
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

Kleros Scout

Veridise Inc.
June 28, 2023

▶ Prepared For:

Kleros
https://kleros.io/

▶ Prepared By:

Himanshu
Bryan Tan

▶ Contact Us: contact@veridise.com

▶ Version History:

Jun. 28, 2023 V1

© 2023 Veridise Inc. All Rights Reserved.

https://kleros.io/
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 5

4 Vulnerability Report 7
4.1 Detailed Description of Issues . 8

4.1.1 V-KLS-VUL-001: URL domain regex captures too much 8
4.1.2 V-KLS-VUL-002: Query constraint for targetAddresses checks containment 9
4.1.3 V-KLS-VUL-003: Assumptions about chain ID 10
4.1.4 V-KLS-VUL-004: Query injection pitfalls for future link feature 11
4.1.5 V-KLS-VUL-005: Some values fetched by query are unused 12
4.1.6 V-KLS-VUL-006: Lack of error handling when sending GraphQL query 13

Veridise Audit Report: Kleros © 2023 Veridise Inc.

Executive Summary 1
From Jun. 12, 2023 to Jun. 14, 2023, Kleros engaged Veridise to review the security of their Kleros
Scout, a MetaMask snap that will display metadata from Kleros Curate registries before a user
confirms a transaction with MetaMask. This information includes details such as: whether the
address has an associated project, whether the current domain is "verified" for that address, and
whether the address is a token (and if it is, display its name and symbol). Veridise conducted
the assessment over 6 person-days, with 2 engineers reviewing code over 3 days on commit
34d1332. The auditing strategy involved a tool-assisted analysis of the source code performed
by Veridise engineers as well as extensive manual auditing.

Code assessment. The Kleros Scout developers provided the source code of the Kleros Scout
implementation for review. To facilitate the Veridise auditors’ understanding of the code, the
Kleros Scout developers provided a list of instructions on how to build and run the snap
locally. The source code also contained some documentation in the form of READMEs and
documentation comments on functions and storage variables.

The source code does not contain a test suite, but several files in the source code indicate that
the developers use linting and static analysis tools such as ESLint.

Summary of issues detected. The audit uncovered 6 issues, with the highest severity issues
being 1 issue assessed to be of low severity by the Veridise auditors. Specifically, the regex
used to capture the domain part of the originating URL will also capture the port number
(V-KLS-VUL-001). The Veridise auditors also identified 2 warnings and 3 informational findings,
including an overly-broad GraphQL constraint (V-KLS-VUL-002) and advice to avoid URL
query injection attacks for a future link feature (V-KLS-VUL-004).

The Kleros Scout developers resolved all of the issues.

Recommendations. After auditing the protocol, the auditors had a few suggestions to improve
the Kleros Scout code. Mainly, the auditors felt uncomfortable that there was no automated
testing, and they noted that some parts of the code could be tested independently of the
Snap. For example, the getDomainFromUrl() and getInsights() functions do not depend on any
Snap-specific information and could be tested with unit tests. Issues such as V-KLS-VUL-001
could have been caught by unit tests. However, independent unit testing of specific functionality
does not preclude integration testing of the whole Snap, as the actual execution environment is
locked down.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

Veridise Audit Report: Kleros © 2023 Veridise Inc.

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
Kleros Scout 34d1332 TypeScript MetaMask Snaps

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
Jun. 12 - Jun. 14, 2023 Manual & Tools 2 6 person-days

Table 2.3: Vulnerability Summary.

Name Number Resolved
Critical-Severity Issues 0 0
High-Severity Issues 0 0
Medium-Severity Issues 0 0
Low-Severity Issues 1 1
Warning-Severity Issues 2 2
Informational-Severity Issues 3 3
TOTAL 6 6

Table 2.4: Category Breakdown.

Name Number
Data Validation 2
Logic Error 2
Query Injection 1
Maintainability 1

Veridise Audit Report: Kleros © 2023 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of Kleros Scout’s source code. In
our audit, we sought to answer the following questions:

▶ Are all untrusted inputs sanitized correctly?
▶ Does the Snap transmit any information that should be kept private?
▶ Do the Snap permissions follow the principle of least privilege?
▶ Is it possible for the insights to incorrectly indicate that the transaction origin is a "verified"

domain if it is not contained in the registry?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved extensive manual
code review.

Scope. The scope of this audit is limited to the packages/snap folder of the source code provided
by the Kleros Scout developers, which contains the smart contract implementation of the Kleros
Scout.

Methodology. To understand the intended behavior, the Veridise auditors first read the public
documentation available on Klero’s website* and followed the developer-provided instructions
to run the Snap. They then began a manual audit of the code. During the audit, the Veridise
auditors also experimented with the GraphQL endpoint referenced by the source code.

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

In this case, we judge the likelihood of a vulnerability as follows in Table 3.2:

In addition, we judge the impact of a vulnerability as follows in Table 3.3:

* https://kleros.gitbook.io/docs

Veridise Audit Report: Kleros © 2023 Veridise Inc.

https://kleros.gitbook.io/docs

6 3 Audit Goals and Scope

Table 3.2: Likelihood Breakdown

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

Table 3.3: Impact Breakdown

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2023 Veridise Inc. Veridise Audit Report: Kleros

Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowleged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-KLS-VUL-001 URL domain regex captures too much Low Fixed
V-KLS-VUL-002 Query constraint for targetAddresses checks con. . . Warning Fixed
V-KLS-VUL-003 Assumptions about chain ID Warning Acknowledged
V-KLS-VUL-004 Query injection pitfalls for future link feature Info Fixed
V-KLS-VUL-005 Some values fetched by query are unused Info Fixed
V-KLS-VUL-006 Lack of error handling when sending GraphQL query Info Fixed

Veridise Audit Report: Kleros © 2023 Veridise Inc.

8 4 Vulnerability Report

4.1 Detailed Description of Issues

4.1.1 V-KLS-VUL-001: URL domain regex captures too much

Severity Low Commit 34d1332
Type Data Validation Status Fixed

File(s) index.ts

Location(s) getDomainFromUrl()
Fixed At 40730da

The getDomainFromUrl() function is used to extract the domain from a given URL. However, it is
implemented using a regex which captures more information than just the domain. For example,
for the input https://example.com:80/, the capture group will correspond to example.com:80

which includes the port number as well.

1 const getDomainFromUrl = (url: string): string | null => {
2 const match = url.match(/^https?:\/\/([^/?#]+)(?:[/?#]|$)/iu);
3 if (match) {
4 return match[1];
5 }
6 return null;
7 };

Snippet 4.1: Implementation of getDomainFromUrl()

Impact Assuming that the transaction origin passed by MetaMask is an arbitrary URL, the
extracted domain may not correspond to the actual domain entry that should be checked for in
the registry (e.g., if the extracted domain has a port but the registry version does not, or vice
versa). Thus, the snap may falsely mark the domain as “verified” or “not verified” when the
opposite is true.

Recommendation The developers should clarify whether the “domain” is only intended to
only be the domain (e.g., do not include port), or if it is the hostname (e.g., including port).
In any case, we recommend that the developers replace the regex with the standard URL class
instead, which should be compliant with the official WHATWG URL standard. The URL class
provides fields such as .hostname that can be used to reliably extract the parts of the URL that
are needed.

Developer Response The developers noted that the registry should not include the port
number as part of the domain, so it should not be captured by the regex.

© 2023 Veridise Inc. Veridise Audit Report: Kleros

https://developer.mozilla.org/en-US/docs/Web/API/URL
https://url.spec.whatwg.org/

4.1 Detailed Description of Issues 9

4.1.2 V-KLS-VUL-002: Query constraint for targetAddresses checks containment

Severity Warning Commit 34d1332
Type Logic Error Status Fixed

File(s) index.ts

Location(s) fetchGraphQLData()
Fixed At baebfab

To gather the transaction insights, the Snap will make a GraphQL query to a publicly accessible
API endpoint. Part of the constraints in the query is to find items whose address key contains
the target address (case insensitive). This seems like an unnecessarily lax condition.

1 query($targetAddress: String!, $domain: String!) {
2 addressTags: litems(where:{
3 registry:"0x66260c69d03837016d88c9877e61e08ef74c59f2",
4 key0_contains_nocase: $targetAddress,
5 status_in:[Registered, ClearingRequested]
6 }, first: 1) {
7 ...
8 contractDomains: litems(where:{
9 registry:"0x957a53a994860be4750810131d9c876b2f52d6e1",

10 key0_contains_nocase: $targetAddress,
11 key1: $domain,
12 ...
13 tokens: litems(where:{
14 registry:"0x70533554fe5c17caf77fe530f77eab933b92af60",
15 key0_contains_nocase: $targetAddress,

Snippet 4.2: Relevant parts of the GraphQL query

Impact Currently, this does not seem to have an impact because addresses on EIP155-supporting
blockchains appear to have the same length.

If the developers intend to extend the snap to support a blockchain which has addresses with
dynamic lengths, the query could incorrectly retrieve addresses that do not exactly match the
target address.

Recommendation Change the query to use an exact match (case insensitive) instead of only
checking containment.

Developer Response The developers stated that the only case-insensitive queries that are
supported are starts with, ends with, and contains. They have changed the query to check
key0_starts_with_nocase and key0_ends_with_nocase instead as a stopgap.

Veridise Audit Report: Kleros © 2023 Veridise Inc.

10 4 Vulnerability Report

4.1.3 V-KLS-VUL-003: Assumptions about chain ID

Severity Warning Commit 34d1332
Type Data Validation Status Acknowledged

File(s) index.ts

Location(s) onTransaction()
Fixed At N/A

The onTransaction() function is invoked when the user is about to perform a transaction. One of
the arguments to onTransaction() is a CAIP-2 chain ID indicating the chain that the transaction
will be performed on. The current implementation makes the following assumptions about the
chain ID:

▶ The chain’s namespace is eip155. This may not be true of all chains that a user may interact
with.

▶ The reference is numeric. While this assumption seems to hold for eip155, CAIP-2 generally
allows non-numeric chain IDs.

1 const numericChainId = parseInt(chainId.split(’:’)[1], 16);
2 const caipAddress = ‘eip155:${numericChainId}:${transaction.to as string}‘;

Snippet 4.3: Relevant lines in onTransaction() that demonstrate the assumptions.

Impact

▶ When the user attempts to perform a transaction on a non-eip155 chain and the chain ID
is numeric, then the target address will be looked up for the eip155 chain, not the actual
chain being run. If there is a collision between addresses, the information for the address
on the eip155 chain, not the actual chain, may be displayed.

▶ If the chain ID is not numeric, this will result in the numericChainId being set to NaN, and a
query will still be made.

Recommendation If the chain’s namespace is not eip155, the snap should display an error
message saying that the chain is not supported by the snap, and it should not attempt to fetch
insights for the transaction.

Developer Response The developers responded:

This is a snap for MetaMask, and MetaMask can only interact with eip155 chains.
Curate uses CAIP-10 because the rich address format is wholly chain agnostic, but for
what the snap is concerned, transaction.to will always be an Ethereum address,
the namespace will always be "eip155", and the reference will be numeric. (In the
case of the snap, it passes chainId as eip155:${hexChainId})

© 2023 Veridise Inc. Veridise Audit Report: Kleros

https://github.com/ChainAgnostic/CAIPs/blob/master/CAIPs/caip-2.md

4.1 Detailed Description of Issues 11

4.1.4 V-KLS-VUL-004: Query injection pitfalls for future link feature

Severity Info Commit 34d1332
Type Query Injection Status Fixed

File(s) index.ts

Location(s) getInsights()
Fixed At ca8253d

Several comments indicate that the developers intend to implement a “deeplink” feature when
MetaMask Snaps supports Markdown links. However, the example links seem to use JavaScript
template strings, which means that the interpolated parameters will be directly inserted into
the links without any escaping. When the developers implement the features mentioned in the

1 else {
2 // Contract was not tagged in Address Tags. Let the user know, and provide a link

to tag it.
3 // Note: current @metamask/snaps-ui does not allow markdown links, so no links in

this version.
4 // todo: when links are a feature, turn them into [Tag me](https://curate.kleros.

io/...), deeplink:
5 // https://curate.kleros.io/tcr/100/0x66260c69d03837016d88c9877e61e08ef74c59f2?

action=submit&Public%20Name%20Tag=&Contract%20Address=${contractAddress}
6 const addressNotFound = ‘**Contract Tag:** _Not Found_‘;
7 insights.push(addressNotFound);
8 }
9 const domainLabel = result.contractDomain

10 ? ‘**Domain:** _${domain}_ is **verified** for this contract‘
11 : // todo: when links are a feature, deeplink:
12 // https://curate.kleros.io/tcr/100/0x957A53A994860BE4750810131d9c876b2f52d6E1?

action=submit&Contract%20Address=${caipAddress}&Domain%20Name=${domain}
13 ‘**Domain:** _${domain}_ is **NOT verified** for this contract

Snippet 4.4: Location of the comments in getInsights()

comments, we recommend that the developers use safe URL construction APIs like the URL

class, URLSearchParams, and/or encodeURIComponent() . This can help reduce the attack surface
and prevent query injection attacks.

Developer Response The developers do not see this issue as exploitable as the address and
domain will be supplied by the MetaMask execution environment, so that they will likely not
contain characters such as ? or &. However, the developers acknowledge that it would be good
practice to use the safe URL construction APIs.

Veridise Audit Report: Kleros © 2023 Veridise Inc.

12 4 Vulnerability Report

4.1.5 V-KLS-VUL-005: Some values fetched by query are unused

Severity Info Commit 34d1332
Type Maintainability Status Fixed

File(s) index.ts

Location(s) fetchGraphQLData()
Fixed At 48e6481

There are some values which are fetched by the GraphQL query, but they are not used anywhere
in the program.

▶ itemID is fetched in all fields of the query, but it is not used to construct any of the
CuratedInfo fields.

▶ key4 is fetched for addressTags, but it is not used to construct the AddressTag.

1 const parsedAddressTag: AddressTag | undefined = result.data.addressTags[0]
2 ? {
3 caipAddress: mdEscape(result.data.addressTags[0].key0),
4 publicName: mdEscape(result.data.addressTags[0].key1),
5 projectName: mdEscape(result.data.addressTags[0].key2),
6 infoLink: mdEscape(result.data.addressTags[0].key3),
7 }
8 : undefined;

Snippet 4.5: Location where the addressTag values are used.

Developer Response The developers agree that the values mentioned above are unused and
will remove them.

© 2023 Veridise Inc. Veridise Audit Report: Kleros

4.1 Detailed Description of Issues 13

4.1.6 V-KLS-VUL-006: Lack of error handling when sending GraphQL query

Severity Info Commit 34d1332
Type Logic Error Status Fixed

File(s) index.ts

Location(s) fetchGraphQLData()
Fixed At 6a03929, 7489a72

The fetchGraphQLData() function will use the fetch API to make an HTTP request. This can fail
in the following situations, but there is no logic that handles these failures:

▶ There is a NetworkError when making the HTTP request in fetchGraphQLData(). Note that
there is no try-catch logic to handle this error type in fetchGraphQLData() or its callers.

▶ fetchGraphQLData() does not check the status code of the HTTP response (e.g., with
request.ok or request.status).

The developers may want to add logic to handle the errors and show a user-friendly error
message if such errors occur.

Veridise Audit Report: Kleros © 2023 Veridise Inc.

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	V-KLS-VUL-001: URL domain regex captures too much
	V-KLS-VUL-002: Query constraint for targetAddresses checks containment
	V-KLS-VUL-003: Assumptions about chain ID
	V-KLS-VUL-004: Query injection pitfalls for future link feature
	V-KLS-VUL-005: Some values fetched by query are unused
	V-KLS-VUL-006: Lack of error handling when sending GraphQL query

