintainability 8
Data Validation 4
Locked Funds 2
Denial of Service 2
Missing/Incorrect Events 2
Usability Issue 1

Veridise Audit Report: Prime © 2023 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of Prime’s smart contracts related
to the core functionality. In our audit, we sought to answer the following questions:

▶ Does the money market functionality work as intended?
▶ Are all user-initiated flows such as deposits, borrows, etc. fault tolerant?
▶ Are loan interest rates calculated correctly?
▶ Are gas fees forwarded to the correct contracts and to the correct refund addresses?
▶ Are all unit conversions implemented correctly and with the correct precision?
▶ Do all admin functions validate their arguments, and what impact does misconfiguration

have?
▶ It is possible for user funds to be locked in the protocol, including accidentally or by an

attacker?
▶ Can an attacker abuse missing validation to cause financial damage to the protocol and

other users?
▶ Can an attacker withdraw more funds than they are entitled to?
▶ What possible strategies could attackers employ to forcefully trigger liquidations?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a combination of
human experts and automated program analysis & testing tools. In particular, we conducted
our audit with the aid of the following techniques:

▶ Static analysis. To identify potential common vulnerabilities, we leveraged our custom
smart contract analysis tool Vanguard, as well as the open-source tool Slither. These
tools are designed to find instances of common smart contract vulnerabilities, such as
reentrancy and uninitialized variables.

▶ Fuzzing/Property-based Testing. We also leverage fuzz testing to determine if the protocol
may deviate from the expected behavior. To do this, we formalize the desired behavior of
the protocol as [V] specifications and then use our fuzzing framework OrCa to determine
if a violation of the specification can be found.

Scope. The scope of this audit is limited to the the following files:

▶ The files that both (1) were in scope in the previous audit; and (2) are contained in one of
the following folders:

• ecc

• interfaces

• master

Veridise Audit Report: Prime © 2023 Veridise Inc.

6 3 Audit Goals and Scope

• middleLayer

• satellite

• util

▶ The following new source files written by the developers:

• satellite/pToken/extensions/*

• satellite/pToken/implementations/*

• satellite/requestController/*

• master/irm/implementations/doubleLinear/*

Several files/components were also explicitly excluded from the scope, including:

▶ ECC.sol

▶ Axelar.sol

▶ Wormhole.sol

▶ PrimeOracle.sol

▶ ChainlinkFeedGetter.sol

▶ Staking.sol

▶ MultiStaticCall.sol

▶ Treasury.sol

During the audit, the Veridise auditors referred to the excluded files but assumed that they
have been implemented correctly.

Methodology. Veridise auditors reviewed the report of the previous audit conducted by Veridise
for Prime, inspected the provided tests, and read the documentation provided by the Prime
developers. They then began a manual audit of the code assisted by both static analyzers
and automated testing. During the audit, the Veridise auditors regularly met with the Prime
developers to ask questions about the code.

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

In this case, we judge the likelihood of a vulnerability as follows:

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows:

© 2023 Veridise Inc. Veridise Audit Report: Prime

3.3 Classification of Vulnerabilities 7

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

Veridise Audit Report: Prime © 2023 Veridise Inc.

Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowleged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-PRI2-VUL-001 protocolIncentive divided by wrong precision fa. . . High Fixed
V-PRI2-VUL-002 Liquidity check compares different units in _w. . . High Fixed
V-PRI2-VUL-003 Satellite loan market exchange rate calculation. . . High Fixed
V-PRI2-VUL-004 _getValueOfCollateral multiplies wrong units High Fixed
V-PRI2-VUL-005 Native currency collateral repayment always rev. . . High Fixed
V-PRI2-VUL-006 Loan market totalSupplied inconsistency after c. . . High Fixed
V-PRI2-VUL-007 Rounding error may cause Aave PToken withdraw t. . .Medium Fixed
V-PRI2-VUL-008 RequestController.deposit does not forward msg.. . . Medium Fixed
V-PRI2-VUL-009 Liquidating loan asset of zero locks native cur. . . Medium Fixed
V-PRI2-VUL-010 Potential rounding error causes revert in query. . . Low Fixed
V-PRI2-VUL-011 changeProtocolIncentive does not validate bounds Low Fixed
V-PRI2-VUL-012 withdrawReserves refunds gas to wrong account Low Fixed
V-PRI2-VUL-013 PToken does not validate decimals of underlying Low Fixed
V-PRI2-VUL-014 Minor rounding error when calculating liquidati. . . Low Fixed
V-PRI2-VUL-015 supportMarket can be called on a previously lis. . . Low Fixed
V-PRI2-VUL-016 Associated loan market not validated before use Low Fixed
V-PRI2-VUL-017 Same hash hardcoded in two locations Warning Fixed
V-PRI2-VUL-018 Duplicated logic in PToken deposit, depositBehalf Warning Fixed
V-PRI2-VUL-019 Missing events in RewardControllerAdmin Warning Fixed
V-PRI2-VUL-020 Duplicated initialization logic in PToken imple. . . Warning Fixed
V-PRI2-VUL-021 Buffer overflow in MiddleLayer._mreceive Warning Acknowledged
V-PRI2-VUL-022 Potentially incorrect cast in unlockLiquidation. . . Warning Fixed
V-PRI2-VUL-023 Unfairness while withdrawing collateral in low-. . . Warning Intended Behavior
V-PRI2-VUL-024 Inconsistent comments in DoubleLinearIRMStorage Warning Fixed
V-PRI2-VUL-025 collateralBalances is confusingly named Warning Fixed
V-PRI2-VUL-026 Liquidation response can forward msg.value twice Warning Acknowledged
V-PRI2-VUL-027 Implicit interface is shared by PToken and Loan. . . Warning Fixed
V-PRI2-VUL-028 Missing events on interest accrual Warning Fixed
V-PRI2-VUL-029 Consider documenting units in calculations Warning Acknowledged

Veridise Audit Report: Prime © 2023 Veridise Inc.

10 4 Vulnerability Report

4.1 Detailed Description of Issues

4.1.1 V-PRI2-VUL-001: protocolIncentive divided by wrong precision factor

Severity High Commit b1ee399
Type Logic Error Status Fixed

File(s) [...]/ASVTokenV3RewardsController.sol

Location(s) _withdrawRewards()

In ASVTokenV3RewardsController._withdrawRewards(), a percentage of the user’s claimed re-
wards is deducted as a fee. This computation is carried out by multiplying the claimedRewards

with the protocolIncentive , and then dividing by a precision constant to ensure that the result
has the correct precision. However, the precision factor used is FACTOR_DECIMALS (an exponent)
rather than 10**FACTOR_DECIMALS (the actual precision factor).

1 uint256 protocolShare = claimedRewards * protocolIncentive / FACTOR_DECIMALS;
2 uint256 adjustedClaimedRewards = claimedRewards - protocolShare;

Snippet 4.1: The location in _withdrawRewards() where the user’s claimed rewards are adjusted.

Impact Because FACTOR_DECIMALS is significantly smaller than 10**FACTOR_DECIMALS, the protocolShare
will be much larger than it should be. This will cause the subtraction overflow in claimedRewards

- protocolShare, leading to a revert when depositing, withdrawing, or liquidating. If no revert
occurs, the adjusted claimed rewards will be significantly reduced compared to the actual
intended amount.

Recommendation Change FACTOR_DECIMALS to 10**FACTOR_DECIMALS.

Developer Response The developers indicated that they will be removing the rewards
controller logic entirely, as they do not intend to use it in the future.

© 2023 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Issues 11

4.1.2 V-PRI2-VUL-002: Liquidity check compares different units in
_withdrawAllowed

Severity High Commit b1ee399
Type Logic Error Status Fixed

File(s) master/MasterInternals.sol

Location(s) _withdrawAllowed()

The MasterInternals._withdrawAllowed() method determines whether a collateral withdrawal
initiated on a satellite chain should be approved. Part of the approval check is to determine
whether the protocol has sufficient liquidity to cover the withdrawal; if the protocol lacks
liquidity, then the _withdrawAllowed() method will revert.

In the check, the parameter pTokenWithdrawAmount is given in terms of the amount of PTokens
to withdraw. This value is compared against the totalSupplied - totalBorrows , which are
underlying collateral amounts and not PToken amounts.

1 if (totalSupplied != type(uint256).max) {
2 uint256 totalBorrows = loanMarkets[loanMarket.loanAsset][loanMarket.chainId].

totalBorrows;
3 if (totalBorrows > totalSupplied || (totalSupplied - totalBorrows) <

pTokenWithdrawAmount) {
4 revert InsufficientLiquidity();
5 }
6

7 loanMarkets[loanMarket.loanAsset][loanMarket.chainId].totalSupplied -=
actualWithdrawAmount;

8 }

Snippet 4.2: The snippet in _withdrawAllowed() that checks whether there is sufficient liquidity
for a withdrawal.

Impact If the collateral-per-PToken exchange rate is not 1:1, a withdrawal may not be approved
even if there is sufficient liquidity to cover the withdrawal, or a withdrawal may be approved
even if there is insufficient liquidity.

Recommendation The actual amount of collateral that is withdrawn is already computed
in the local variable actualWithdrawAmount, which is computed as the pTokenWithdrawAmount

multiplied by the collateral-per-PToken exchange rate. The liquidity check should compare
against actualWithdrawAmount, not pTokenWithdrawAmount.

1 actualWithdrawAmount = pTokenWithdrawAmount * exchangeRate / normalizeFactor;

Snippet 4.3: The line that computes actualWithdrawAmount

Veridise Audit Report: Prime © 2023 Veridise Inc.

12 4 Vulnerability Report

Developer Response The developers noted the following:

Since the PToken exchange rate is strictly increasing (we can’t have negative interest),
and actualWithdrawAmount = pTokenWithdrawAmount * exchangeRate / normalizeFactor

, then the boolean "(totalSupplied - totalBorrows) < pTokenWithdrawAmount" will
never reject a withdrawal when there is sufficient liquidity. This means funds can’t
get locked as a result. I think this more accurately describes the impact:

"If the collateral-per-PToken exchange rate is not 1:1, a withdrawal may be approved
even if there is insufficient liquidity. This would lead to the withdrawal failing on
satellite, and the withdrawal message would need to be re-sent when there is more
liquidity in the pool"

This issue does not lead to any funds being locked incorrectly, or the incorrect
distribution of any funds.

© 2023 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Issues 13

4.1.3 V-PRI2-VUL-003: Satellite loan market exchange rate calculation uses wrong
units

Severity High Commit b1ee399
Type Logic Error Status Fixed

File(s) master/MasterInternals.sol

Location(s) _exchangeRate()

The _exchangeRate() internal function is used to calculate the underlying-collateral-per-PToken
exchange rate (exchangeRate) for a given PToken. This calculation is performed by (1) multiplying
the total quantity of PToken available for borrowing by (2) the PToken’s collateral-per-PToken
exchange rate, and (3) dividing by the total quantity of PToken in circulation.

Specifically, when calculating the exchangeRate, the involved variables and units are:

1. totalSupply is in terms of PTokens
2. totalSupplied is in terms of:

▶ PTokens if the chainId is zero
▶ underlying collateral if the chainId is nonzero

3. externalExchangeRate is in terms of collateral-per-PToken

For PTokens without an associated loan market (i.e., chainId is zero), the exchangeRate simplifies
to term (2). However, the calculation does not make sense for PTokens with an associated loan
market (i.e., chainId is nonzero), because it multiplies collateral by the collateral-per-PToken
exchange rate.

Impact If the exchange rate between collateral and PToken is not 1:1, this will result in
the calculated exchangeRate being incorrect. Because the _exchangeRate() method is used in
several important methods like _deposit(), _withdrawAllowed(), and _getValueOfCollateral(),
a mistake in _exchangeRate() could lead to issues in core parts of the protocol.

Recommendation The developers should clarify the behavior of _exchangeRate() when a
PToken has an associated loan market and check that the units in the calculations are correct.

Developer Response The developers have corrected the units by changing the calculation to
the following:

1 uint256 totalSupply = markets[pTokenChainId][pToken].totalSupply;

2 uint256 totalSupplied = totalSupply * markets[pTokenChainId][pToken].

externalExchangeRate;

3

4 {

5 LoanMarketMetadata memory targetMarket = mappedLoanAssets[pTokenChainId][pToken];

6

7 if (targetMarket.chainId != 0) {

8 totalSupplied = loanMarkets[targetMarket.loanAsset][targetMarket.chainId].

totalSupplied * normalizeFactor;

9 }

10 }

Veridise Audit Report: Prime © 2023 Veridise Inc.

14 4 Vulnerability Report

1 function _exchangeRate(
2 address pToken,
3 uint256 pTokenChainId
4) public virtual override view returns (uint256 /* exchangeRate */, uint256 /*

normalizeFactor */) {
5 uint256 normalizeFactor = 10 ** EXCHANGE_RATE_DECIMALS;
6

7 uint256 totalSupply = markets[pTokenChainId][pToken].totalSupply;
8 uint256 totalSupplied = totalSupply;
9

10 {
11 LoanMarketMetadata memory targetMarket = mappedLoanAssets[pTokenChainId][

pToken];
12

13 if (targetMarket.chainId != 0) {
14 totalSupplied = loanMarkets[targetMarket.loanAsset][targetMarket.chainId

].totalSupplied;
15 }
16 }
17

18 if (totalSupplied == 0 || totalSupplied == type(uint256).max) return (
normalizeFactor, normalizeFactor);

19

20 uint256 numerator = totalSupplied * markets[pTokenChainId][pToken].
externalExchangeRate;

21 uint256 denominator = totalSupply;
22 uint256 exchangeRate = numerator / denominator;
23

24 return (exchangeRate, normalizeFactor);
25 }

Snippet 4.4: Implementation of _exchangeRate()

11

12 if (totalSupplied == 0 || totalSupplied == type(uint256).max) return (

normalizeFactor, normalizeFactor);

13

14 uint256 exchangeRate = totalSupplied / totalSupply;

They noted that the markets[pTokenChainId][pToken].externalExchangeRate is assumed to be
greater than one (in the same scale as normalizeFactor).

© 2023 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Issues 15

4.1.4 V-PRI2-VUL-004: _getValueOfCollateral multiplies wrong units

Severity High Commit b1ee399
Type Logic Error Status Fixed

File(s) master/MasterInternals.sol

Location(s) _getValueOfCollateral()

The method _getValueOfCollateral() computes the US$ value of a user’s deposit in one
collateral market (with optional parameters to simulate the effect of a borrow or a withdraw).
However, when computing this value, one of the multiplications does not multiply quantities
of the correct units. The function first calculates a factor tokensToDenom , which represents the
US$ value of each underlying collateral token after adjusting for initial/maintenance collateral
ratios:

1 tokensToDenom = exchangeRate * collateralFactor * oraclePrice / 10**factorDecimals /

10**oracleDecimals;

The units of the variables are:

▶ exchangeRate is in terms of underlying tokens per PToken
▶ collateralFactor is a percentage term (i.e., unitless)
▶ oraclePrice is the US$ price per underlying token

Thus, the units of tokensToDenom is US$ price per PToken, as a fixed point number with the same
precision as that of exchangeRate .

Then the underlying collateral balance of the user is retrieved from the function _collateralBalanceStored

() and stored in variable collBall . The implementation of _collateralBalanceStored() multi-
plies the user’s balance of the PToken by the underlying-collateral-per-PToken exchange rate.
Therefore, inside of _getValueOfCollateral(), collBall is in terms of number of underlying
collateral tokens.

Finally, the calculation of collateralValue multiplies tokenToDenom by collBal . Here, the US$
value per PToken is multiplied by amount of underlying collateral tokens. Thus, the final
quantity is in US$ times collateral per PToken, not in the expected units of US$.

Impact If the collateral-per-PToken exchange rate is not 1:1, the US$ value of collateral of a user
will be calculated incorrectly. This may cause the protocol to over- or under-value the collateral
of the user.

Recommendation Because the exchange rate is already accounted for in _collateralBalanceStored

(), the exchangeRate factor in tokensToDenom is unnecessary. The calculation for tokensToDenom
should be changed to:

1 tokensToDenom = collateralFactor * oraclePrice / 10**factorDecimals / 10**
oracleDecimals;

This will change the units of tokensToDenom to US$ value per collateral token, which will correct
the unit issue with collateralValue. The developers may also need to include an additional
precision factor to avoid rounding issues.

Veridise Audit Report: Prime © 2023 Veridise Inc.

16 4 Vulnerability Report

Note that if the exchangeRate factor is removed from tokensToDenom, then the calculation of
withdrawEffect will need to incorporate the exchangeRate factor:

1 - withdrawEffect = (tokensToDenom * withdrawAmount) / pTokenDecimals; /* normalize */

2 + withdrawEffect = (exchangeRate * tokensToDenom * withdrawAmount) / pTokenDecimals;

/* normalize */

Developer Response The developers changed the calculation of collateralValue to:

1 uint256 collateralValue;

2 {

3 // Note: We don’t use ‘_collateralBalanceStored()‘ here since the exchangeRate

has already been applied in ‘tokensToDenom‘

4 uint256 collBal = collateralBalances[pTokenChainId][user][pToken];

5

6 collateralValue = tokensToDenom * collBal / pTokenDecimals;

7 }

This should have the same effect as our recommendation above, as the exchange rate will not be
multiplied twice.

© 2023 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Issues 17

1 function _getValueOfCollateral(
2 address user,
3 address pToken,
4 uint256 pTokenChainId,
5 uint256 borrowAmount,
6 uint256 withdrawAmount
7) private view returns (uint256 /* collateralValue */, uint256 /* withdrawEffect */)

{
8 uint256 tokensToDenom;
9 {

10 uint256 collateralFactor; uint256 factorDecimals; uint256 oraclePrice;
uint256 oracleDecimals;

11

12 {
13 address pTokenUnderlying = markets[pTokenChainId][pToken].underlying;
14

15 if (borrowAmount != 0 || withdrawAmount != 0) { /* Borrow/Withdraw */
16 (collateralFactor, factorDecimals) = collateralRatioModel.

getCollateralFactor(pTokenChainId, pTokenUnderlying);
17 } else { /* Liquidate */
18 (collateralFactor, factorDecimals) = collateralRatioModel.

getMaintenanceCollateralFactor(pTokenChainId, pTokenUnderlying);
19 }
20 //usd per collateral
21 (oraclePrice, oracleDecimals) = oracle.getUnderlyingPrice(pTokenChainId,

pTokenUnderlying);
22

23 if (oraclePrice == 0) revert InvalidPrice();
24 }
25

26 (uint256 exchangeRate,) = _exchangeRate(pToken, pTokenChainId);
27 // Pre-compute a conversion factor from tokens -> usp (should be 1e18)
28 //factor ptoke->usd
29 tokensToDenom = exchangeRate * collateralFactor * oraclePrice / 10**

factorDecimals / 10**oracleDecimals;
30 }
31

32 uint256 pTokenDecimals = 10**markets[pTokenChainId][pToken].decimals;
33 uint256 collateralValue;
34 { //in collateral
35 uint256 collBal = _collateralBalanceStored(user, pToken, pTokenChainId);
36 // usd/ptoken no.collater
37 collateralValue = tokensToDenom * collBal / pTokenDecimals;
38 }

Snippet 4.5: Relevant snippet in _getValueOfCollateral()

Veridise Audit Report: Prime © 2023 Veridise Inc.

18 4 Vulnerability Report

1 uint256 collateralBalance = collateralBalances[pTokenChainId][account][pToken];
2

3 /* If collateralBalance = 0 then collateralIndex is likely also 0.
4 * Rather than failing the calculation with a division by 0, we immediately return 0

in this case.
5 */
6 if (collateralBalance == 0) {
7 return 0;
8 }
9

10 (uint256 exchangeRate, uint256 normalizeFactor) = _exchangeRate(pToken, pTokenChainId
);

11

12 return collateralBalance * exchangeRate / normalizeFactor;

Snippet 4.6: Snippet from _collateralBalanceStored() that calculates the user’s collateral
balance.

© 2023 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Issues 19

4.1.5 V-PRI2-VUL-005: Native currency collateral repayment always reverts

Severity High Commit b1ee399
Type Logic Error Status Fixed

File(s) satellite/pToken/PTokenBase.sol

Location(s) processRepay()

A user may repay a loan by invoking RequestController.repayBorrow() on a PToken or
LoanAsset that they would like to repay. This method will invoke RequestControllerInternals

._sendRepay(), which will first call the PToken.processRepay() or LoanAsset.processRepay()

method before sending a message to the master state to update the bookkeeping.

If the loan is for a PToken, the processRepay() method will calls the _doTransferFrom() helper
function from utils/SafeTransfers.sol to move the funds from the repayer address to the
PToken contract. However, _doTransferFrom() does not implement the native currency case
(where underlying is the zero address) and will revert.

1 function processRepay(
2 address repayer,
3 uint256 repayAmount
4) external /* override */ onlyRequestController() {
5 if (repayAmount == 0) revert AmountIsZero();
6

7 _doTransferFrom(repayer, address(this), underlying, repayAmount);
8 }

Snippet 4.7: Implementation of PTokenBase.processRepay()

1 function _doTransferFrom(
2 address from,
3 address to,
4 address underlying,
5 uint256 amount
6) internal virtual returns (uint256) {
7 if (from == address(this)) {
8 revert("Use _doTransferOut()");
9 }

10 if (underlying == address(0)) {
11 revert("Requires manual impl");
12 }

Snippet 4.8: Location in _doTransferFrom() where the revert occurs.

Impact A user will be unable to repay a loan that uses native currency as underlying
collateral.

Recommendation The developers should implement a mechanism that handles the native
currency case.

Veridise Audit Report: Prime © 2023 Veridise Inc.

20 4 Vulnerability Report

Developer Response The developers changed the call to _doTransferFrom() to _doTransferIn

(), which checks msg.value to ensure that the caller has supplied a sufficient amount of native
currency. They also added logic in several of the RequestController methods to correctly handle
PTokens that use native currency as underlying.

© 2023 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Issues 21

4.1.6 V-PRI2-VUL-006: Loan market totalSupplied inconsistency after call to
supportSatelliteLoanMarket()

Severity High Commit b1ee399
Type Locked Funds Status Fixed

File(s) master/MasterAdmin.sol, master/MasterInternals.sol
Location(s) supportSatelliteLoanMarket(), _deposit()

When users deposit funds into a PToken contract in a satellite chain, the master contract
updates the protocol’s bookkeeping in the MasterInternals._deposit() method. If the PToken is
associated with a loan market, then the amount of underlying collateral for that loan market will
be updated in the loanMarkets[][].totalSupplied field. A PToken does not have an associated

1 function _deposit(
2 address depositor,
3 address pToken,
4 uint256 pTokenChainId,
5 CollateralMarketType marketType,
6 uint256 externalExchangeRate,
7 uint256 exchangeRateTimestamp,
8 uint256 depositAmount
9) external payable virtual override {

10 // ...
11 {
12 LoanMarketMetadata memory targetMarket = mappedLoanAssets[pTokenChainId][

pToken];
13 if (loanMarkets[targetMarket.loanAsset][targetMarket.chainId].totalSupplied

!= type(uint256).max) {
14 loanMarkets[targetMarket.loanAsset][targetMarket.chainId].totalSupplied

+= depositAmount;
15 }
16 }
17

18 markets[pTokenChainId][pToken].totalSupply += actualDepositAmount;
19 // ...

Snippet 4.9: Relevant lines in MasterInternals._deposit()

loan market by default. In order to associate a loan market with a PToken, a protocol admin must
invoke MasterAdmins.supportSatelliteLoanMarket() with the loan asset (mappedLoanAsset) and
the PToken (satelliteLoanAsset). However, note that neither supportSatelliteLoanMarket()

nor supportLoanMarket() updates the totalSupplied field of the loan market for the loan asset,
despite the PToken’s underlying token now serving as collateral for the loan asset. Thus, if some
deposits occur before the admin invokes supportSatelliteLoanMarket() to associate the PToken
with a loan asset, then those collateral amounts deposited will not count towards the collateral
amounts available for the associated loan asset.

Impact The undercounting has at least two effects, including preventing withdrawals and
preventing borrows.

When a user requests a withdraw, the _withdrawAllowed() method checks that there is suf-
ficient liquidity to ensure that all loans are backed by collateral. If the protocol has called

Veridise Audit Report: Prime © 2023 Veridise Inc.

22 4 Vulnerability Report

1 function supportSatelliteLoanMarket(
2 address mappedLoanAsset,
3 uint256 mappedLoanAssetChainId,
4 address satelliteLoanAsset,
5 uint256 satelliteLoanAssetChainId
6) external override onlyAdmin() {
7 if (!loanMarkets[mappedLoanAsset][mappedLoanAssetChainId].isListed) revert

LoanMarketIsListed(false);
8

9 LoanMarketMetadata memory _metadata;
10 _metadata.chainId = mappedLoanAssetChainId;
11 _metadata.loanAsset = mappedLoanAsset;
12

13 mappedLoanAssets[satelliteLoanAssetChainId][satelliteLoanAsset] = _metadata;
14

15 emit SatelliteLoanMarketSupported(
16 satelliteLoanAsset,
17 satelliteLoanAssetChainId,
18 mappedLoanAsset,
19 mappedLoanAssetChainId
20);
21 }

Snippet 4.10: Definition of MasterAdmin.supportSatelliteLoanMarket()

supportSatelliteLoanMarket after some collateral is deposited to the collateral market, the
totalSupplied of the loanMarket will be less than the actual amount of collateral that has been
deposited into the protocol. This may cause the liquidity check to fail, resulting in a revert
and preventing the user from withdrawing their funds. As a concrete example, consider the
following scenario:

1. Initial State: supportMarket is called to enable a PToken with underlying token A. This
PToken does not have an associated loan asset.

2. Alice deposits 100 of token A.
3. Protocol then adds a new loan asset “B” and calls supportSatelliteLoanMarket() to

associate the PToken with B.
4. Alice tries to withdraw 1 of their token A. Because the loan asset was newly added, the

values of both totalSupplied and totalBorrows are zero.
5. The condition totalBorrows > totalSupplied will be false, since the totalSupplied is

zero. However, (totalSupplied - totalBorrows) < actualWithdrawAmount will evaluate
to true.

6. Thus, the liquidity check will fail, despite (1) the user having a sufficient PToken/collateral
balance, and (2) the protocol having enough collateral to cover the withdrawal.

A similar liquidity check in _borrowAllowed() (which is called when a user initiates a borrow
request) may also fail.

Recommendation The developers should insert additional logic to ensure that the totalSupplied
of a loan market is consistent with the actual amount deposited.

© 2023 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Issues 23

1 LoanMarketMetadata memory loanMarket = mappedLoanAssets[pTokenChainId][pToken];
2 uint256 totalSupplied = loanMarkets[loanMarket.loanAsset][loanMarket.chainId].

totalSupplied;
3 if (totalSupplied != type(uint256).max) {
4 uint256 totalBorrows = loanMarkets[loanMarket.loanAsset][loanMarket.chainId].

totalBorrows;
5 if (totalBorrows > totalSupplied || (totalSupplied - totalBorrows) <

pTokenWithdrawAmount) {
6 revert InsufficientLiquidity();
7 }
8 loanMarkets[loanMarket.loanAsset][loanMarket.chainId].totalSupplied -=

actualWithdrawAmount;
9 }

Snippet 4.11: Relevant lines in _withdrawAllowed()

1 if (loanMarkets[targetMarket.loanAsset][targetMarket.chainId].totalBorrows +
borrowAmount >

2 loanMarkets[targetMarket.loanAsset][targetMarket.chainId].totalSupplied
3) {
4 revert InsufficientLiquidity();
5 }

Snippet 4.12: Similar liquidity check in _borrowAllowed(). If totalSupplied undercounts the
actual amount of collateral available, it is likely for this comparison to evaluate to

true, causing a revert.

Developer Response The developers updated the supportLoanMarket() method so that it
initializes the totalSupplied value when a loan market is first created.

Veridise Audit Report: Prime © 2023 Veridise Inc.

24 4 Vulnerability Report

4.1.7 V-PRI2-VUL-007: Rounding error may cause Aave PToken withdraw to revert

Severity Medium Commit b1ee399
Type Denial of Service Status Fixed

File(s) [...]/ASVTokenV3RewardsController.sol

Location(s) _withdrawRewards()

While withdrawing rewards from the Aave PToken, the protocol needs to calculate reward per
PToken using fixed point arithmetic. This exchange rate is then passed to _queryUseRewardsBalance

() to calculate how much reward a user should get. The exchange rate is calculated as follows:

▶ marketRewardsBalance stores the total reward balance queried from the collateral token,
using the precision of the underlying reward tokens tracked by Aave.

▶ rewardFactor stores the precision scale factor for the marketRewardsBalance.
▶ marketPTokenTotalSupply stores the total number of PTokens that have been deposited

into the contract.
▶ pTokenFactor stores the precision factor for the marketPTokenTotalSupply. It is the number

of decimals in the PToken contract.

Then the marketRewardsExchangeRate is calculated using

marketRewardsExchangeRate = marketRewardsBalance * pTokenFactor / (marketPTokenTotalSupply

* rewardFactor) However, note that all units in this multiplication will be eliminated, meaning

1 uint256 marketRewardsBalance = _queryMarketRewardsBalance(rewardAddress);
2 uint256 marketPTokenTotalSupply = AavePTokenStorage(address(this)).totalSupply();
3

4 uint256 rewardFactor = 10**ERC20(rewardAddress).decimals();
5 uint256 pTokenFactor = 10**PTokenStorage(address(this)).decimals();
6 uint256 marketRewardsExchangeRate;
7

8 if (marketPTokenTotalSupply != 0) {
9 marketRewardsExchangeRate = marketRewardsBalance * pTokenFactor / (

marketPTokenTotalSupply * rewardFactor);
10 }
11

12 uint256 userRewardsBalance = _queryUserRewardsBalance(
13 user,
14 rewardAddress,
15 marketRewardsExchangeRate
16);

Snippet 4.13: Lines in _withdrawRewards that calculate the exchange rate

that the resulting scale factor is only one. This may lead to values being rounded down. For
example, if the reward token precision is 18 decimals, the PToken precision is 9 decimals,
marketRewardsBalance = 9 * 10**17 (0.9 reward tokens), and marketPTokenTotalSupply = 2 **

10^9 (2 collateral tokens), then marketRewardsExchangeRate will be 0.

When marketRewardsExchangeRate is small, _queryUserRewardsBalanace is likely to revert due to
a check that ensures that the reward exchange rate that the user last withdrew rewards at is
strictly larger than marketRewardsExchangeRate.

© 2023 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Issues 25

1 function _queryUserRewardsBalance(
2 address user,
3 address rewardAddress,
4 uint256 marketRewardsExchangeRate
5) internal override view returns (uint256 userRewardsBalance) {
6 if (user == address(0) || rewardAddress == address(0)) revert AddressExpected();
7

8 uint256 userRewardsExchangeRate = userRewards[user][rewardAddress].exchangeRate;
9 uint256 userPTokenBalance = AavePTokenStorage(address(this)).accountTokens(user);

10

11 if (userRewardsExchangeRate > marketRewardsExchangeRate) revert
InvalidExchangeRate();

Snippet 4.14: Lines in _queryUserRewardsBalance() leading to revert

Impact Because _withdrawRewards() is called by the deposit, withdraw, and liquidation logic,
this may cause any of those functions to revert. Furthermore, any user that deposits funds is
likely to increase the probability of the rounding error occurring as they will be decreasing the
numerator and increasing the denominator of the division.

Recommendation The developers should also multiply by a constant such as 10**FACTOR_DECIMALS
when computing marketRewardsExchangeRate. However, note that this 10**FACTOR_DECIMALS is
only an example; the developer should make sure they multiply by a constant that results in the
correct precision and units.

Developer Response The developers will be removing this contract from the code base as
they do not plan to deploy it.

Veridise Audit Report: Prime © 2023 Veridise Inc.

26 4 Vulnerability Report

4.1.8 V-PRI2-VUL-008: RequestController.deposit does not forward msg.value

Severity Medium Commit b1ee399
Type Logic Error Status Fixed

File(s) satellite/requestController/RequestController.sol

Location(s) deposit()

The RequestController.deposit() method allows users to deposit collateral into a given PToken

address on the same satellite chain. The method is implemented by forwarding the call to
PToken.depositBehalf(). The latter method requires its caller to send native currency (e.g.,
ether), which will be used as a gas fee for the cross-chain bridge that will deliver the deposit
request.

Due to the way that PToken.depositBehalf() is invoked, the native currency will be sent to the
RequestController contract, but the native currency will not be forwarded to the PToken contract
for use in depositBehalf().

1 function deposit(
2 address route,
3 address user,
4 uint256 amount,
5 address pTokenAddress
6) external override payable virtual {
7 if (pTokenAddress == address(0)) revert AddressExpected();
8 if (user == address(0)) revert AddressExpected();
9

10 IPToken(pTokenAddress).depositBehalf(route, user, amount);
11 }

Snippet 4.15: Implementation of RequestController.deposit()

Impact Any call to RequestController.deposit()will likely revert, as calling PToken.depositBehalf

() in this way will likely revert.

▶ If the PToken’s underlying collateral is address 0 (corresponding to native currency), then
_doTransferIn will revert when it compares msg.value with the amount argument.

▶ Otherwise, the collateral will be transferred from the user to the PToken contract, and
zero gas will be provided to the cross-chain bridge.

• This will revert if the bridge requires a gas fee to be paid in native currency.
• If no gas fee is required, then the message may be sent, and the transaction will be

successful. In this case, the native currency will be locked in the RequestController

contract.

Users can work around this issue by invoking IPToken.deposit() or IPToken.depositBehalf()
directly instead of through the RequestController.

© 2023 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Issues 27

1 uint256 actualTransferAmount = _doTransferIn(underlying, user, amount);
2 uint256 actualDepositAmount = (actualTransferAmount * 10**EXCHANGE_RATE_DECIMALS) /

externalExchangeRate;
3

4 _sendDeposit(
5 route,
6 user,
7 underlying == address(0)
8 ? msg.value - actualDepositAmount
9 : msg.value,

10 actualDepositAmount,
11 externalExchangeRate
12);

Snippet 4.16: The lines in PToken.depositBehalf() that use the forwarded native currency.

Recommendation The line that invokes IPToken.depositBehalf() should be changed to
forward the msg.value :

1 IPToken(pTokenAddress).depositBehalf{value: msg.value}(route, user, amount);

Veridise Audit Report: Prime © 2023 Veridise Inc.

28 4 Vulnerability Report

4.1.9 V-PRI2-VUL-009: Liquidating loan asset of zero locks native currency collateral

Severity Medium Commit b1ee399
Type Locked Funds Status Fixed

File(s) satellite/requestController/RequestController.sol

Location(s) liquidate()

The liquidate() function can be invoked by a user (which we will call the “liquidator”) to
liquidate loan assets of another user (the borrower) that is backed by an insufficient amount of
collateral. In this flow, the liquidator must pay back (partially or in full) the loan amount in
order to receive the borrower’s collateral. The liquidator must also pay native currency to the
liquidate() function, which will be used as a gas fee for cross-chain messages.

In the implementation of liquidate(), it is possible for the liquidator to specify a loanAsset of
address(0), which seems strange given that (1) a loanAsset is typically a smart contract; and
(2) other methods in RequestController that deal with loan assets assume that the loanAsset

address is nonzero.

1 function liquidate(
2 address route,
3 address seizeToken, // asset the liquidator will be repaid on
4 uint256 seizeTokenChainId, // chainId of the tokens to seize
5 address borrower, // address of the user being liquidated
6 address loanAsset, // asset to be repaid on local chain
7 uint256 repayAmount // amount of asset to be repaid by liquidator right now on

local chain
8) external payable /* override */ {
9 if (repayAmount == 0) revert ExpectedRepayAmount();

10

11 if (loanAsset != address(0)) {
12 ILoanAsset(loanAsset).processRepay(msg.sender, repayAmount);
13 } else {
14 if (msg.value < repayAmount) revert ExpectedValue();
15 payable(loanAsset).transfer(repayAmount);
16 }
17

18 // send the liquidation
19 _sendLiquidation(
20 borrower,
21 route,
22 seizeToken,
23 seizeTokenChainId,
24 loanAsset,
25 repayAmount
26);
27 }

Snippet 4.17: Implementation of liquidate()

Impact Assuming that the loanAsset is the zero address, repayAmount of native currency will
be sent to the zero address, and neither the protocol nor the liquidator will not be able to retrieve
that native currency.

© 2023 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Issues 29

Developer Response The developers noted that loanAsset is expected to be nonzero. They
updated the code so that it always invokes processRepay() ; this causes a revert if a zero address
is provided.

Veridise Audit Report: Prime © 2023 Veridise Inc.

30 4 Vulnerability Report

4.1.10 V-PRI2-VUL-010: Potential rounding error causes revert in
queryUserRewardsBalance

Severity Low Commit b1ee399
Type Denial of Service Status Fixed

File(s) [...]/ASVTokenV3RewardsController.sol

Location(s) queryUserRewardsBalance()

Similar to V-PRI2-VUL-007, a missing precision factor in a multiplication in queryUserRewardsBalance

() may cause the function to revert.

1 function queryUserRewardsBalance(
2 address user,
3 address rewardAddress
4) external override view returns (uint256) {
5 uint256 marketRewardsBalance = _queryMarketRewardsBalance(rewardAddress);
6 uint256 marketPTokenTotalSupply = AavePTokenStorage(address(this)).totalSupply();
7

8 uint256 marketRewardsExchangeRate;
9

10 if (marketPTokenTotalSupply != 0) {
11 uint256 rewardFactor = 10**ERC20(rewardAddress).decimals();
12 uint256 pTokenFactor = 10**PTokenStorage(address(this)).decimals();
13

14 marketRewardsExchangeRate = marketRewardsBalance * pTokenFactor / (
marketPTokenTotalSupply * rewardFactor);

15 }
16

17 return _queryUserRewardsBalance(user, rewardAddress, marketRewardsExchangeRate);
18 }

Snippet 4.18: Implementation of queryUserRewardsBalance()

Impact Calls to queryUserRewardsBalance() may revert unexpectedly.

Recommendation The developers should also multiply by a constant such as 10**FACTOR_DECIMALS
when computing marketRewardsExchangeRate. However, note that this 10**FACTOR_DECIMALS is
only an example; the developer should make sure they multiply by a constant that results in the
correct precision and units.

Developer Response The developers will be removing this contract from the code base as
they do not plan to deploy it.

© 2023 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Issues 31

1 function _queryUserRewardsBalance(
2 address user,
3 address rewardAddress,
4 uint256 marketRewardsExchangeRate
5) internal override view returns (uint256 userRewardsBalance) {
6 if (user == address(0) || rewardAddress == address(0)) revert AddressExpected();
7

8 uint256 userRewardsExchangeRate = userRewards[user][rewardAddress].exchangeRate;
9 uint256 userPTokenBalance = AavePTokenStorage(address(this)).accountTokens(user);

10

11 if (userRewardsExchangeRate > marketRewardsExchangeRate) revert
InvalidExchangeRate();

Snippet 4.19: Lines in _queryUserRewardsBalance() leading to revert

Veridise Audit Report: Prime © 2023 Veridise Inc.

32 4 Vulnerability Report

4.1.11 V-PRI2-VUL-011: changeProtocolIncentive does not validate bounds

Severity Low Commit b1ee399
Type Data Validation Status Fixed

File(s) [...]/ASVTokenV3RewardsController.sol

Location(s) _withdrawRewards()

The protocolIncentive variable in the rewards controller defines the percentage of rewards that
should be deducted from the user’s redeemed rewards and given to the admins of the protocol.
In ASVTokenV3RewardsController._withdrawRewards(), it is assumed that protocolIncentive is at
most 10**FACTOR_DECIMALS; however, this property is not enforced in the changeProtocolIncentive
() method, where an admin sets the protocolIncentive variable.

1 uint256 protocolShare = claimedRewards * protocolIncentive / FACTOR_DECIMALS;
2 uint256 adjustedClaimedRewards = claimedRewards - protocolShare;

Snippet 4.20: Lines where protocolIncentive is used in
ASVTokenV3RewardsController._withdrawRewards()

1 function changeProtocolIncentive(
2 uint256 newProtocolIncentive
3) external override {
4 if (msg.sender != PToken(address(this)).admin()) revert OnlyAdmin();
5

6 emit ChangeProtocolIncentive(protocolIncentive, newProtocolIncentive);
7

8 protocolIncentive = newProtocolIncentive;
9 }

Snippet 4.21: Definition of RewardsControllerAdmin.changeProtocolIncentive()

Impact If protocolIncentive is set to a value larger than 10**FACTOR_DECIMALS, then AavePToken

.withdraw() will always revert.

Recommendation Add a check in changeProtocolIncentive() that validates that newProtocolIncentive
<= 10**FACTOR_DECIMALS .

Developer Response The developers will be removing this contract from the code base as
they do not plan to deploy it.

© 2023 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Issues 33

4.1.12 V-PRI2-VUL-012: withdrawReserves refunds gas to wrong account

Severity Low Commit b1ee399
Type Logic Error Status Fixed

File(s) master/MasterAdmin.sol

Location(s) withdrawReserves()

The withdrawReserves() method allows an admin to withdraw the protocol’s reserves from a
loan market to a given receiver address on the loan asset’s chain. This is done by constructing
a FBBorrow packet and sending it to the target loan asset through the middle layer contract.
However, when sending the packet, the gas refund address is set to the receiver and not the
msg.sender that pays for the gas.

1 function withdrawReserves(
2 uint256 withdrawAmount,
3 address loanAsset,
4 uint256 loanAssetChainId,
5 address receiver
6) external payable onlyAdmin() {
7 if (receiver == address(0)) revert AddressExpected();
8 // ...
9 // We call FBBorrow flow so we can generalize the codepath for this flow. It will

allow a "withdraw" of a given loanAsset
10 bytes memory payload = abi.encode(
11 IHelper.FBBorrow({
12 metadata: uint256(0),
13 selector: FB_BORROW,
14 user: receiver,
15 borrowAmount: withdrawAmount,
16 loanAsset: loanAsset
17 })
18);
19

20 middleLayer.msend{ value: msg.value }(
21 loanAssetChainId,
22 payload, // bytes payload
23 payable(receiver), // refund address
24 true
25);

Snippet 4.22: Relevant lines in withdrawReserves()

Impact The gas refund will be sent to the receiver address instead of to the calling admin.
Furthermore, the receiver may not be on the same chain as the master contract, in which case
the gas refund may be sent to a completely incorrect address.

Recommendation Change the refund address to msg.sender.

Veridise Audit Report: Prime © 2023 Veridise Inc.

34 4 Vulnerability Report

4.1.13 V-PRI2-VUL-013: PToken does not validate decimals of underlying

Severity Low Commit b1ee399
Type Data Validation Status Fixed

File(s) satellite/pToken/implementations

Location(s) initialize()

A PToken contract wraps an ERC20 token (”underlying collateral”) to allow them to be used on
the protocol’s money market. Each PToken contains a decimals storage variable that tracks the
precision used for the token balances. Based on a discussion with the developers, the decimals

variable is assumed to be equal to the value of .decimals() on the underlying collateral token;
however, there is no validation logic that enforces this assumption.

1 function initialize(
2 address _underlying,
3 address _middleLayer,
4 uint256 _masterCID,
5 uint8 _decimals
6) external payable initializer() {
7 __UUPSUpgradeable_init();
8

9 if (address(_middleLayer) == address(0)) revert AddressExpected();
10

11 if (_decimals == 0 || _masterCID == 0) revert ParamOutOfBounds();
12

13 underlying = _underlying;
14 middleLayer = IMiddleLayer(_middleLayer);
15 masterCID = _masterCID;
16 decimals = _decimals;
17

18 admin = payable(msg.sender);
19 }

Snippet 4.23: Example of where decimals is set in the base PToken implementation

Impact An admin could mistakenly set the decimals to a value other than the underlying token
decimals, which would cause PToken amounts to be wrong in all calculations in all PToken
methods. Since these amounts are sent to the master state, this could also propagate errors
there.

Recommendation The decimals variable should be set with decimals = IERC20(underlying

).decimals() , or by adding a require statement that checks that the _decimals parameter is
equal to the underlying token’s decimals. To ensure that all implementations have their logic
updated, it would be good to also fix V-PRI2-VUL-020.

Developer Response The developers noted that the deployment scripts will ensure that a
PToken is initialized with the same decimals value as the underlying token. However, the
developers will add extra validation, since it is possible for an admin action (such as a DAO
vote) to set decimals so that it does not match the underlying token’s decimals.

© 2023 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Issues 35

Notes on Fix The developers changed the code to use the underlying decimals if the underlying
is a nonzero address. If the underlying is the zero address (i.e., native currency), then decimals
is assumed to be 18.

Veridise Audit Report: Prime © 2023 Veridise Inc.

36 4 Vulnerability Report

4.1.14 V-PRI2-VUL-014: Minor rounding error when calculating liquidation repay
amount

Severity Low Commit b1ee399
Type Logic Error Status Fixed

File(s) master/MasterInternals.sol

Location(s) _liquidateCalculateSeizeTokens()

In the liquidation flow, a liquidator repays the loan borrowed by a delinquent borrower in
exchange for a portion of or the full amount of collateral put up by the borrower. The protocol
takes a percentage of the repayment amount as a fee before applying the repayment. This
fee is calculated in _liquidateCalculateSeizeTokens(). There is a rounding issue that may

1 protocolSeizeAmount = rawRepayAmount * protocolSeizeShare / 10**FACTOR_DECIMALS;
2 actualRepayAmount = rawRepayAmount * (10**FACTOR_DECIMALS - protocolSeizeShare) /

10**FACTOR_DECIMALS;

Snippet 4.24: Snippet in _liquidateCalculateSeizeTokens() where the fee is calculated.

it possible for protocolSeizeAmount + actualRepayAmount to be smaller than rawRepayAmount,
which is unexpected.

First, note that the fee corresponds to protocolSeizeAmount, which is the repayment amount pro-
vided by the liquidator (rawRepayAmount) multiplied by the fee percentage (protocolSeizeShare).
The division by 10**FACTOR_DECIMALS ensures that protocolSeizeAmount has the correct pre-
cision. However, note that the division will round down any numerator smaller than 10**

FACTOR_DECIMALS to zero.

The actualRepayAmount, which is the amount to actually count towards the repayment, is
calculated as (100 - seize share percentage)% of the rawRepayAmount. This also suffers from
the same rounding issue.

Impact Because both amounts are rounded down, there may be cases where a user provides
a repay amount that is theoretically high enough to repay the loan, but in practice will be
insufficient due to the rounding errors.

Recommendation Calculate actualRepayAmount as rawRepayAmount - protocolSeizeAmount.
Amounts that are rounded down will contribute to actualRepayAmount , allowing repayments to
go through in the scenario described above. As an additional benefit, this will save some gas.

© 2023 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Issues 37

4.1.15 V-PRI2-VUL-015: supportMarket can be called on a previously listed market

Severity Low Commit b1ee399
Type Data Validation Status Fixed

File(s) master/MasterAdmin.sol

Location(s) supportMarket(), listCollateralMarket()

Given a PToken, an admin can call supportMarket() to list a new collateral market for that
PToken. This will set various parameters such as the liquidity incentive, the number of decimals
used for the PToken, etc. To avoid a market from being listed twice (e.g., by accident), the
function will revert if isListed flag is already set. However, it is still possible to list a market

1 function supportMarket(
2 address pToken,
3 uint256 chainId,
4 uint8 decimals,
5 address underlying,
6 uint256 liquidityIncentive,
7 uint256 protocolSeizeShare,
8 bool isRebase
9) external override onlyAdmin() {

10 if (markets[chainId][pToken].isListed) revert MarketExists();
11 if (pToken == address(0)) revert AddressExpected();
12 if (liquidityIncentive > 10**FACTOR_DECIMALS) revert InvalidPrecision();
13 if (protocolSeizeShare > liquidityIncentive) revert InvalidProtocolSeizeShare();
14 // ...
15 markets[chainId][pToken].isListed = true;
16 // ...
17 collateralValueIndex.push(
18 MarketIndex({
19 pToken: pToken,
20 chainId: chainId,
21 marketType: CollateralMarketType.NoModify
22 })
23);

Snippet 4.25: Relevant lines in supportMarket()

twice. If the admin uses the listCollateralMarket() to set the isListed flag to false and thereby
unlist the market, then the admin will be able to invoke supportMarket() again.

Impact If supportMarket() is called on a PToken twice, then it will be inserted into collateralValueIndex

twice. Since the entries of collateralValueIndex are used to compute collateral and loan amounts,
this means that the PToken (or its underlying) amounts will be double-counted.

Recommendation In addition to using isListed, check that some other entry of supportMarket
() must be nonzero. For example, since supportMarket() can only be called with a nonzero
PToken, requiring that the existing markets entry has a nonzero PToken will ensure that the
method cannot be called twice.

Veridise Audit Report: Prime © 2023 Veridise Inc.

38 4 Vulnerability Report

1 function listCollateralMarket(
2 uint256 chainId,
3 address pToken,
4 bool shouldList
5) external override onlyAdmin() {
6 if (pToken == address(0)) revert AddressExpected();
7

8 markets[chainId][pToken].isListed = shouldList;
9

10 emit CollateralMarketListed(chainId, pToken, shouldList);
11 }

Snippet 4.26: Definition of listCollateralMarket()

Developer Response The developers have changed the code to revert if the PToken is already
contained in collateralValueIndex .

© 2023 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Issues 39

4.1.16 V-PRI2-VUL-016: Associated loan market not validated before use

Severity Low Commit b1ee399
Type Data Validation Status Fixed

File(s) master/MasterInternals.sol

Location(s) _deposit(), _withdrawAllowed()

A PToken can be “associated” with a loan asset when an admin calls supportSatelliteLoanMarket
() on the PToken and loan asset. In markets created this way, the PToken’s underlying token will
be used as collateral for the loan asset. Such loan markets will be stored in the mappedLoanAssets

mapping, which maps PTokens to their associated loan asset.

This mappedLoanAssets is used in _deposit() and _withdrawAllowed(). and is used to keep
collateral deposit amounts in sync with the loan market collateral amounts. For example,
whenever a user deposits collateral into a PToken that does not have a first-party loan asset, the
master contract increases the amount of collateral deposited for the associated money market.
However, if supportSatelliteLoanMarket() is not called on a PToken, then the mappedLoanAssets

1 {
2 LoanMarketMetadata memory targetMarket = mappedLoanAssets[pTokenChainId][pToken];
3 if (loanMarkets[targetMarket.loanAsset][targetMarket.chainId].totalSupplied !=

type(uint256).max) {
4 loanMarkets[targetMarket.loanAsset][targetMarket.chainId].totalSupplied +=

depositAmount;
5 }
6 }
7

8 markets[pTokenChainId][pToken].totalSupply += actualDepositAmount;

Snippet 4.27: Relevant code in _deposit()

entry for that PToken will be the zero value. In this case, the loanMarket.loanAsset and
loanMarket.chainId will both be zero. Thus, all deposits to PTokens that do not have an
associated mappedLoanAssets entry will increase the same entry loanMarkets[0][0].

Impact At the time of the audit, we do not believe this issue has any impact besides wasted
gas, as the extra storage operations to loanMarkets[0][0] may cost a nontrivial amount of gas.

We note that not validating the mappedLoanAssets entry may lead to issues in the future.
In particular, the _withdrawAllowed() method uses the totalSupplied value in the following
ways:

▶ Presently, the totalSupplied is used in the liquidity check, and the loanMarkets[0][0]

entry could be increased by deposits from multiple PTokens, this means that totalSupplied
is likely to be a very large value. Thus, totalBorrows > totalSupplied is likely to be false,
and (totalSupplied - totalBorrows) < pTokenWithdrawAmount is also likely to be false.
This means that the liquidity check will always succeed.

▶ The totalSupplied will always be larger than the actualWithdrawAmount due to how it is
updated in both deposits and withdrawals, so a subtraction overflow cannot happen (and
subsequently cause an unintended revert on a withdraw that should actually succeed).

Veridise Audit Report: Prime © 2023 Veridise Inc.

40 4 Vulnerability Report

While the overall logic in _withdrawAllowed() is not affected, a future change by the developers
could cause any of the assumptions above to be invalidated. Such a change may make it possible,
for example, for withdraws to be reverted inadvertently, or for withdraws to be approved when
they should not.

1 LoanMarketMetadata memory loanMarket = mappedLoanAssets[pTokenChainId][pToken];
2 uint256 totalSupplied = loanMarkets[loanMarket.loanAsset][loanMarket.chainId].

totalSupplied;
3 if (totalSupplied != type(uint256).max) {
4 uint256 totalBorrows = loanMarkets[loanMarket.loanAsset][loanMarket.chainId].

totalBorrows;
5

6 if (totalBorrows > totalSupplied || (totalSupplied - totalBorrows) <
pTokenWithdrawAmount) {

7 revert InsufficientLiquidity();
8 }
9

10 loanMarkets[loanMarket.loanAsset][loanMarket.chainId].totalSupplied -=
actualWithdrawAmount;

11 }
12

13 markets[pTokenChainId][pToken].totalSupply -= pTokenWithdrawAmount;

Snippet 4.28: Relevant code in _withdrawAllowed()

Recommendation The totalSupplied != type(uint256).max condition is too lax. To avoid
future issues, the developers should also check that the loan market in the mappedLoanAssets

entry is actually listed before using any of the loan market fields.

© 2023 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Issues 41

4.1.17 V-PRI2-VUL-017: Same hash hardcoded in two locations

Severity Warning Commit b1ee399
Type Maintainability Status Fixed

File(s) middleLayer/IMiddleLayer.sol, util/CommonModifiers.sol
Location(s) IMiddleLayer.CONTRACT_ID

The isMiddleLayer modifier, which is used in multiple contracts, is used to check whether a
given address corresponds to a MiddleLayer contract. This is done by checking a hardcoded
hash value IMiddleLayer.CONTRACT_ID() . However, this hardcoded hash value is duplicated in
isMiddleLayer and IMiddleLayer.CONTRACT_ID.

1 modifier isMiddleLayer(address newMiddleLayer) {
2 if (IMiddleLayer(newMiddleLayer).CONTRACT_ID() != keccak256("contracts/

middleLayer/MiddleLayer.sol")) {
3 revert MiddleLayerExpected();
4 }
5 _;
6 }

Snippet 4.29: Definition of modifier isMiddleLayer in CommonModifiers

1 abstract contract IMiddleLayer {
2

3 bytes32 public constant CONTRACT_ID = keccak256("contracts/middleLayer/
MiddleLayer.sol");

Snippet 4.30: Location in IMiddleLayer that defines CONTRACT_ID

Impact If the developers change the string passed to keccack256, they will need to update it in
both places, or else isMiddleLayer may revert unexpectedly.

Recommendation The developers should move IMiddleLayer.CONTRACT_ID to a top-level con-
stant, which they should then reuse in both IMiddleLayer and CommonModifiers. For example:

1 bytes32 constant MIDDLE_LAYER_CONTRACT_ID = keccak256("contracts/middleLayer/

MiddleLayer.sol");

2

3 abstract contract IMiddleLayer {

4 bytes32 public constant CONTRACT_ID = MIDDLE_LAYER_CONTRACT_ID;

5 // ...

6 }

Veridise Audit Report: Prime © 2023 Veridise Inc.

42 4 Vulnerability Report

4.1.18 V-PRI2-VUL-018: Duplicated logic in PToken deposit, depositBehalf

Severity Warning Commit b1ee399
Type Maintainability Status Fixed

File(s) satellite/pToken/implementations

Location(s) deposit(), depositBehalf()

All PToken contracts inherit from PTokenBase, which provides virtual functions deposit and
depositBehalf that may be overridden by specific implementations of PToken. These functions
first validate the provided arguments, and then perform implementation specific actions. Second,

1 if (amount == 0) revert ExpectedDepositAmount();
2 if (isFrozen) revert MarketIsFrozen(address(this));
3 if (isdeprecated) revert MarketIsdeprecated(address(this));

Snippet 4.31: Example of the shared validation logic at the beginning of deposit() and
depositBehalf()

we observed that most of the deposit() implementations are duplicates of depositBehalf()
with the user argument replaced by msg.sender.

We noted duplication in the following contracts:

▶ PTokenBase

▶ CompoundPToken

▶ RebasePToken

▶ AavePToken

Impact If the developers intend to modify the PToken validation logic or add new PTokens,
they will need to remember to ensure that all PToken implementations use the same validation
logic. This is error-prone and could result in access control bugs.

Recommendation

▶ The developers can add a modifier or internal function in PTokenBase that implements
common validation logic that can be shared between all PToken implementations.

▶ To reduce code duplication between deposit() and depositBehalf(), the developers can
also implement deposit() in terms of depositBehalf().

© 2023 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Issues 43

4.1.19 V-PRI2-VUL-019: Missing events in RewardControllerAdmin

Severity Warning Commit b1ee399
Type Missing/Incorrect Events Status Fixed

File(s) [...]/RewardsControllerAdmin.sol

Location(s) _addToRewardsList(), _removeFromRewardsList()

The RewardControllerAdmin contract allows the admin to add or remove reward tokens. This func-
tionality is implemented in the internal functions _addToRewardsList and _removeFromRewardsList

. However, these two functions and their callers do not emit any events that log changes to the
reward list.

Developer Response The developers will be removing this contract from the code base as
they do not plan to deploy it.

Veridise Audit Report: Prime © 2023 Veridise Inc.

44 4 Vulnerability Report

4.1.20 V-PRI2-VUL-020: Duplicated initialization logic in PToken implementations

Severity Warning Commit b1ee399
Type Maintainability Status Fixed

File(s) contracts/satellite/pToken/implementations

Location(s) initialize()

All PToken contracts inherit from the PTokenBase contract. These contracts have an initialize

function that validates and sets various contract variables like middleLayer and underlying .

In many of the PToken implementation contracts, the initialize() logic is mostly duplicated
(with some slight modifications). Some of the affected contracts are:

▶ PToken

▶ AavePToken

▶ CompoundPToken

▶ RebasePToken

1 function initialize(
2 address _underlying,
3 address _middleLayer,
4 uint256 _masterCID,
5 uint8 _decimals,
6 address _rewardsControllerThirdParty
7) external payable initializer() {
8 __UUPSUpgradeable_init();
9

10 if (
11 address(_middleLayer) == address(0) ||
12 address(_underlying) == address(0)
13) revert AddressExpected();
14

15 if (_decimals == 0 || _masterCID == 0) revert ParamOutOfBounds();
16

17 underlying = _underlying;
18 middleLayer = IMiddleLayer(_middleLayer);
19 masterCID = _masterCID;
20 decimals = _decimals;
21 rewardsControllerThirdParty = _rewardsControllerThirdParty;
22

23 admin = payable(msg.sender);
24 }

Snippet 4.32: Implementation of AavePToken.initialize(). Except for a few lines of code, most
of the code is similar to PToken.initialize().

Impact Because a large amount of the initialize() logic deals with validating the arguments,
it is possible for developers to introduce bugs when adding new PTokens or modifying the
validation logic in the future.

© 2023 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Issues 45

Recommendation Ensure that common initialization logic, especially related to data validation
and access controls, are moved into a new internal method such as __PToken__init(). This
internal method can be called from the initialize() method in each PToken implementation
to ensure that common arguments are validated correctly.

Veridise Audit Report: Prime © 2023 Veridise Inc.

46 4 Vulnerability Report

4.1.21 V-PRI2-VUL-021: Buffer overflow in MiddleLayer._mreceive

Severity Warning Commit b1ee399
Type Logic Error Status Acknowledged

File(s) middleLayer/MiddleLayer.sol

Location(s) _mreceive()

The MiddleLayer._mreceive() function is used to decode incoming local or cross-chain messages
and invoke corresponding method calls on the same-chain master or satellite chain contracts.
Given a byte array _payload containing the contents of the message, _mreceive() determines
which contract and which method to invoke by branching on the selector field of the packet.
In most of the cases, the extraData is constructed by dynamically allocating a memory byte
array and then manually setting the fields of the array. Finally, the actual call data is constructed
by appending the extraData to the packet data and modifying _payload in-place so that the
selector is inserted in front.

However, the way that the extraData is appended to the packet data is by copying the extraData

to the memory location immediately after _payload, which means that extraData can overwrite
any memory that has been dynamically allocated after the allocation of _payload and before the
call to _mreceive().

1 bytes memory extraData;
2 address targetContract;
3

4 if (selector == MASTER_REPAY) {
5 targetContract = address(masterState);
6 assembly {
7 extraData := mload(0x40)
8 mstore(0x40, add(extraData, 0x40))
9 mstore(extraData, 0x20)

10 mstore(add(extraData, 0x20), _srcChainId)
11 }
12 }

Snippet 4.33: Example of how extraData is constructed when handling a MasterRepay message.

1 if (extraData.length != 0) {
2 assembly {
3 let extraDataLen := mload(extraData)
4 let offset := add(_payload, mload(_payload))
5 for { let i := 0x20 } or(eq(i, extraDataLen), lt(i, extraDataLen)) { i := add

(i, 0x20) } {
6 mstore(add(offset, i), mload(add(extraData, i)))
7 }
8 }
9 }

Snippet 4.34: Snippet in _mreceive() that copies the extra call arguments to after the bounds of
the _payload buffer.

© 2023 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Issues 47

Impact At the time of the audit, the buffer overflow has limited impact due to the following
factors:

▶ The only allocation that occurs after the buffer overflow is that of a return buffer when the
call fails. In this case, the contents of the return buffer are immediately overwritten.

▶ Any memory that is allocated before the call to _mreceive() is not used afterwards.
▶ No memory is read after each call to _mreceive().

However, the developers should be aware that if a memory variable is allocated before the call
to _mreceive() and is used afterwards, then that variable may contain arbitrary or unexpected
contents.

Recommendation The developers should document this problem clearly to avoid potential
problems in the future.

To reduce the attack surface, developers can avoid the buffer overflow by copying the call data
arguments to a freshly allocated memory array, especially if they intend to continue extending
the MiddleLayer contract in the future.

Developer Response The developers noted that they implemented the copy in this way to
save gas, and that they do not plan on modifying the MiddleLayer contract to allocate additional
memory. They will add documentation to warn future developers.

Veridise Audit Report: Prime © 2023 Veridise Inc.

48 4 Vulnerability Report

4.1.22 V-PRI2-VUL-022: Potentially incorrect cast in unlockLiquidationRefund

Severity Warning Commit b1ee399
Type Maintainability Status Fixed

File(s) satellite/requestController/RequestControllerMessageHandler.sol
Location(s) unlockLiquidationRefund()

When a liquidation request is sent back from the master chain to a satellite chain, the middle
layer contract will forward the corresponding SRefundLiquidator packet to the request controller
contract’s unlockLiquidationRefund() method. This method will (1) cast the packet’s pToken

parameter to a loan asset, and then (2) invoke the loan asset’s receiveBorrow method to In the

1 function unlockLiquidationRefund(
2 IHelper.SRefundLiquidator memory params
3) external payable override onlyMid() {
4 ILoanAsset(params.pToken).receiveBorrow(params.liquidator, params.refundAmount);

Snippet 4.35: Location where receiveBorrow is invoked

request controller, the invokes the receiveBorrow method of the target loan asset contract will
be invoked to mint loan asset tokens for the liquidator.

Because PTokens are not loan assets, this cast seems incorrect. However, the pToken parameter is
actually a loan asset, as can be observed when tracing the message flow in reverse:

▶ The SRefundLiquidatorpacket is constructed in MasterMessageHandler._satelliteRefundLiquidator

(), which is called by MasterMessageHandler.masterLiquidationRequest(). The ptoken

field of the SRefundLiquidator comes from a IHelper.MLiquidateBorrowpacket’s loanAsset
field.

▶ The IHelper.MLiquidateBorrow comes from RequestControllerMessageHandler._sendLiquidation

(), which is called by the external function RequestControllerMessageHandler.liquidate

().
▶ The RequestControllerMessageHandler.liquidate() is invoked when a user initiates a

liquidation request on a satellite chain. The caller provides a target loanAsset as an
argument.

To add to the confusion, both PToken and LoanAsset define receiveBorrow as part of their
interfaces.

Impact It is easy for developers to mistakenly believe that params.pToken is a PToken when it
is actually a loan asset (which can be either a concrete PToken or LoanAsset contract), which
can increase the chance of introducing bugs in the future. This is exacerbated by the fact that
both PTokenBase and LoanAsset each define a receiveBorrow method with the same function
signature. See related issue: V-PRI2-VUL-027

Recommendation The .pToken field of SLiquidateBorrow should be renamed to .loanAsset.

© 2023 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Issues 49

4.1.23 V-PRI2-VUL-023: Unfairness while withdrawing collateral in low-liquidity
situations

Severity Warning Commit b1ee399
Type Usability Issue Status Intended Behavior

File(s) master/MasterInternals.sol

Location(s) _withdrawAllowed()

The MasterInternals._withdrawAllowed() method checks the approval of a collateral with-
drawal initiated on a satellite chain. Part of the approval check is to determine whether the
protocol has sufficient liquidity to cover the withdrawal; if the protocol lacks liquidity, then the
_withdrawAllowed() method will revert.

Due to the way the _withdrawAllowed() function is implemented, the users who withdraw funds
first will be able to withdraw their collateral, while users who withdraw later will have their
withdraw requests reverted.

1 if (totalSupplied != type(uint256).max) {
2 uint256 totalBorrows = loanMarkets[loanMarket.loanAsset][loanMarket.chainId].

totalBorrows;
3 if (totalBorrows > totalSupplied || (totalSupplied - totalBorrows) <

pTokenWithdrawAmount) {
4 revert InsufficientLiquidity();
5 }
6

7 loanMarkets[loanMarket.loanAsset][loanMarket.chainId].totalSupplied -=
actualWithdrawAmount;

8 }

Snippet 4.36: Snippet in _withdrawAllowed() that performs the liquidity check.

Impact Users who are unable to withdraw their collateral will be very upset, and such a
situation would be very damaging for the protocol.

Recommendation To mitigate scenarios in which there is insufficient liquidity, the developers
could implement fairer withdraw mechanisms such as: withdrawal queues, pro-rata distributions
of collateral, etc.

Developer Response The developers noted that this is a fairly standard practice, as found in
other DeFi protocols. To avoid liquidity issues, the interest rate will be increased in low-liquidity
situations in order to incentivize users to deposit collateral.

Veridise Audit Report: Prime © 2023 Veridise Inc.

50 4 Vulnerability Report

4.1.24 V-PRI2-VUL-024: Inconsistent comments in DoubleLinearIRMStorage

Severity Warning Commit b1ee399
Type Maintainability Status Fixed

File(s) [...]/DoubleLinearIRMStorage.sol

Location(s) N/A

The DoubleLinearIRMStorage contract defines storage variables used in the implementation of
the double linear interest rate model. There are multiple comments on numerical variables that
state that the variables are expressed in terms of “ray” (e.g., 10 to the power of 27). However, the
FACTOR_DECIMALS constant is defined as 18, corresponding to “wad”.

Impact If FACTORS_DECIMAL is supposed to be ray, then it should be set to 27; otherwise, multiple
calculations performed in DoubleLinearIRM will be performed with incorrect precision.

Recommendation The developers should clarify whether the units are in wad or ray, and then
they should make sure the comments are consistent with the implementation.

Developer Response The units should be in terms of wad.

© 2023 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Issues 51

4.1.25 V-PRI2-VUL-025: collateralBalances is confusingly named

Severity Warning Commit b1ee399
Type Maintainability Status Fixed

File(s) master/MasterStorage.sol, master/MasterInternals.sol
Location(s) mapping collateralBalances, MasterInternals._collateralBalancesStored()

The collateralBalances mapping keeps track of the amount of a given PToken that a given
user has on a given chain. This is confusing, since the name suggests that it tracks the
amount of underlying collateral, when it does not. Adding to the confusion, there is also a
_collateralBalancesStored() method in MasterInternals which returns underlying collateral
amounts instead of PToken amounts.

Impact The confusing names could increase the chance of the developers making mistakes
and introducing bugs in the future.

Recommendation The developers should rename variables like collateralBalances and meth-
ods like _collateralBalancesStored to ensure that the terms are precise and unambiguous.

Developer Response The developers renamed the collateralBalancesvariable to pTokenCollateralBalances

.

Veridise Audit Report: Prime © 2023 Veridise Inc.

52 4 Vulnerability Report

4.1.26 V-PRI2-VUL-026: Liquidation response can forward msg.value twice

Severity Warning Commit b1ee399
Type Logic Error Status Acknowledged

File(s) master/MasterMessageHandler.sol

Location(s) masterLiquidationRequest()

When the master contract approves a liquidation request, it may send up to two messages in
response. First, if the liquidator has overpaid and is due a refund, then a SRefundLiquidator

message will be sent to the liquidator’s chain to issue a refund to the liquidator. Second, a
SLiquidateBorrow message will be sent to the PToken’s chain to transfer the borrower’s collateral
to the liquidator. This is performed by two helper functions, _satelliteRefundLiquidator and
_satelliteLiquidateBorrow, respectively. The implementation of each of these helper functions

1 if (refundAmount != 0) {
2 _satelliteRefundLiquidator(
3 chainId, //this is the chain id where liquidator funds are locked
4 params.liquidator,
5 refundAmount,
6 params.loanAsset,
7 seizeAmount
8);
9 // ...

10 }
11

12 if (seizeAmount != 0) {
13 _satelliteLiquidateBorrow(
14 params.seizeToken,
15 params.seizeTokenChainId,
16 params.borrower,
17 params.liquidator,
18 seizeAmount
19);
20 // ...

Snippet 4.37: Lines in masterLiquidationRequest() that sends the response.

involves constructing the message and then sending it through the middle layer contract. This
further involves forwarding a cross-chain gas fee to the gateway (indicated by value: msg.value)
that is paid for by the master contract. Thus, if the following conditions are met:

1 middleLayer.msend{value: msg.value}(
2 seizeTokenChainId,
3 payload, // bytes payload
4 payable(liquidator), // refund address,
5 true
6);

Snippet 4.38: Example of how the SRefundLiquidator message is sent. The code for the
SLiquidateBorrow is similar.

▶ Both refundAmount and seizeAmount are nonzero—which is possible if the liquidator
overpays and has the request accepted.

© 2023 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Issues 53

▶ The master contract initially has zero native currency.
▶ msg.value is nonzero.

Then msg.value will be consumed when calling _satelliteRefundLiquidator(), causing the
subsequent call to _satelliteBorrowLiquidator() to revert.

Impact We asked the developers what the intended behavior is, and they noted that the
MiddleLayer will invoke master methods with a msg.value set to 0. Their test suite also confirms
this fact. Thus, at the time of the audit, this issue does not have any impact. However, the
developers should note that this will cause no gas fees to be provided to the route, which could
cause future problems when they add integrations with additional third-party protocols.

Recommendation To avoid future confusion, the developers should document masterLiquidationRequest
() as well as MiddleLayer.mreceive() to explain their assumptions about the msg.value .

Veridise Audit Report: Prime © 2023 Veridise Inc.

54 4 Vulnerability Report

4.1.27 V-PRI2-VUL-027: Implicit interface is shared by PToken and LoanAsset

Severity Warning Commit b1ee399
Type Maintainability Status Fixed

File(s)satellite/loanAsset/LoanAsset.sol, satellite/pToken/PTokenBase.sol
Location(s) receiveBorrow(), processRepay()

Users can borrow from a money market asset (implemented by a PToken contract) or a first-party
loan asset (implemented by a LoanAsset contract). Both of these contracts implement two
methods receiveBorrow() and processRepay() that have the same signature. However, in several

1 function receiveBorrow(
2 address borrower,
3 uint256 borrowAmount
4) external /* override */ onlyRequestController() {
5 if (borrowAmount == 0) revert AmountIsZero();
6

7 _doTransferOut(borrower, underlying, borrowAmount);
8 }

Snippet 4.39: receiveBorrow() in PTokenBase.sol

1 function receiveBorrow(
2 address borrower,
3 uint256 borrowAmount
4) external onlyRequestController() {
5 if (borrowAmount == 0) revert AmountIsZero();
6

7 _mint(borrower, borrowAmount);
8 }

Snippet 4.40: receiveBorrow() in LoanAsset.sol

places in contracts such as RequestController, an address may be cast to either a PToken or a
LoanAsset to invoke the receiveBorrow() or processRepay() function, even if that address may
actually not implement the interface that it is being cast to.

1 function borrowApproved(
2 IHelper.FBBorrow memory params
3) external payable override virtual onlyMid() {
4 if (isLoanMarketFrozen[params.loanAsset]) revert MarketIsFrozen(params.loanAsset)

;
5

6 ILoanAsset(params.loanAsset).receiveBorrow(params.user, params.borrowAmount);

Snippet 4.41: Example of how receiveBorrow might be called. This is from
RequestControllerMessageHandler.borrowApproved().

Impact Currently, the RequestController casts the given address to either an IPToken or
ILoanAsset interface. This may lead the developer into think that the address may be a concrete

© 2023 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Issues 55

PToken or LoanAsset contract when it is not. Consequently, it is easier for a developer to call a
function that is not actually defined in the casted contract.

Recommendation Define an interface that declares the receiveBorrow() and processRepay()

functions. Both LoanAsset and PToken contract should extend from this interface, and the interface
should be used in RequestController and MiddleLayer when the target of a receiveBorrow() or
processRepay() can be either a LoanAsset or a PToken.

Developer Response The developers created an interface called ILendable and changed both
LoanAsset and PToken to implement the interface.

Veridise Audit Report: Prime © 2023 Veridise Inc.

56 4 Vulnerability Report

4.1.28 V-PRI2-VUL-028: Missing events on interest accrual

Severity Warning Commit b1ee399
Type Missing/Incorrect Events Status Fixed

File(s) master/MasterInternals.sol

Location(s) _accrueInterestOnSingleLoanMarket()

The protocol updates the interest rate of a given loan market in the _accrueInterestOnSingleLoanMarket
() function. This function does not emit any event when the interests are updated.

Impact Due to the missing events, it may be harder to monitor loan market interest rate
changes at runtime. Note that a loan market interest rate update also occurs when a user borrows
or repays a loan, or when a user is liquidated.

Recommendation Emit an event when a loan market’s interest rate is updated.

© 2023 Veridise Inc. Veridise Audit Report: Prime

4.1 Detailed Description of Issues 57

4.1.29 V-PRI2-VUL-029: Consider documenting units in calculations

Severity Warning Commit b1ee399
Type Maintainability Status Acknowledged

File(s) N/A
Location(s) N/A

The protocol frequently needs to perform calculations over different units and fixed point
numbers with varying scales. For example, the protocol handles quantities such as:

▶ Various underlying collateral tokens, each with their own fixed point precision scales
▶ Various PTokens, each with their fixed point precision scales
▶ US$ value of tokens

These units and precision scales are not clearly documented in the code.

Impact Due to the lack of documentation, it is easier for the developers to introduce unit
conversion and integer precision errors such as V-PRI2-VUL-001and V-PRI2-VUL-002as they
continue to modify the source code.

Recommendation The developers should clearly document the units and the scales of all
storage variables, function arguments, and function return values. Furthermore, the developers
should also insert comments that indicate the expected units and precision scales before and
after calculations that require unit conversions. While this requires some up-front effort, it can
help reduce the number of bugs introduced in the future.

Veridise Audit Report: Prime © 2023 Veridise Inc.

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	V-PRI2-VUL-001: protocolIncentive divided by wrong precision factor
	V-PRI2-VUL-002: Liquidity check compares different units in _withdrawAllowed
	V-PRI2-VUL-003: Satellite loan market exchange rate calculation uses wrong units
	V-PRI2-VUL-004: _getValueOfCollateral multiplies wrong units
	V-PRI2-VUL-005: Native currency collateral repayment always reverts
	V-PRI2-VUL-006: Loan market totalSupplied inconsistency after call to supportSatelliteLoanMarket()
	V-PRI2-VUL-007: Rounding error may cause Aave PToken withdraw to revert
	V-PRI2-VUL-008: RequestController.deposit does not forward msg.value
	V-PRI2-VUL-009: Liquidating loan asset of zero locks native currency collateral
	V-PRI2-VUL-010: Potential rounding error causes revert in queryUserRewardsBalance
	V-PRI2-VUL-011: changeProtocolIncentive does not validate bounds
	V-PRI2-VUL-012: withdrawReserves refunds gas to wrong account
	V-PRI2-VUL-013: PToken does not validate decimals of underlying
	V-PRI2-VUL-014: Minor rounding error when calculating liquidation repay amount
	V-PRI2-VUL-015: supportMarket can be called on a previously listed market
	V-PRI2-VUL-016: Associated loan market not validated before use
	V-PRI2-VUL-017: Same hash hardcoded in two locations
	V-PRI2-VUL-018: Duplicated logic in PToken deposit, depositBehalf
	V-PRI2-VUL-019: Missing events in RewardControllerAdmin
	V-PRI2-VUL-020: Duplicated initialization logic in PToken implementations
	V-PRI2-VUL-021: Buffer overflow in MiddleLayer._mreceive
	V-PRI2-VUL-022: Potentially incorrect cast in unlockLiquidationRefund
	V-PRI2-VUL-023: Unfairness while withdrawing collateral in low-liquidity situations
	V-PRI2-VUL-024: Inconsistent comments in DoubleLinearIRMStorage
	V-PRI2-VUL-025: collateralBalances is confusingly named
	V-PRI2-VUL-026: Liquidation response can forward msg.value twice
	V-PRI2-VUL-027: Implicit interface is shared by PToken and LoanAsset
	V-PRI2-VUL-028: Missing events on interest accrual
	V-PRI2-VUL-029: Consider documenting units in calculations

