Xferidise. Auditing Report

Hardening Blockchain Security with Formal Methods

VARIA

&

Veridise Inc.
July 31, 2023

» Prepared For:

Mina Foundation
https://minaprotocol.com/

» Prepared By:

Jacob Van Geffen
Bryan Tan

» Contact Us: contact@veridise.com
» Version History:

Jul. 31, 2023 V1.01 - Fix typos
Jul. 07, 2023 V1

© 2023 Veridise Inc. All Rights Reserved.

https://minaprotocol.com/
contact@veridise.com

Contents

Contents iii
1 Executive Summary 1
2 Project Dashboard 3
3 Audit Goals and Scope 5
31 AuditGoals. 5
3.2 Audit Methodology & Scope L 5
3.3 Classification of Vulnerabilities 5
4 Vulnerability Report 7
41 Detailed Descriptionof Issues 8
411 V-MISN-VUL-001: mina_exportPrivateKey does not obtain user’s autho-
rization 8
41.2 V-MISN-VUL-002: mina_resetSnapConfig does not prompt for user con-
firmation 9
41.3 V-MISN-VUL-003: mina_changeNetwork silently no-ops on invalid net-
work .o 10
414 V-MISN-VUL-004: The sendZkAppTx() prompt has misleading informa-
ton 11
41.5 V-MISN-VUL-005: Overly broad permission on RPC endowment 13
41.6 V-MISN-VUL-006: mina_exportPrivateKey logs the private key to console 14
417 V-MISN-VUL-007: mina_changeAccount does not confirm user intentions 15
418 V-MISN-VUL-008: sendPayment() and sendStakeDelegation() hard-codes
“MINA” asthetoken, 16
419 V-MISN-VUL-009: sendStakeDelegation() dialog title is too vague 17
4110 V-MISN-VUL-010: Unhandled notification failure can cause snap to be
terminated Lo 18
4111 V-MISN-VUL-011: Potential race condition when modifying snap config-
uration 19
4112 V-MISN-VUL-012: Transaction submit failureReason not checked 21
4113 V-MISN-VUL-013: getMinaClient() does not check for invalid networks . 22
4114 V-MISN-VUL-014: createAccount() is inefficiently implemented 23
4115 V-MISN-VUL-015: Some RPCs are never used by the frontend 25
4116 V-MISN-VUL-016: Non-compliance with BIP44 account discovery algo-
rithm ... 26
4.1.17 V-MISN-VUL-017: getAccounts() performs O(N) HTTP queries 27
4118 V-MISN-VUL-018: No notification shown in submitZkAppTx() 28
4119 V-MISN-VUL-019: GraphQL HTTP response code not checked 29
41.20 V-MISN-VUL-020: RPC method parameters are not validated 30
4.1.21 V-MISN-VUL-021: Consider enabling GitHub security scanning 31
4.1.22 V-MISN-VUL-022: Multiple GraphQL queries can be batched 32
Veridise Audit Report: Mina Foundation © 2023 Veridise Inc.

& Executive Summary

From Jun. 20, 2023 to Jun. 22, 2023, Mina Foundation engaged Veridise to review the security
of their Mina Snap. This project implements a wallet for the Mina protocol as a MetaMask
snap, and it includes features such as managing private keys, managing known Mina networks,
and submitting transactions. Interactions with a Mina network node take place via the node’s
GraphQL APIL

The security review covered the TypeScript implementation of the snap component of the
project. Veridise conducted the assessment over 6 person-days, with 2 engineers reviewing code
over 3 days on Git commit 246fbbe. The auditing strategy involved extensive manual auditing
by the Veridise engineers.

Code assessment. The Mina Snap developers provided the source code of the Mina Snap
implementation for review. To facilitate the Veridise auditors’ understanding of the code, the
Mina Snap developers also demonstrated and provided an example frontend application (not
in the scope of the audit) that can be used with the snap. The source code also contained some
documentation in the form of READMEs and documentation comments on functions and
storage variables.

The source code did not contain a test suite, although the Veridise auditors noted that several
files in the source code also indicate that the developers use linting and static analysis tools
such as ESLint.

Summary of issues detected. The audit uncovered 22 issues, 2 of which are assessed to be of
high or critical severity by the Veridise auditors. Specifically, malicious or buggy frontends or
snaps can extract the user’s private keys (V-MISN-VUL-001) or delete them (V-MISN-VUL-002)
without any explicit authorization from the user. The Veridise auditors also identified 10 low-
severity issues, including a race condition in the account and network logic (V-MISN-VUL-011),
overly broad snap permissions (V-MISN-VUL-005), and misleading confirmation prompts when
submitting transactions (V-MISN-VUL-004). Lastly, the auditors identified 8 warnings as well
as a few informational issues. The Mina Snap developers resolved all 22 issues.

Recommendations. After auditing the protocol, the auditors had a few suggestions to improve
the Mina Snap. Mainly, the auditors felt uncomfortable that there is no automated testing, and
they noted that some parts of the code could be tested independently of the snap. For example,
some of the code interacting with the GraphQL endpoints do not depend on any Snap-specific
functionality; issues such as V-MISN-VUL-012 could be caught with integration tests.

Most of the issues raised by the auditors relate to user confirmation and error handling, such
as V-MISN-VUL-001 and V-MISN-VUL-004. To help identify similar issues in the future, we
recommend that the Mina Snap undergo thorough QA testing and user acceptance testing
before the project is released to the public.

Veridise Audit Report: Mina Foundation © 2023 Veridise Inc.

1 Executive Summary

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

© 2023 Veridise Inc. Veridise Audit Report: Mina Snap

%5 Project Dashboard

Table 2.1: Application Summary.

Platform

Mina Snap 240fbbe TypeScript MetaMask Snaps

Table 2.2: Engagement Summary.

Method Consultants Engaged Level of Effort

Jun. 20 - Jun. 22,2023 Manual & Tools 6 person-days

Table 2.3: Vulnerability Summary.

Critical-Severity Issues 0 0
High-Severity Issues 2 2
Medium-Severity Issues 0 0
Low-Severity Issues 10 10
Warning-Severity Issues 8 8
Informational-Severity Issues 2 2
TOTAL 22 22

Table 2.4: Category Breakdown.

Authorization 5
Data Validation
Usability Issue
Optimization
Maintainability
Logic Error

Access Control
Information Leakage
Race Condition

— o= == N W WOl

Veridise Audit Report: Mina Foundation © 2023 Veridise Inc.

& Audit Goals and Scope

3.1 Audit Goals

The engagement was scoped to provide a security assessment of Mina Snap’s smart contracts.
In our audit, we sought to answer the following questions:

» Is it possible for the user’s private keys to leak to an external source?

» Is the key management functionality implemented correctly?

» Are all actions correctly authorized by the user?

» Do authorization prompts contain enough relevant information for the user to make an
informed decision?

Does the business logic correctly handle errors?

v

» Is untrusted input correctly validated and/or sanitized?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved extensive code
review.

Scope. The scope of this audit is limited to the packages/snap folder of the source code provided
by the Mina Snap developers. Specifically, the audit only covers the implementation of the
snap component of the Mina Snap. During the audit, the Veridise auditors referred to external
packages and services used by the Mina Snap but assumed that they have been implemented
correctly.

Methodology. To understand the intended behavior of the Mina Snap, the Veridise auditors first
met with the Mina Snap developers, who provided a live demonstration of the Mina Snap. They
then began a manual review of the code. During the audit, the Veridise auditors regularly met
with the Mina Snap developers to ask questions about the code. The auditors also referred to
documentation found on the Mina protocol website.

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

In this case, we judge the likelihood of a vulnerability as follows in Table 3.2:

In addition, we judge the impact of a vulnerability as follows in Table 3.3:

Veridise Audit Report: Mina Foundation © 2023 Veridise Inc.

3 Audit Goals and Scope

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking

Not Likely SR W RE M LW Medium
Likely [0 WAEg | Low. | Medium [N High W
Very Likely | oo Medium [g IR

Table 3.2: Likelihood Breakdown

Not Likely | A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)
Likely | - OR -

Requires a small set of users to perform an action

Very Likely | Can be easily performed by almost anyone

Table 3.3: Impact Breakdown

Somewhat Bad | Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad | -OR-

Affects a very small number of people and requires aid to fix

Affects a large number of people and requires aid to fix

Very Bad | -OR -

Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking | Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2023 Veridise Inc. Veridise Audit Report: Mina Snap

%5 Vulnerability Report

In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowledged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

V-MISN-VUL-001 mina_exportPrivateKey does not obtain user’s au.. High Fixed
V-MISN-VUL-00Z mina_resetSnapConfig does not prompt for user c. High Fixed
V-MISN-VUL-002 mina_changeNetwork silently no-ops on invalid n. Low Fixed
V-MISN-VUL-004 The sendZkAppTx() prompt has misleading inforr ~ Low Fixed
V-MISN-VUL-00% Overly broad permission on RPC endowment Low Fixed
V-MISN-VUL-00€ mina_exportPrivateKey logs the private key toc... Low Fixed
V-MISN-VUL-007 mina_changeAccount does not confirm user intent Low Intended Behavior
V-MISN-VUL-00¢ sendPayment() and sendStakeDelegation() hard-co Low Fixed
V-MISN-VUL-00¢ sendStakeDelegation() dialog title is too vague Low Fixed
V-MISN-VUL-010 Unhandled notification failure can cause snap t... ~ Low Fixed
V-MISN-VUL-011 Potential race condition when modifying snap co.. Low Fixed
V-MISN-VUL-012 Transaction submit failureReason not checked Low Fixed
V-MISN-VUL-013 getMinaClient() does not check for invalid netw... Warning Fixed
V-MISN-VUL-014 createAccount() is inefficiently implemented Warning Fixed
V-MISN-VUL-015 Some RPCs are never used by the front end Warning Fixed
V-MISN-VUL-016 Non-compliance with BIP44 account discovery alg Warning Acknowledged
V-MISN-VUL-017 getAccounts() performs O(N) HTTP queries Warning Acknowledged
V-MISN-VUL-018 No notification shown in submitZkAppTx() Warning Fixed
V-MISN-VUL-019 GraphQL HTTP response code not checked Warning Fixed
V-MISN-VUL-02C RPC method parameters are not validated Warning Acknowledged
V-MISN-VUL-021 Consider enabling GitHub security scanning Info Fixed
V-MISN-VUL-02Z Multiple GraphQL queries can be batched Info Acknowledged

Veridise Audit Report: Mina Foundation © 2023 Veridise Inc.

o U~ W

4 Vulnerability Report

4.1 Detailed Description of Issues

4.1.1 V-MISN-VUL-001: mina_exportPrivateKey does not obtain user’s
authorization

High 240fbbe
Authorization Fixed
src/index.ts
onRPCRequest()
6c59b7a

The mina_exportPrivateKey method can be called to “export” the private key of the specified

account to the caller. However, the method will unconditionally return the private key, even if
the user may not want to export the private key to the caller.

case EMinaMethod.EXPORT_PRIVATE_KEY: {
const { index, isImported } = request.params as { index?: number; isImported?:

boolean };
const { privateKey } = await getKeyPair(index, isImported);
console.log(’'-privateKey:’, privateKey);

return { privateKey };

-

Snippet 4.1: Implementation of the mina_exportPrivatekey method in onRPCRequest ()

Impact If the user has enabled the snap for the current website, then any JavaScript code that
executes on that website will be able to obtain the user’s private keys. This can be exploited
by malicious actors that employ XSS and phishing attacks. Note that this issue is further
exacerbated by V-MISN-VUL-005, where malicious snaps could also steal the private keys.

Recommendation The developers mentioned that they wanted to implement a password
prompt, but they found that there is currently no easy way to do this within MetaMask. Despite
this, we would still recommend that the snap requests the user’s authorization before proceeding,
so as to mitigate the damage done by XSS or phishing attacks. For example, the snap can show
a confirmation dialog to the user that displays the risks of exporting the private key (or a link to
such an explanation) and the origin of the RPC call. The user must click “Accept” before the
export can proceed.

© 2023 Veridise Inc. Veridise Audit Report: Mina Snap

© 00 N O U B~ W N

e el e e
Ul A W N R ®

4.1 Detailed Description of Issues

4.1.2 V-MISN-VUL-002: mina_resetSnapConfig does not prompt for user
confirmation

High 240fbbe
Authorization Fixed
src/index.ts,src/mina/configuration.ts
onRPCRequest(), resetSnapConfiguration()
6c59b7a, 3£90632

The mina_resetSnapConfig method can be called clear all data stored by the Mina snap. However,

this is performed even without any user confirmation.

// Implementation of the mina_resetSnapConfig method in onRPCRequest()
case EMinaMethod.RESET_CONFIG: {
return resetSnapConfiguration();

-

// The definition of resetSnapConfiguration()
export const resetSnapConfiguration = async (): Promise<NetworkConfig> => {
await snap.request({
method: ESnapMethod.SNAP_MANAGE_STATE,
params: { operation: ’‘clear’ },
3
const snapConfig = await getSnapConfiguration();
const networkConfig = await getNetworkConfig(snapConfig);
return networkConfig;

-

’

Snippet 4.2: The relevant locations in the code. None of the called functions will prompt for
user confirmation.

Impact Without user confirmation, the user may be more prone to accidentally deleting all
of their data, including their private keys. While automatically generated private keys can
be recovered as they are deterministic, how to do so is not obvious to a non-technical user.
Furthermore, there will be no way to recover imported private keys.

Additionally, a malicious snap or frontend can call mina_resetSnapConfig to make an attack
more damaging. For example, an attacker can first exploit V-MISN-VUL-001, and then they
can call mina_resetSnapConfig to make it more difficult for a victim to regain control over their
accounts.

Recommendation The snap should prompt the user for confirmation before invoking
resetSnapConfiguration(). The prompt should clearly indicate the risks of resetting the snap
configuration and require the user to type in a message such as “I understand that resetting the
snap may result in loss of access to accounts.” for confirmation.

Veridise Audit Report: Mina Snap © 2023 Veridise Inc.

10

O© 00 N O U A W N

4 Vulnerability Report

4.1.3 V-MISN-VUL-003: mina_changeNetwork silently no-ops on invalid network

Severity @¥a%Y 240fbbe
#h4J0 Logic Error Fixed

File(s) src/mina/configuration.ts
Location(s) changeNetwork()
Fixed At d38b39d

Given a networkName, the changeNetwork() function is used to update the currently selected
network in the persistent state to the networkName. This is only performed if networkName is not
the currently active network, and the network actually exists. The changeNetwork() function is
invoked on calls to the mina_changeNetwork JSON-RPC endpoint. Neither of these validate that
the given network actually exists, so if the caller provides an invalid network, then the method
will return successfully without having performed any state changes.

export const changeNetwork = async (networkName: ENetworkName): Promise<NetworkConfig

> => {

let snapConfig = await getSnapConfiguration();

if (networkName !'= snapConfig.currentNetwork && snapConfig.networks[networkName]) {
snapConfig.currentNetwork = networkName;
await updateSnapConfig(snapConfig);

}

const networkConfig = await getNetworkConfig(snapConfig);

return networkConfig;

-

Snippet 4.3: Implementation of changeNetwork()

Impact If a dApp (or a user) provides an invalid network name to mina_changeNetwork, then
the snap will not do anything. The user may mistakenly believe that the network has been
changed, which can cause subsequent accidents or errors. For example, the user may accidentally
send funds with an account on the wrong network.

Recommendation Throw an error if the network does not exist.

© 2023 Veridise Inc. Veridise Audit Report: Mina Snap

O© 00 N O U A W N

=R e
N B o

4.1 Detailed Description of Issues

4.1.4 V-MISN-VUL-004: The sendZkAppTx() prompt has misleading information

The
selected account. This is implemented by the sendZkAppTx () function. In order for the transaction
to be made, the user will first be prompted for confirmation. The prompt will be titled “Confirm
transaction” and it will show both the user’s account as well as the fee provided by the fee payer
(in terms of MINA). This prompt has several problems:

1.
. The network is not shown.

Severity EFQY 240fbbe
g8, 8 Authorization Fixed

File(s) src/mina/index.ts
Location(s) sendZkAppTx()
Fixed At 6c59b7a

mina_sendTransaction endpoint is used to send a zkApp transaction using the currently

The prompt does not show any details about the target of the transaction.

Similar to V-MISN-VUL-008, the fee is always denominated in “MINA”; however, the
actual token is that of the current network.
The title does not indicate that the transaction is a zkApp transaction.

export const sendZkAppTx = async (args: ZkAppTxInput, networkConfig: NetworkConfig)

=> {
const { publicKey, privateKey } = await getKeyPair();
const confirmation = await popupDialog(

ESnapDialogType.CONFIRMATION,

"Confirm transaction’,

‘Submit ZkApp transaction \nFrom: ${publicKey}\nFee: ${args.feePayer.fee} MINA‘,
)
if ('confirmation) {

await popupNotify(’Transaction rejected’);

return null;
}

Snippet 4.4: Lines in sendZkAppTx() that prompt the user for confirmation
Impact

1. Because no details are shown about the target of the transaction, the user cannot make an

3.

informed decision about whether they should accept the transaction. It may be easier for
malicious actors to trick users into sending funds to the wrong addresses or executing
harmful transactions. For example, a malicious actor might trick a user into calling a token
contract’s transfer function to drain the user’s tokens, but the user has no way of knowing
that from the confirmation dialog.

. Since the network is not shown, it is more likely for a user to accidentally send (and

approve) a transaction on the wrong network.

When the network does not have “MINA” as its currency, the fee will still be displayed in
terms of “MINA”. The user may be mislead into thinking that the actual cost will be in
terms of MINA, but the fees will actually be paid in a different currency.

Veridise Audit Report: Mina Snap © 2023 Veridise Inc.

11

12

4 Vulnerability Report

export async function popupDialog(
type: ESnapDialogType,
prompt: string,
textAreaContent: string,
) {
const response = await snap.request({
method: ESnapMethod.SNAP_DIALOG,
params: {
type,
content: panel([
heading(prompt),
text (textAreaContent),
1)
}
3
return response;

}

Snippet 4.5: Implementation of popupDialog(), which constructs a snap Ul consisting of a
heading and a paragraph.

Recommendation The developers should revise the prompt to contain additional, unambigu-

ous information about the transaction.

1. We recommend that the developers display at minimum: the network, the target address

of the transaction, any memo, and any information about the method being invoked (and
potentially the arguments). This can be done under a separate heading (e.g., “Transaction

Details”) to avoid cluttering the Ul Security may also be improved by displaying the

origin of the JSON-RPC request received by the snap.

2. Instead of hardcoding MINA in the string, the MINA should be replaced with a code snippet

such as ${networkConfig.token.symbol}.

3. The title of the prompt should be changed to “Confirm zkApp transaction” to clarify that

the transaction involves a zkApp.

Developer Response The developers updated the dialog title and made the dialog show the

network name and the zkApp transaction details.

© 2023 Veridise Inc.

Veridise Audit Report: Mina Snap

4.1 Detailed Description of Issues 13

4.1.5 V-MISN-VUL-005: Overly broad permission on RPC endowment

Severity @¥a%Y 240fbbe
g8 Ll Access Control Fixed
File(s) snap.manifest.json
Location(s) N/A
Fixed At 6c59b7a

The snap.manifest. json for this snap grants access to the endowment : rpc permission. Specifically,
it grants both dapps and snaps permission. Based on a demonstration of a frontend application
written by the developers, the dapps permission seems necessary. However, it is not clear why
the snaps permission is necessary.

Impact The snaps permission allows other snaps to communicate with the Mina snap. Other
snaps would be able to invoke methods such as mina_exportPrivateKey to extract information
from the Mina snap.

Recommendation Remove the snaps permission if it is not necessary.

Developer Response The developers removed the snaps permission.

Veridise Audit Report: Mina Snap © 2023 Veridise Inc.

14

o U~ W

4 Vulnerability Report

4.1.6 V-MISN-VUL-006: mina_exportPrivateKey logs the private key to console

Severity @¥a%Y 240fbbe
§8S 8 Information Leakage Fixed
File(s) src/index.ts
Location(s) onRPCRequest()
Fixed At 6c59b7a

The mina_exportPrivateKey method can be called to “export” the private key of the specified
account to the caller. However, this will log the private key to the developer console.

case EMinaMethod.EXPORT_PRIVATE_KEY: {
const { index, isImported } = request.params as { index?: number; isImported?:

boolean };
const { privateKey } = await getKeyPair(index, isImported);
console.log('-privateKey:’, privateKey);

return { privateKey };

-

Snippet 4.6: Implementation of the mina_exportPrivateKey method in onRPCRequest ()

Impact The private key will be unintentionally exposed to the developer console. This becomes
an attack vector for a phishing attack: if a phisher successfully convinces a user to open the
developer console and then export the private keys to a frontend that does not display the
private keys, then the phisher will be able to steal the private keys.

Recommendation Remove the line that logs the private key to the console.

© 2023 Veridise Inc. Veridise Audit Report: Mina Snap

o U~ W

4.1 Detailed Description of Issues

4.1.7 V-MISN-VUL-007: mina_changeAccount does not confirm user intentions

Severity @¥a%Y 240fbbe
#8428 Authorization Intended Behavior
File(s) packages/snap/src/index.ts
Location(s) onRPCRequest()
Fixed At N/A

When changing accounts, the RPC mina_changeAccount only requires the index of the account
and the isImported flag; no confirmation or password is required from the caller. As a result,
any malicious actors that can make calls to mina_changeAccount can arbitrarily change accounts.

case EMinaMethod.CHANGE_ACCOUNT: {
const { accountIndex, isImported } = request.params as { accountIndex: number;
isImported?: boolean };

const accountInfo = await changeAccount(accountIndex, isImported);
console.log(‘-account changed to:‘, accountInfo);
return accountInfo;

}

Snippet 4.7: Relevant lines in onRPCRequest ()

Impact Without restrictions to changing accounts, malicious websites with access to the snap
could change the active account without the user’s consent. This could lead to unexpected
behavior from the user’s point of view, such as transactions going to/coming from the wrong
account. For example, an attacker can silently change the account before issuing a transaction,
taking advantage of V-MISN-VUL-004so that users will be tricked into transferring funds to the
attacker.

Recommendation There are several ways to guard against malicious browsers/front-ends
from arbitrarily changing the account:

1. Require a password dialogue to change accounts. Although we understand that MetaMask
Flask currently does not expose this functionality, requiring a password from the user
before switching accounts could help prevent malicious behavior from the frontend.

2. Include a confirmation pop-up for the user when changing accounts. While this would
not be as secure as requiring the password, we believe it is a reasonable substitute while
MetaMask does not enable password pop-ups.

Developer Response The developers noted that the current behavior is consistent with how
MetaMask works, which doesn’t prompt the user on account change. They chose to make
mina_changeAccount work in this way to help improve the user experience.

Veridise Audit Report: Mina Snap © 2023 Veridise Inc.

15

16

N o AW N =

©

10

4 Vulnerability Report

4.1.8 V-MISN-VUL-008: sendPayment() and sendStakeDelegation() hard-codes
“MINA” as the token

Severity @¥g%Y 240fbbe
g84J8 Authorization Fixed

File(s) packages/snap/src/mina/index. ts
Location(s) sendPayment(), sendStakeDelegation()
Fixed At 6¢59b7a

In sendPayment (), a call to popupDialogue(...) confirms that the transaction to be sent is correct
according to the user. However, this dialogue hard-codes MINA as the token. In reality, the type
of token is determined by networkConfig.token and not fixed to MINA. A similar issue occurs in
sendStakeDelegation().

export const sendPayment = async (args: TxInput, networkConfig: NetworkConfig) => {
const { publicKey, privateKey } = await getKeyPair();
const confirmation = await popupDialog(
ESnapDialogType.CONFIRMATION,
"Confirm transaction’,
‘From: ${publicKey}\nTo: ${args.to}\nAmount: ${args.amount} MINA\nFee: ${args.fee
} MINAY,
);
}

Snippet 4.8: Relevant lines in sendPayment ()

Impact The user may unintentionally approve a payment transaction of the wrong amount, or
reject a transaction that has the correct amount whenever the token being sent is not MINA.

Recommendation Replace the instances of MINA with ${networkConfig.token.symbol} in the
popup dialogues of sendPayment () and sendStakeDelegation().

© 2023 Veridise Inc. Veridise Audit Report: Mina Snap

O© 00 N O U A W N

e~
N B ©

4.1 Detailed Description of Issues

4.1.9 V-MISN-VUL-009: sendStakeDelegation() dialog title is too vague

Severity @¥a%Y 240fbbe
g3 Ll Usability Issue Fixed
File(s) src/mina/index.ts
Location(s) sendStakeDelegation()
Fixed At 6c59b7a, 5b634c6

When the mina_sendStakeDelegation JSON-RPC method is invoked, it will show a confirmation
dialog to the user before submitting a stake delegation transaction to a Mina node. This dialog
will be titled “Confirm transaction” and show some details about the transaction. The title
is vague and does not clearly indicate that the transaction is a stake delegation transaction.
Furthermore, if the user does not approve the transaction, a vague “Transaction rejected”
message will be displayed in the MetaMask notifications.

export const sendStakeDelegation = async (args: StakeTxInput, networkConfig:
NetworkConfig) => {
const { publicKey, privateKey } = await getKeyPair();

const confirmation = await popupDialog(

ESnapDialogType.CONFIRMATION,

"Confirm transaction’,

‘Block producer address: ${args.to}\nFrom: ${publicKey}\nFee: ${args.fee} MINA‘,
)
if ('confirmation) {

await popupNotify(’'Transaction rejected’);

return null;

}

Snippet 4.9: Relevant lines in sendStakeDelegation()

Impact Users may be confused by the confirmation prompt and/or notification and believe
that the transaction may be of a different type, such as a payment or zkApp transaction. This
confusion could potentially be exploited by attackers in social engineering attacks.

Recommendation Change the title of the dialog and the notification message to be more
specific, such as to “Confirm stake delegation transaction” and “Stake delegation transaction
rejected”, respectively.

Veridise Audit Report: Mina Snap © 2023 Veridise Inc.

17

18 4 Vulnerability Report

4.1.10 V-MISN-VUL-010: Unhandled notification failure can cause snap to be
terminated

Severity EFgY 240fbbe
g3l Data Validation Fixed

File(s) src/util/popup.util.ts
Location(s) popupNotify()
Fixed At 5b634c6

The popupNotify() helper function is used to display a notification through the snap_notify
JSON-RPC method. This can fail if MetaMask Flask’s notification rate-limiting triggers, so that
the promise completes with a rejection. As a result, an error may be thrown if this occurs; since
there is no logic that checks for an error, the snap will be terminated unexpectedly.

export async function popupNotify(message: string) {
await snap.request({
method: ESnapMethod.SNAP_NOTIFY,
params: { type: ’'native’, message },
});
}

o U s W N =

Snippet 4.10: Implementation of popupNotify()

Impact The popupNotify() method is called by submitStakeDelegation() and submitPayment().
If a user sends payments or stake delegation transactions rapidly, then multiple notifications
will be requested. This will cause the rate limiter to activate and cause the snap. request(...) to
return a rejected promise, eventually causing an error that terminates the snap.

Recommendation Handle potential errors from failed notifications by wrapping await snap.
request(...) in a try-catch block (logging any errors), or using the .catch method of Promise,
asin (await snap.request(...)).catch(err == { ... }).

© 2023 Veridise Inc. Veridise Audit Report: Mina Snap

4.1 Detailed Description of Issues 19

4.1.11 V-MISN-VUL-011: Potential race condition when modifying snap
configuration

Severity @Fa%y 240fbbe
#3778 Race Condition Fixed

File(s) src/mina/configuration.ts,src/mina/accounts.ts
Location(s) See description
Fixed At None

Several functions concerning the account and network logic may read or modify the persistent
state in a way that is prone to race conditions, specifically, if there are concurrent JSON-RPC
method calls being handled by the snap. There do not seem to be any safeguards or protections
against race conditions in the code.

Example Race Condition Scenario As an example of a race condition, consider the following
scenario:

1. User switches network on the frontend, which calls the JSON-RPC mina_changeNetwork
method on the snap.

2. User quickly then triggers the snap’s mina_sendPayment JSON-RPC method from the
frontend.

3. The mina_changeNetwork call is received by the snap and proceeds to the point where the
persistent state is retrieved in changeNetwork().

4. The mina_sendPayment call is received by the snap and proceeds to the point where the
keypair of the current account is fetched from the persistent state.

5. changeNetwork() updates the persistent state

6. The payment confirmation dialog pops up for the old network/account, but the new
network/account is expected.

The user will expect the payment confirmation dialog to pop up for the new network, but it will
show the account for the old network instead.

As another example, consider what happens if mina_sendPayment is instead replaced by
mina_editAccountName: the account being edited will be on the old network, and the per-
sistent state saved will use the state before the network was changed, so the final state stored will
not have the network change.

Impact A race condition can be triggered if a user modifies an account or the network selection
in multiple places simultaneously, such as in different tabs or if the actions are performed
quickly enough. This can cause subtle bugs, as shown in the above example. While we have not
confirmed whether it is possible in practice, the example race condition scenario above shows
that it is possible in theory.

The functions that write to the persistent state include:

changeNetwork()
changeAccount ()

>
>
» createAccount()
>

importAccount()

Veridise Audit Report: Mina Snap © 2023 Veridise Inc.

20

4 Vulnerability Report

» editAccountName()
» resetSnapConfiguration()

The functions that read from the persistent state include the above functions, as well as
onRPCRequest () (and hence in all logic related to the JSON-RPC methods) and generatekeyPair
0.

Any combination of concurrent JSON-RPC method calls involving at least one function writing
to persistent state as well as any other function writing to or reading from persistent state is
prone to a race condition.

Recommendation To reduce the possibility of a race condition, the developers could use a
mutex, semaphore, or other synchronization primitive to ensure 1) each JSON-RPC method call
has exclusive access to critical sections; and 2) the “happened-before” relationship is maintained
when reading or modifying persistent state. The former is likelier to happen and has a larger
impact, while the latter is not as likely and not as important to correctness.

We note that adding synchronization will likely increase the complexity of the codebase and
introduce subtle bugs such as deadlocks. Ensuring criterion (1) would introduce moderate
complexity, while ensuring criterion (2) would introduce significant complexity. The developers
should carefully weigh the tradeoffs of any fix being made.

One specific mitigation would be to use a read-write lock to restrict concurrent access to the
persistent state, especially for “read-modify-write” patterns which are meant to be atomic.
This would allow concurrent readonly operations to occur simultaneously, while disallowing a
read-modify-write and another persistent state operation from occurring simultaneously. While
this will not ensure criterion (2), this can ensure criterion (1) holds.

Developer Response The developers changed the code to use a mutex so that only one
JSON-RPC method call can be handled at a time. The auditors note that this can mitigate race
conditions, but at the cost of potentially opening up denial-of-service attack vectors if some
JSON-RPC methods take a long time to run (esp. those that send HTTP requests).

© 2023 Veridise Inc. Veridise Audit Report: Mina Snap

4.1 Detailed Description of Issues 21

4.1.12 V-MISN-VUL-012: Transaction submit failureReason not checked

Severity @¥g%Y 240fbbe
g84l Data Validation Fixed
File(s) src/mina/transaction.ts
Location(s) submitPayment(), submitStakeDelegation(), submitZkAppTx()
Fixed At 5b634c6

The methods submitPayment (), submitStakeDelegation(), and submitZkAppTx() each submit a
Mina protocol transaction by sending a GraphQL mutation to a Mina node. In response, the
Mina node will return an object containing the response to the transaction submission. This
object will contain a failureReason list that is nonempty if an error has occurred. However,
none of the above methods or its callers check whether failureReason is empty (i.e., check for
errors).

Impact If there is a nonempty failureReason, then an error has occurred. The snap will
still show notifications indicating that the transaction has been submitted, but in reality the
submission has failed.

Recommendation The developers should confirm whether the error should be handled by
the snap or by the caller of the JSON-RPC method. If the error is meant to be handled in the
snap, the developers should add code to check that failureReason is empty or null (i.e., that
there are no errors). Note that the failureReason schema for a zkApp transaction is slightly
different from that of a payment or stake delegation transaction.

Veridise Audit Report: Mina Snap © 2023 Veridise Inc.

22

o U W N

4 Vulnerability Report

4.1.13 V-MISN-VUL-013: getMinaClient() does not check for invalid networks

Syl Warning 240fbbe
g8yl Data Validation Fixed
SN src/util/mina-client.util.ts,src/constants/config.constant.ts
Location(s) getMinaClient()
Fixed At 6c59b7a, 369fed9

The getMinaClient () function is used to construct an instance of Client (from the mina-signers
library) that will be used to sign transactions. The client takes a network argument that determines
what type of Mina network that the actions will be for, either mainnet or testnet. This will be
determined based on the “network name” in the configuration of the snap. Specifically, if the
network name is Mainnet, then the network type will be set to mainnet; otherwise, the network
type will be set to testnet.

export const getMinaClient = (networkConfig: NetworkConfig) => {
if (networkConfig.name === ENetworkName.MAINNET) {
return new Client({ network: ’'mainnet’ });

}

return new Client({ network: ’testnet’ });

-

’

Snippet 4.11: Definition of getMinaClient()

Impact Currently, this has no impact as there are only three Mina networks mainnet, devnet,
and berkeley, with the latter two being testnet type.

However, if more mainnet type networks are added to the configuration in the future, then
the developers may forget to add a the case in getMinaClient(). Such additional mainnet type
networks will be assumed to be testnet type, which could result in bugs.

Recommendation The developers should modify getMinaClient () so that it checks exactly for
the cases specified in config.constant. ts. If an invalid network name is provided, the function
should throw an error.

© 2023 Veridise Inc. Veridise Audit Report: Mina Snap

4.1 Detailed Description of Issues 23

4.1.14 V-MISN-VUL-014: createAccount() is inefficiently implemented

SIEstaM Warning 240fbbe
#8738 Optimization Fixed
File(s) src/mina/account.ts
Location(s) createAccount()
Fixed At 4bdaec0

The JSON-RPC method mina_createAccount, which is implemented by the createAccount()
function, allows the caller to create a new generated account. The createAccount() first function
recursively searches for the smallest index in the generatedAccounts array that is corresponding
to a public key that is not already in the list of generated or imported accounts. Then it updates
the persistent state with the newly generated account.

The createAccount () function takes an optional index parameter that indicates the index that
the search should begin at. Note that if index is not provided, the search will begin at the largest
index of the generated accounts; however, if index is provided, the search will begin at index.
Note that the recursive call to createAccount() explicitly provides the index. This means that if
the original JSON-RPC call explicitly provides a small index such as 0, and there are already
many existing accounts, then there will be $O(n)$ recursive calls to createAccount(), where n
is the total number of accounts.

Impact If the frontend explicitly provides a small value for index and there are already a large
number of accounts, then there could be a large number of recursive calls. The performance
here may suffer as the snap will retrieve the persistent state and generate a key pair on each
recursive call.

Recommendation

» The developers should change the case where index is explicitly provided so that existing
accounts are skipped over. For example, one possible fix (untested by the auditors) is:

1| const currentMaxIndex = 0;

2| const { generatedAccounts } = networks[currentNetwork];

3|if (Object.keys(generatedAccounts).length) {

4 currentMaxIndex = Math.max(...0Object.keys(generatedAccounts).map((key) =>
Number(key)));

newAccountIndex = index;
} else {
10 newAccountIndex = currentMaxIndex + 1;

11|}
This change forces input index values to be larger than any previous index. The developers
could instead choose to ensure that the input index does not match any existing keys
from Object.keys(generatedAccounts), but this option would complicate the code for

5

6

7(1if (index && index > currentMaxIndex) {
8

9

incrementing newAccountIndex in the case that a duplicate key pair is generated.

Veridise Audit Report: Mina Snap © 2023 Veridise Inc.

24

O© 00 N O U A W N =

11
12
13
14
15
16

17

18
19
20
21
22
23

24
25
26

4 Vulnerability Report

export const createAccount = async (name: string, index?: number): Promise<any> => {

const snapConfig = await getSnapConfiguration();
const { networks, currentNetwork } = snapConfig;
let newAccountIndex;
if (index) {
newAccountIndex = index;
} else {
const { generatedAccounts } = networks[currentNetwork];
if (Object.keys(generatedAccounts).length) {
const currentMaxIndex = Math.max(...0Object.keys(generatedAccounts).map((key) =>

Number(key)));
newAccountIndex = currentMaxIndex + 1;
} else {
newAccountIndex = 0;
}
}
const { publicKey } = await generateKeyPair(networks[currentNetwork],
newAccountIndex);

const duplicateAddress = checkDuplicateAddress(networks[currentNetwork], publicKey)

if (duplicateAddress) {
return createAccount(name, newAccountIndex + 1);
}
snapConfig.networks[currentNetwork].currentAccIndex = newAccountIndex;
snapConfig.networks[currentNetwork].selectedImportedAccount = null;
snapConfig.networks[currentNetwork].generatedAccounts[newAccountIndex] = { name,
address: publicKey };
await updateSnapConfig(snapConfig);
return { name, address: publicKey };

Snippet 4.12: Implementation of createAccount ()

» Instead of recursively calling createAccount (), the recursion could be rewritten to use
a loop instead. This will prevent createAccount() from repeatedly getting the snap
configuration from the persistent state.

Developer Response The developers noted:

Currently, there are no plans to use the index in the front-end, so we will remove
the index parameter here to make the logic simpler.

The developers changed createAccount () so that it always calculates the currentMaxIndex and
replaced the recursion with a loop.

© 2023 Veridise Inc. Veridise Audit Report: Mina Snap

4.1 Detailed Description of Issues 25

4.1.15 V-MISN-VUL-015: Some RPCs are never used by the front end

Syl Warning 240fbbe

83418 Maintainability Fixed

File(s) src/index.ts
Location(s) onRPCRequest()
Fixed At 47489b2

Based on packages/site, it appears that the following JSON-RPC methods are not used by the
current frontend:

hello
mina_verifyMessage

mina_getTxDetail

>

>

>

» mina_getTxHistory
» mina_resetSnapConfig

» mina_sendStakeDelegation
>

mina_requestNetwork

Impact These JSON-RPC methods give (possibly unintended) access to functionality like
sending a stake delegation transaction, changing the name of a network, or reseting the
configuration of the snap. This means that malicious front-ends using this snap could access
this functionality when they should not.

Recommendation The actions here will depend on whether or not the developers intend for
frontends to access the functionality provided by these JSON-RPC methods in the future.

» If the snap is only meant to work with the current frontend created by the developers,
these functionalities should be disabled in the snap, as they will effectively be “dead code”
until they are used. This will help reduce attack vectors that can be exploited by malicious
websites.

» If this functionality is not ****meant to be used by any future frontends, then these
JSON-RPC methods should be deleted from onRpcRequest ().

Developer Response The developers noted that they are using these JSON-RPC methods in
another project. However, they will remove the hello method, as it is unused.

Veridise Audit Report: Mina Snap © 2023 Veridise Inc.

26

4 Vulnerability Report

4.1.16 V-MISN-VUL-016: Non-compliance with BIP44 account discovery algorithm

Syl Warning 240fbbe
g3 Ll Usability Issue Acknowledged
File(s) src/mina/account.ts
Location(s) importAccount()
Fixed At None

The BIP44 standard notes that:

Software should prevent a creation of an account if a previous account does not
have a transaction history (meaning none of its addresses have been used before).

However, when accounts are imported into the snap in the importAccount () function, there are
no such checks for the account transaction history.

Impact We note that this does not appear to have a direct security impact, although it can lead
to confusion if users accidentally import the wrong account and the account shows that they
have zero funds. In such a situation, users could become irrational and take risky actions that
compromise their security. If there was a check for account transaction history, users would
immediately realize any such mistakes or accidents.

Recommendation As adding such a check could add unnecessary complexity to the imple-
mentation of importAccount (), the developers should weigh the tradeoffs of having such a check
and include it if they believe it can help reduce user confusion.

Developer Response The developers acknowledged the issue and mentioned that they do not
have an immediate fix for this issue.

© 2023 Veridise Inc. Veridise Audit Report: Mina Snap

https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki

0 N O Ul W N

v A W N

4.1 Detailed Description of Issues

4.1.17 V-MISN-VUL-017: getAccounts() performs O(N) HTTP queries

Syl Warning 240fbbe
#8718 Optimization Acknowledged
File(s) src/mina/account.ts
Location(s) getAccounts()
Fixed At None

The mina_getAccounts JSON-RPC method fetches the (public) account information of every
account stored in the wallet. This is implemented by the getAccounts() function, which will
send GraphQL queries (via HTTP) to a Mina protocol node. However, when sending the queries,
the getAccounts () method will make an individual HTTP request for each account, so that there
are $0O(n)$ HTTP requests, where n is the total number of accounts.

const allAccounts = [...generatedAccountsArr, ...importedAccountsArr];
await Promise.all(
allAccounts.map((account) => {
return getAccountInfo(account.address, networks[currentNetwork]).then((data) => {
account.balance = data.account.balance;
I3
1.
);

Snippet 4.13: Relevant code in getAccounts()

export async function getAccountInfo(publicKey: string, networkConfig: NetworkConfig)

{
const query = getAccountInfoQuery(networkConfig.name === ENetworkName.BERKELEY) ;

const variables = { publicKey };

const data = await gql(networkConfig.gqlUrl, query, variables);

Snippet 4.14: Relevant code in getAccountInfo(). The gql() function will make an HTTP
request when invoked.

Impact If the wallet stores many accounts, the snap will make many HTTP requests in parallel.
This may result in unnecessary server load on the Mina node and a waste of bandwidth.

Recommendation If possible, modify the GraphQL query to batch the account retrieval and
use a single HTTP request to obtain the desired information.

Developer Response The developers acknowledged the issue but do not plan to resolve this
in the short term.

Veridise Audit Report: Mina Snap © 2023 Veridise Inc.

27

28 4 Vulnerability Report

4.1.18 V-MISN-VUL-018: No notification shown in submitZkAppTx()

SSsaM Warning 240fbbe
g8 L8 Usability Issue Fixed
File(s) src/mina/transaction.ts
Location(s) sendZkAppTx()
Fixed At 5b634c6

In sendPayment () and sendStakeDelegation(), a notification is shown when the corresponding
transaction is successfully submitted to a Mina node. However, in submitZkAppTx(), there is no
similar logic to show a notification.

Impact Notifications will provide a transaction history for payment and stake delegation
transactions. However, zkApp transactions will not be logged in this way as they have no
notifications.

Recommendation The developers should consider whether omitting the notifications is
intended and make the code consistent with their expectations.

Developer Response The developers stated that a notification is supposed to be shown.

© 2023 Veridise Inc. Veridise Audit Report: Mina Snap

© 00 N O Ul B W N R

=
<)

4.1 Detailed Description of Issues

4.1.19 V-MISN-VUL-019: GraphQL HTTP response code not checked

SSsaM Warning 240fbbe

g8 W Data Validation Fixed

File(s) src/graphgl/index.ts
Location(s) gql0)
Fixed At fOb8b8d

The gql() helper function sends a GraphQL query or mutation over HTTP. The function assumes
that the response will be valid GraphQL response that can be deserialized as JSON. In particular,
gql() does not check the status code of the response. However, if the HTTP response returns a
non-200 status code, it is possible for the response to 1) be invalid JSON; or 2) only appear to be a
valid GraphQL response but is invalid in practice.

export async function gql(url: string, query: string, variables = {}) {
try {
const response = await fetch(url, /*x ... */);
const { data, errors } = await response.json();
if (errors) throw new Error(errors[0].message);
return data;

} catch (err) {
console.error(’'packages/snap/src/graphgl/index.ts:30', err.message);
throw err;

}

}

Snippet 4.15: Relevant lines in gql()

Impact The GraphQL Over HTTP specification states that:

If the response uses a non-200 status code and the media type of the response
payload is application/json then the client MUST NOT rely on the body to be a
well-formed GraphQL response since the source of the response may not be the server
but instead some intermediary such as API gateways, proxies, firewalls, etc.

In such a scenario, the snap may assume that a transaction submission is successful when no
actual action has been taken. This may confuse the user and cause them to perform potentially
damaging actions.

Recommendation The developers should check the value of response.status() is equal to
200 and handle any errors appropriately.

Veridise Audit Report: Mina Snap © 2023 Veridise Inc.

29

https://github.com/graphql/graphql-over-http/blob/main/spec/GraphQLOverHTTP.md#processing-the-response

30

O 00 N O U A W N =

e N e e e =
o U A W N H O

4 Vulnerability Report

4.1.20 V-MISN-VUL-020: RPC method parameters are not validated

SSsaM Warning 240fbbe
g8 W Data Validation Acknowledged
File(s) src/index.ts
Location(s) onRPCRequest()
Fixed At None

In onRPCRequest (), the case for each method assumes that the parameters provided by the

JSON-RPC method caller have a specific type or structure. However, there is no validation that

the parameters actually have such type or structure.

case EMinaMethod.NETWORK_CONFIG: {
/] ...

case EMinaMethod.SEND_PAYMENT: {
const txInput = request.params as TxInput;
// ...

// Definition of TxInput in src/interfaces.ts
export type TxInput = {

to: string;

amount: number;

fee: number;

memo?: string;

nonce?: number;

-

const { name, gqlUrl, gqlTxUrl, explorerUrl, token } = networkConfig;

Snippet 4.16: Example of type casting without validation in onRPCRequest().

Impact If the JSON-RPC method caller omits required fields, then the values of the fields will
be undefined, which can result in bugs. It is good practice to validate required parameters and
their types, and doing so can help prevent bugs and potential security vulnerabilities in the

future.

Recommendation The developers should insert additional parameter validation where

helpful. For example, it would be good to validate that all number fields are indeed numbers.

More complex parameters such as the parameters to mina_sendStakeDelegation should also be

explicitly validated.

Developer Response The developers acknowledged the issue but do not plan to fix it in the

short term.

© 2023 Veridise Inc.

Veridise Audit Report: Mina Snap

4.1 Detailed Description of Issues

4.1.21 V-MISN-VUL-021: Consider enabling GitHub security scanning

Severity @i 240fbbe
83418 Maintainability Fixed
File(s) N/A
Location(s) N/A
Fixed At N/A

The developers mentioned that they would like to make sure that their dependencies are free
of vulnerabilities. We note that the GitHub repository that contains the source code of the
snap does not have GitHub code scanning nor Dependabot enabled. We recommend that the
developers enable both to receive regular reports about vulnerabilities in the dependency tree.

Veridise Audit Report: Mina Snap © 2023 Veridise Inc.

31

32

w

N o v

10

11
12
13
14
15
16
17
18

4 Vulnerability Report

4.1.22 V-MISN-VUL-022: Multiple GraphQL queries can be batched

Severity @i 240fbbe
§8J8 Optimization Acknowledged
File(s) packages/snap/src/mina/transaction.ts
Location(s) getTxHistory()
Fixed At None

The function getTxHistory () makes four separate GraphQL queries, each in a different HTTP
request, in order to fetch transaction history. Note that only two URLs will be accessed by the
requests.

export async function getTxHistory(networkConfig: NetworkConfig, options:

HistoryOptions, address: string) {

let getPendingTxList = gql(networkConfig.gqlUrl, TxPendingQuery(), { address });

let getTxList = gql(networkConfig.gqlTxUrl, getTxHistoryQuery(), { ...options,
address });

let getZkAppTxList: any = { zkapps: []1 };

let getZkAppPending: any = { pooledZkappCommands: [] };

if (networkConfig.name === ENetworkName.BERKELEY) {
getZkAppTxList = gql(networkConfig.gqlTxUrl, getZkAppTransactionListBody(), { ...
options, address });
getZkAppPending = gql(networkConfig.gqlUrl, getPendingZkAppTxBody(), { ...options
, address });

}

const [{ pooledUserCommands }, { transactions }, { zkapps }, { pooledZkappCommands
}] = await Promise.all([
getPendingTxList,
getTxList,
getZkAppTxList,
getZkAppPending,

1);

}

Snippet 4.17: Relevant lines in getTxHistory(). The gql method will send an HTTP request to a
Mina node’s GraphQL API endpoint.

Impact Issuing four HTTP requests instead of two will unnecessarily increase the server load
of the Mina node and waste bandwidth.

Recommendation If possible, batch the requests to the same URL in the same HTTP request.
This may require modifying the GraphQL queries.

Developer Response The developers acknowledged the issue but do not plan to resolve this
in the short term.

© 2023 Veridise Inc. Veridise Audit Report: Mina Snap

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	V-MISN-VUL-001: mina_exportPrivateKey does not obtain user’s authorization
	V-MISN-VUL-002: mina_resetSnapConfig does not prompt for user confirmation
	V-MISN-VUL-003: mina_changeNetwork silently no-ops on invalid network
	V-MISN-VUL-004: The sendZkAppTx() prompt has misleading information
	V-MISN-VUL-005: Overly broad permission on RPC endowment
	V-MISN-VUL-006: mina_exportPrivateKey logs the private key to console
	V-MISN-VUL-007: mina_changeAccount does not confirm user intentions
	V-MISN-VUL-008: sendPayment() and sendStakeDelegation() hard-codes “MINA” as the token
	V-MISN-VUL-009: sendStakeDelegation() dialog title is too vague
	V-MISN-VUL-010: Unhandled notification failure can cause snap to be terminated
	V-MISN-VUL-011: Potential race condition when modifying snap configuration
	V-MISN-VUL-012: Transaction submit failureReason not checked
	V-MISN-VUL-013: getMinaClient() does not check for invalid networks
	V-MISN-VUL-014: createAccount() is inefficiently implemented
	V-MISN-VUL-015: Some RPCs are never used by the front end
	V-MISN-VUL-016: Non-compliance with BIP44 account discovery algorithm
	V-MISN-VUL-017: getAccounts() performs O(N) HTTP queries
	V-MISN-VUL-018: No notification shown in submitZkAppTx()
	V-MISN-VUL-019: GraphQL HTTP response code not checked
	V-MISN-VUL-020: RPC method parameters are not validated
	V-MISN-VUL-021: Consider enabling GitHub security scanning
	V-MISN-VUL-022: Multiple GraphQL queries can be batched

