
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

Tonic-Perps

Veridise Inc.
February 13, 2023

▶ Prepared For:

Tonic Foundation
tonic.foundation

▶ Prepared By:

Benjamin Mariano
Benjamin Sepanski
Andreea Buţerchi

▶ Contact Us:

contact@veridise.com

▶ Version History:

Feb 13, 2023 V1

© 2023 Veridise Inc. All Rights Reserved.

https://tonic.foundation
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 6

4 Vulnerability Report 7
4.1 Detailed Description of Bugs . 8

4.1.1 V-TNC-VUL-001: Potential unlimited LP Token minting/burning 8
4.1.2 V-TNC-VUL-002: Reserved amounts not preserved when burning LP

Tokens . 10
4.1.3 V-TNC-VUL-003: Limit orders are merged even with different collateral

types . 11
4.1.4 V-TNC-VUL-004: No callback given for call to ft_transfer 14
4.1.5 V-TNC-VUL-005: Potential DOS on asset withdrawal 15
4.1.6 V-TNC-VUL-006: Limit on max asset price change could be abused by

short takers . 16
4.1.7 V-TNC-VUL-007: Public initialization function 19
4.1.8 V-TNC-VUL-008: Storage of unchecked String 20
4.1.9 V-TNC-VUL-009: Assumed collateral and underlying assets are the same

in value calculation . 21
4.1.10 V-TNC-VUL-010: Lost funds on cancelled limit orders 22
4.1.11 V-TNC-VUL-011: Users liquidated when below minimum leverage . . . 23
4.1.12 V-TNC-VUL-012: set_user_referral_code uses predecessor instead of signer 24
4.1.13 V-TNC-VUL-013: Stale state before external call 25
4.1.14 V-TNC-VUL-014: Short position checks total stable available liquidity

instead of collateral available liquidity 27
4.1.15 V-TNC-VUL-015: Withdrawals from NEAR asset never check storage

requirements . 31
4.1.16 V-TNC-VUL-016: Storage Taking attack: transferring LP Tokens to bogus

accounts . 32
4.1.17 V-TNC-VUL-017: Malicious set user referral code induces large storage cost 33
4.1.18 V-TNC-VUL-018: ft_on_transfer uses signer account rather than sender . 34
4.1.19 V-TNC-VUL-019: Possible limit order ID collisions 35
4.1.20 V-TNC-VUL-020: Pool can lose money on liquidation 36
4.1.21 V-TNC-VUL-021: Confusing function usage 37
4.1.22 V-TNC-VUL-022: Multiple functions made payable unnecessarily 38
4.1.23 V-TNC-VUL-023: is_liquidator uses unmodified field Contract::liquidators 39
4.1.24 V-TNC-VUL-24: Out-of-date class documentation for LimitOrderID . . . 40

Veridise Audit Report: Tonic © 2022 Veridise Inc.

4.1.25 V-TNC-VUL-025: Out-of-date function documentation for get_lp_redemp-
tion_amount . 41

4.1.26 V-TNC-VUL-026: Add limit order does not check if NEAR sent on decrease 42
4.1.27 V-TNC-VUL-027: Referral code creation may charge more than CREATE_-

REFERRER_FEE . 43
4.1.28 V-TNC-VUL-028: Minimum amount out in swap is checked before fees . 44
4.1.29 V-TNC-VUL-029: Redundant function call 45
4.1.30 V-TNC-VUL-030: Incorrect type annotation 46
4.1.31 V-TNC-VUL-031: Code structure suggestion: use Rust Tuple Structs to

track currency unit types . 47
4.1.32 V-TNC-VUL-032: Code structure suggestion: check contract invariants first 48
4.1.33 V-TNC-VUL-033: Code structure suggestion: split logic for short and long

positions . 49
4.1.34 V-TNC-VUL-034: Add in logging for internal transfer failure 50
4.1.35 V-TNC-VUL-035: Use #[must_use] for any functions which return balances

that must be sent to a user . 51
4.1.36 V-TNC-VUL-036: Replace complicated limit order merge logic 52

Executive Summary 1
From Jan. 9 to Feb. 13, Tonic engaged Veridise to review the security of their Tonic-Perps project.
The review covered the on-chain contracts that implement the protocol logic. Veridise conducted
the assessment over 12 person-weeks, with 3 engineers reviewing code over 4 weeks on commit
1f30b00. The auditing strategy involved an analysis of the source code performed by Veridise
engineers involving extensive manual auditing.

Summary of issues detected. The audit uncovered 36 issues, 6 of which are assessed to be
of high or critical severity by the Veridise auditors. Potential consequences of these issues
include unlimited minting and burning of the LP token (V-TNC-VUL-001), reserve funds
being depleted (V-TNC-VUL-002), and funds depleted by allowing invalid limit order merging
(V-TNC-VUL-003). In addition to these critical/high severity bugs, auditors also found many
moderate severity issues. These include three different storage attacks that could be used to
drain some contract funds (V-TNC-VUL-008, V-TNC-VUL-016, V-TNC-VUL-017), poor program
logic leading to lost user funds (V-TNC-VUL-010), and multiple unnecessarily payable functions
that could cause users to lose funds (V-TNC-VUL-022).

Code assessment. Tonic-Perps is an orderbook-based exchange built on the NEAR blockchain.
The protocol enables users to exchange tokens and take out both short and long positions on
assets in the pool. Unlike AMM liquidaty pools which use a constant product rule to price pairs
of assets, Tonic-Perps has a single pool containing all assets and determines prices via oracles.
Like most exchanges, Tonic-Perps incentivizes liquidity providers by rewarding them with fees
assessed by the protocol.

Tonic provided the source code for the Tonic-Perps contracts for review. The contract contained a
test suite which achieved 82.14% line coverage (see Table 1.1). The code has some documentation
that was shared with auditors, and the code contains some moderate commenting.

Suggestions. After auditing the protocol, auditors had a number of suggestions that we believe
should be taken by Tonic-Perps developers before releasing the protocol. First, we suggest that
developers more thoroughly test the code (currently test coverage is only 82.14%). We believe
more thorough testing could have identified some of the major issues discovered in this audit,
such as reserved amounts not being preserved (V-TNC-VUL-002). Further, several files have low
or zero coverage, such as referrals.rs or lp_token/storage.rs. Increased testing based on
the test coverage results might catch issues similar to V-TNC-VUL-014.

Additionally, we found that the treatment of different currency units in the code is potentially
error-prone and difficult to maintain. Different currency units are (mostly) denoted only with
naming convention. We suggest developers differentiate these units using Rust’s Tuple Structs
so that issues can be detected automatically by Rust’s compiler*. Third, we suggest developers
change the coding style to do input validation and invariant checking at the beginning of

* See also the New Type Idiom

Veridise Audit Report: Tonic © 2022 Veridise Inc.

https://doc.rust-lang.org/book/ch05-01-defining-structs.html#using-tuple-structs-without-named-fields-to-create-different-types
https://doc.rust-lang.org/rust-by-example/generics/new_types.html

2 1 Executive Summary

Table 1.1: Test Coverage.

Filename Lines Lines Missed Line Coverage
actions.rs 6 0 100.00%
admin.rs 336 68 79.76%
fees/mod.rs 160 6 96.25%
lib.rs 93 13 86.02%
lp_token/ft.rs 119 96 19.33%
lp_token/mint.rs 194 4 97.94%
lp_token/mod.rs 65 6 90.77%
lp_token/storage.rs 21 8 61.90%
oracle.rs 109 58 46.79%
perps/limit_order.rs 518 41 92.08%
perps/limit_order_id.rs 86 16 81.40%
perps/mod.rs 1139 61 94.64%
perps/position_id.rs 56 18 67.86%
referrals.rs 94 94 0.00%
switchboard.rs 8 8 0.00%
token_receiver.rs 86 6 93.02%
trading.rs 154 3 98.05%
upgrade.rs 25 25 0.00%
util.rs 61 20 67.21%
vault/asset.rs 578 70 87.89%
vault/mod.rs 42 0 100.00%
views.rs 372 157 57.80%
withdrawal_history.rs 85 9 89.41%
TOTAL 4407 787 82.14%

functions. Checks are peppered throughout the code, which makes reasoning about the code
difficult. Finally, we suggest the logic for long and short positions be separated. The logic
for these two very different actions is mixed together in the same functions. We believe this
increases the chance of unsafe behavior, especially in future iterations of the codebase.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

© 2022 Veridise Inc. Veridise Audit Report: Tonic

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
Tonic-Perps 1f30b00 Rust NEAR

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
Jan. 9 - Feb. 13, 2022 Manual 3 12 person-weeks

Table 2.3: Vulnerability Summary.

Name Number Resolved
Critical-Severity Issues 3 3
High-Severity Issues 3 3
Medium-Severity Issues 5 5
Low-Severity Issues 9 9
Warning-Severity Issues 6 6
Informational-Severity Issues 10 9
TOTAL 36 35

Table 2.4: Category Breakdown.

Name Number
Logic Error 19
Validation 1
Denial of Service 3
Access Control 1
Missing/Incorrect Events 1
Gas Optimization 1
Maintainability 8
Usability 2

Veridise Audit Report: Tonic © 2022 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of the on-chain portion of the
Tonic-Perps defined below. In our audit, we sought to answer the following questions:

▶ Can a malicious user manipulate the balance of assets held in the vault?
▶ Can a malicious user steal another user’s collateral?
▶ Can a user’s earnings or collateral be lost?
▶ Does the protocol maintain the appropriate reserve amounts?
▶ Are failed external calls appropriately handled via callback functions?
▶ Is the protocol vulnerable to storage cost attacks?
▶ Can a user illegally withdraw their collateral for an open position?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved an extensive manual
audit. This included auditors reading documentation, reviewing code, writing new test cases,
and performing test coverage analysis, among other tasks.

Scope. This audit reviewed the on-chain behaviors contained in the following files of the
Tonic-Perps.

▶ tonic-perps/crates/tonic-perps/src/actions.rs

▶ tonic-perps/crates/tonic-perps/src/admin.rs

▶ tonic-perps/crates/tonic-perps/src/constants.rs

▶ tonic-perps/crates/tonic-perps/src/events.rs

▶ tonic-perps/crates/tonic-perps/src/lib.rs

▶ tonic-perps/crates/tonic-perps/src/oracle.rs

▶ tonic-perps/crates/tonic-perps/src/referrals.rs

▶ tonic-perps/crates/tonic-perps/src/switchboard.rs

▶ tonic-perps/crates/tonic-perps/src/token_receiver.rs

▶ tonic-perps/crates/tonic-perps/src/trading.rs

▶ tonic-perps/crates/tonic-perps/src/upgrade.rs

▶ tonic-perps/crates/tonic-perps/src/util.rs

▶ tonic-perps/crates/tonic-perps/src/views.rs

▶ tonic-perps/crates/tonic-perps/src/withdrawal_history.rs

▶ tonic-perps/crates/tonic-perps/src/fees/mod.rs

▶ tonic-perps/crates/tonic-perps/src/lp_token/ft.rs

▶ tonic-perps/crates/tonic-perps/src/lp_token/mint.rs

▶ tonic-perps/crates/tonic-perps/src/lp_token/mod.rs

▶ tonic-perps/crates/tonic-perps/src/lp_token/storage.rs

Veridise Audit Report: Tonic © 2022 Veridise Inc.

6 3 Audit Goals and Scope

▶ tonic-perps/crates/tonic-perps/src/perps/limit_order.rs

▶ tonic-perps/crates/tonic-perps/src/perps/limit_order_id.rs

▶ tonic-perps/crates/tonic-perps/src/perps/mod.rs

▶ tonic-perps/crates/tonic-perps/src/perps/position_id.rs

▶ tonic-perps/crates/tonic-perps/src/vault/asset.rs

▶ tonic-perps/crates/tonic-perps/src/vault/mod.rs

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

In this case, we judge the likelihood of a vulnerability as follows:

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows:

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2022 Veridise Inc. Veridise Audit Report: Tonic

Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowledged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-TNC-VUL-001 Potential unlimited LP token minting/burning Critical Fixed
V-TNC-VUL-002 Reserved amounts not preserved when burning Critical Fixed
V-TNC-VUL-003 Unchecked limit order merging Critical Fixed
V-TNC-VUL-004 No callback given for call to ft_transfer High Won’t Fix
V-TNC-VUL-005 Potential DOS on asset withdrawal High Fixed
V-TNC-VUL-006 Abuse of limited asset price change using shorts High Acknowledged
V-TNC-VUL-007 Public initialization function Medium Fixed
V-TNC-VUL-008 Storage of unchecked string Medium Fixed
V-TNC-VUL-009 Assumed same collateral and underlying type Medium Fixed
V-TNC-VUL-010 Lost funds on cancelled limit orders Medium Fixed
V-TNC-VUL-011 Users liquidated when below minimum leverage Medium Acknowledged
V-TNC-VUL-012 Using predecessor instead of signer Low Fixed
V-TNC-VUL-013 Stale state before external call Low Acknowledged
V-TNC-VUL-014 Short checks wrong liquidity amount Low Fixed
V-TNC-VUL-015 Withdrawals don’t check storage requirements Low Won’t Fix
V-TNC-VUL-016 Storage attack via bogus transfers Low Fixed
V-TNC-VUL-017 Storage attack via user referral code Low Fixed
V-TNC-VUL-018 ft_on_transfer uses signer account Low Fixed
V-TNC-VUL-019 Possible limit order ID collisions Low Acknowledged
V-TNC-VUL-020 Pool can lose money on liquidation Low Fixed
V-TNC-VUL-021 Confusing function usage Warning Acknowledged
V-TNC-VUL-022 Function unnecessarily payable Warning Fixed
V-TNC-VUL-023 Unused variable Warning Fixed
V-TNC-VUL-024 Out-of-date class documentation Warning Fixed
V-TNC-VUL-025 Out-of-date function documentation Warning Fixed
V-TNC-VUL-026 Potential NEAR loss on add decrease limit order Warning Invalid
V-TNC-VUL-027 Referral code creation too expensive Info Fixed
V-TNC-VUL-028 Minimum amount checked before fees Info Intended Behavior
V-TNC-VUL-029 Redundant function call Info Fixed
V-TNC-VUL-030 Incorrect type annotation Info Fixed
V-TNC-VUL-031 Use Rust Tuple Structs to track currency units Info Open
V-TNC-VUL-032 Check contract invariants first Info Fixed
V-TNC-VUL-033 Split logic for short and long positions Info Won’t Fix
V-TNC-VUL-034 Add logging for internal transfer failure Info Fixed
V-TNC-VUL-035 Use #[must_use] for funcs returning balance Info Fixed
V-TNC-VUL-036 Replace complicated limit order merge logic Info Won’t Fix

Veridise Audit Report: Tonic © 2022 Veridise Inc.

8 4 Vulnerability Report

4.1 Detailed Description of Bugs

4.1.1 V-TNC-VUL-001: Potential unlimited LP Token minting/burning

Severity Critical Commit 1f30b00
Type Logic Error Status Fixed
Files lp_token/mint.rs, vault/asset.rs

Functions Contract::mint_lp_token

By default, the withdrawal_limit_bps for an asset is set to 100%, meaning that a user can withdraw
an arbitrary amount of the asset by burning LP Tokens.

1 pub fn new(

2 asset_id: AssetId,

3 decimals: u8,

4 stable: bool,

5 token_weight: u32,

6 base_funding_rate: u64,

7) -> Self {

8 Self {

9 asset_id,

10 ..

11 withdrawal_limit_bps: 10000,

12 }

13 }

Impact

▶ A user can manipulate the total supply of LP Tokens without limit.
▶ A user can manipulate the composition of assets in the protocol (e.g., completely replace

all USDT with NEAR).

Example

▶ Assume the pool has 50 NEAR and 50 USDT, the price of NEAR to USDT is 1:1, and there
are 100 LP Tokens.

▶ Alice takes out a loan for 50 NEAR.
▶ Alice mints 50 LP Tokens for 50 NEAR, meaning the pool now has 100 NEAR, 50 USDT,

and there are now 150 LP Tokens.
▶ Alice burns 50 LP Tokens for 50 USDT, meaning the pool now has 100 NEAR, 0 USDT,

and there are 100 LP Tokens.
▶ Alice pays back her loan using 50 USDT (plus some minor fees that are a cost she must

incur for the attack).

Recommendation Set the default withdrawal limit to be less than 100% (preferably much less
to avoid this).

The Tonic team has established a withdrawal limit of 50%, necessitating the frequent oversight of
team members to avoid depleting the pool below this threshold. A reduction of the withdrawal

© 2022 Veridise Inc. Veridise Audit Report: Tonic

4.1 Detailed Description of Bugs 9

limit would facilitate less frequent monitoring. For instance, a limit of 6.25% would require
oversight only every 8 hours to prevent the pool from falling below the 50% mark. The team
will employ Grafana to monitor balances to ensure they are monitoring the pool at least once
every hour.

Veridise Audit Report: Tonic © 2022 Veridise Inc.

10 4 Vulnerability Report

4.1.2 V-TNC-VUL-002: Reserved amounts not preserved when burning LP Tokens

Severity Critical Commit 1f30b00
Type Logic Error Status Fixed
Files lp_token/mint.rs

Functions Contract::burn_lp_token

burn_lp_token does not check that the reserved portion of an asset is maintained.

Impact The protocol may fail to pay out profits because too much liquidity has been removed.

Recommendation Add a check that the reserved amount remains during any withdrawal
from burning LP tokens.

© 2022 Veridise Inc. Veridise Audit Report: Tonic

4.1 Detailed Description of Bugs 11

4.1.3 V-TNC-VUL-003: Limit orders are merged even with different collateral types

Severity Critical Commit 1f30b00
Type Logic Error Status Fixed
Files perps/limit_order.rs

Functions Contract::add_limit_order

When multiple limit orders of the same type are made at the same price, they are merged
together. However, no check ensures their underlying collateral types are the same. Instead, the
collateral assets are assumed to be the same and the amounts are simply added.

1 let id = if let Some((existing_id, existing_order)) = limit_orders

2 .get_range(

3 limit_order.price,

4 limit_order.price,

5 limit_order.is_long,

6 limit_order.threshold,

7)

8 .find(|(_, lo)| lo.owner == params.owner && lo.order_type == params.

order_type)

9 {

10 limit_order.collateral_delta += existing_order.collateral_delta;

11 limit_order.attached_collateral += existing_order.attached_collateral;

12 limit_order.size_delta += existing_order.size_delta;

13

14 self.check_limit_order(&limit_order);

15

16 *existing_id

17 }

18 ...

Impact A user can exploit this to drain funds by making multiple limit orders at the same
price with different collateral types and then immediately removing the order and claiming
the returns in the more valuable collateral type. This can be devastating if asset values and/or
denominations are very different (as is the case with NEAR and USDC).

Recommendation Add a check that the collateral types are the same or convert to the correct
collateral type.

1 #[test]

2 fn test_bad_merge() {

3 let (mut context, mut vcontract) = setup();

4 set_predecessor(&mut context, Admin);

5

6 // add liquidity to NEAR

7 vcontract

8 .contract_mut()

9 .add_liquidity(&AssetId::NEAR, near(100));

10

Veridise Audit Report: Tonic © 2022 Veridise Inc.

12 4 Vulnerability Report

11 // add liquidity to USDC

12 vcontract

13 .contract_mut()

14 .add_liquidity(&AssetId::Ft(usdc_id().parse().unwrap()), dollars(1000));

15

16 update_near_price(&mut vcontract, dollars(5));

17

18 // Add a limit order for a long of NEAR using 5 NEAR collateral (1x leverage)

19 set_predecessor(&mut context, Alice);

20 set_deposit(&mut context, near(5));

21 let params = LimitOrderParameters {

22 price: dollars(5).into(),

23 size_delta: dollars(25).into(),

24 underlying_id: near_id(),

25 collateral_id: None,

26 is_long: true,

27 expiry: None,

28 order_type: OrderType::Increase,

29 collateral_delta: None,

30 };

31 let limit_order_id =vcontract.add_limit_order(params.clone());

32

33 // Add a limit order for additional increase at same price w/ $5 USDC collateral

(1x leverage)

34 set_signer(&mut context, Alice);

35 set_predecessor(&mut context, Alice);

36 set_predecessor_token(&mut context, usdc_id());

37 vcontract.ft_on_transfer(

38 get_account(Alice),

39 dollars(5).into(),

40 serde_json::to_string(&Action::PlaceLimitOrder(LimitOrderParameters {

41 price: dollars(5).into(),

42 size_delta: dollars(5).into(),

43 underlying_id: near_id(),

44 collateral_id: None,

45 is_long: true,

46 expiry: None,

47 order_type: OrderType::Increase,

48 collateral_delta: None,

49 }))

50 .unwrap(),

51);

52

53 set_predecessor(&mut context, Alice);

54 vcontract.remove_limit_order(limit_order_id);

55

56 }

When run, this prints out:

1 {"type":"OracleUpdate","data":{"asset_id":"usdc","price":"1000000","spread_bps":0,"

source":"tonic"}}

2 {"type":"EditPoolBalance","data":{"amount_native":100000000000000000000000000,"

new_pool_balance_native":100000000000000000000000000,"increase":true,"account_id"

© 2022 Veridise Inc. Veridise Audit Report: Tonic

4.1 Detailed Description of Bugs 13

:"charlie","asset_id":"near"}}

3 {"type":"EditPoolBalance","data":{"amount_native":1000000000,"new_pool_balance_native

":1000000000,"increase":true,"account_id":"charlie","asset_id":"usdc"}}

4 {"type":"OracleUpdate","data":{"asset_id":"near","price":"5000000","spread_bps":0,"

source":"tonic"}}

5 {"type":"PlaceLimitOrder","data":{"account_id":"alice","limit_order_id":"8

uNfjwMUkeiy1yPjtPTu4t","collateral_token":"near","underlying_token":"near","

order_type":"increase","threshold_type":"above","collateral_delta_usd":"0","

attached_collateral_native":"5000000000000000000000000","size_delta_usd":"

25000000","price_usd":"5000000","expiry":"2678400000","is_long":true}}

6 {"type":"TokenDepositWithdraw","data":{"amount_native":"5000000000000000000000000","

deposit":true,"method":"add_limit_order","receiver_id":"alice","account_id":"

alice","asset_id":"near"}}

7 {"type":"PlaceLimitOrder","data":{"account_id":"alice","limit_order_id":"8

uNfjwMUkeiy1yPjtPTu4t","collateral_token":"usdc","underlying_token":"near","

order_type":"increase","threshold_type":"above","collateral_delta_usd":"0","

attached_collateral_native":"5000000000000000005000000","size_delta_usd":"

30000000","price_usd":"5000000","expiry":"2678400000","is_long":true}}

8 {"type":"TokenDepositWithdraw","data":{"amount_native":"5000000","deposit":true,"

method":"ft_on_transfer","receiver_id":"alice","account_id":"alice","asset_id":"

usdc"}}

9 {"type":"RemoveLimitOrder","data":{"account_id":"alice","underlying_token":"near","

limit_order_id":"8uNfjwMUkeiy1yPjtPTu4t","reason":"removed","liquidator_id":null

}}

10 {"type":"TokenDepositWithdraw","data":{"amount_native":"5000000000000000005000000","

deposit":false,"method":"remove_limit_order","receiver_id":"alice","account_id":"

alice","asset_id":"usdc"}}

11 test test_bad_merge ... ok

12

13 test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished

in 0.00s

In this test case, Alice deposits 5 NEAR (worth $25) in the first limit order and $5 in
the second limit order. Per the last line about “TokenDepositWithdraw”, she gets back
$5000000000000000005 (USDC decimals is 6).

Veridise Audit Report: Tonic © 2022 Veridise Inc.

14 4 Vulnerability Report

4.1.4 V-TNC-VUL-004: No callback given for call to ft_transfer

Severity High Commit 1f30b00
Type Logic Error Status Won’t Fix
Files Vault/mod.rs

Functions Contract::internal_send_ft

The following call to ft_transfer* does not specify a callback function.

1 pub fn internal_send_ft(

2 &self,

3 receiver_id: &AccountId,

4 token_id: &AccountId,

5 amount: Balance,

6) -> Promise {

7

8 ext_ft_core::ext(token_id.clone())

9 .with_attached_deposit(1)

10 .with_static_gas(Gas::ONE_TERA * TGAS_FOR_FT_TRANSFER)

11 .with_unused_gas_weight(0)

12 .ft_transfer(receiver_id.clone(), amount.into(), None)

13 }

14 }

Impact If the call fails, a user could end up losing funds. For example, consider the following
example:

▶ Alice has some fungible token ftA and wants to convert the token to ftB and send to Bob.
▶ Alice calls ftA::ft_transfer_call with receiver_id=<VContract ID> and msg=Action::

Swap.
▶ ftA invokes VContract::ft_on_transfer, which in turn invokes a swap_and_send.
▶ The swap_and_send correctly handles the internal account for ftA/ftB assets, then uses internal_send

to send amount_out many ftB to Bob.
▶ Now suppose Bob isn’t registered with ftB. Then, amount_out ftB tokens were just

destroyed, and Alice lost her money.

Recommendation Add a callback in the event that ft_transfer fails.

* NEP-141: Fungible Token standard

© 2022 Veridise Inc. Veridise Audit Report: Tonic

https://nomicon.io/Standards/Tokens/FungibleToken/Core

4.1 Detailed Description of Bugs 15

4.1.5 V-TNC-VUL-005: Potential DOS on asset withdrawal

Severity High Commit 1f30b00
Type Denial of Service Status Fixed
Files lp_token/mint.rs, vault/asset.rs

Functions Contract::mint_lp_token

If the withdrawal_limit_bps is small enough and an attacker has sufficient funds in the protocol,
they can use burn_lp_token to withdraw the maximum amount for the current time window.
They can do this every time the time window is up to block others who want to withdraw. They
can do this at a relatively small loss by minting LP token after each burn, only losing the amount
of fees on each burn/mint.

Impact An attacker can prevent an owner of an LP token from being able to withdraw their
funds from a particular asset (or from any asset if this attack is performed on all assets in the
protocol).

Recommendation Track net withdrawals (i.e., withdrawals - deposits).

Veridise Audit Report: Tonic © 2022 Veridise Inc.

16 4 Vulnerability Report

4.1.6 V-TNC-VUL-006: Limit on max asset price change could be abused by short
takers

Severity High Commit 1f30b00
Type Incorrect Events Status Acknowledged
Files oracle.rs

Functions NA

Contract::update_index_price limits price changes to a maximum of max_price_change_bps per
second.

Impact If an adversary realizes that an asset price is dropping faster than max_price_change_bps

per second, they can take out a short on the asset. Assuming the price continues to drop (or at
least the price does not recover quickly), the adversary will be able to pull as much money out
of the contract as they are able to leverage, multiplied by the difference in “actual price change
bps” and max_price_change_bps.

An example attack is shown below, which extracts $300 dollars from the liquidity pool by
noticing that, although the NEAR price has reduced from $10 to $5, the pool has only dropped
the price to $8 because of max_price_change_bps. The adversary then takes out a $100 short
before the prices converge.

1 #[test]

2 fn test_oracle_max_change_short_drain() {

3 let (mut context, mut vcontract) = setup();

4 set_predecessor(&mut context, Admin);

5

6 // Limit price changes at 20%/second

7 vcontract.set_max_asset_price_change(near_id(), Some(U128(2000)));

8

9 vcontract

10 .contract_mut()

11 .add_liquidity(&AssetId::NEAR, near(100));

12 vcontract

13 .contract_mut()

14 .add_liquidity(&AssetId::Ft(usdc_id().parse().unwrap()), dollars(1000));

15 update_near_price(&mut vcontract, dollars(10));

16

17 let assets = vcontract.get_assets();

18 let near = assets.iter().find(|asset| asset.id == "near");

19 assert_eq!(dollars(10), near.unwrap().average_price.0);

20

21 // After some time, the near price decreases by 50%!

22 let new_time = near_sdk::env::block_timestamp() + std::time::Duration::from_secs

(1).as_nanos() as u64;

23 context.block_timestamp(new_time);

24 testing_env!(context.build());

25 update_near_price(&mut vcontract, dollars(5));

26

27 // Recorded price should only decrease by 20%

28 let assets = vcontract.get_assets();

© 2022 Veridise Inc. Veridise Audit Report: Tonic

4.1 Detailed Description of Bugs 17

29 let near = assets.iter().find(|asset| asset.id == "near");

30 assert_eq!(dollars(8), near.unwrap().average_price.0);

31

32 // Now an adversary notices the gap, short near as large as we can!

33 // Note that because the "near" price is still too high at $8, this helps us

leverage

34 // more value

35 set_predecessor(&mut context, Alice);

36 set_deposit(&mut context, common::near(10));

37 let position_size = dollars(800);

38 let position_id = vcontract.increase_position(common::IncreasePositionRequest {

39 underlying_id: "near".to_string(),

40 size_delta: U128(position_size),

41 is_long: false,

42 referrer_id: None,

43 });

44

45 // Now over time the prices stabilize to the $5

46 set_predecessor(&mut context, Admin);

47 let new_time = near_sdk::env::block_timestamp() + std::time::Duration::from_secs

(5).as_nanos() as u64;

48 context.block_timestamp(new_time);

49 testing_env!(context.build());

50 update_near_price(&mut vcontract, dollars(5));

51

52 // Recorded price should now be true price of $5

53 let assets = vcontract.get_assets();

54 let near = assets.iter().find(|asset| asset.id == "near");

55 assert_eq!(dollars(5), near.unwrap().average_price.0);

56

57 let dollars_before = vcontract.get_assets()

58 .into_iter()

59 .find(|asset| asset.id == usdc_id())

60 .unwrap()

61 .pool_amount.0;

62

63 // Now Alice pulls out the short

64 set_predecessor(&mut context, Alice);

65 vcontract.decrease_position(common::DecreasePositionRequest{

66 size_delta: U128(position_size),

67 position_id,

68 referrer_id: None,

69 collateral_delta: U128(40),

70 output_token_id: None,

71 });

72

73 let dollars_after = vcontract.get_assets()

74 .into_iter()

75 .find(|asset| asset.id == usdc_id())

76 .unwrap()

77 .pool_amount.0;

78 // Alice just profited $300 off the liquidity pool!

79 assert_eq!(dollars_after + dollars(300), dollars_before);

Veridise Audit Report: Tonic © 2022 Veridise Inc.

18 4 Vulnerability Report

80 }

Recommendation

▶ max_price_change_bps should be chosen judiciously. This value should also take into
account how often prices are updated.

▶ When price changes are limited by max_price_change_bps, some action should be taken.
For full security, we recommend temporarily pausing perps and limit orders until the
price stabilizes. Further discussion is warranted on the action to take.

© 2022 Veridise Inc. Veridise Audit Report: Tonic

4.1 Detailed Description of Bugs 19

4.1.7 V-TNC-VUL-007: Public initialization function

Severity Medium Commit 1f30b00
Type Access Control Status Fixed
Files lib.rs

Functions VContract::new()

The init method is not declared private.

1 #[allow(clippy::new_without_default)]

2 #[init]

3 pub fn new() -> Self {

4 let owner_id = env::predecessor_account_id();

5 let mut admins = UnorderedMap::new(StoragePrefix::Admins);

6 admins.insert(&owner_id, &AdminRole::FullAdmin);

7 ...

In the NEAR documentation (https://docs.near.org/develop/contracts/anatomy), they suggest
either declaring it #[private] or using batch initialization. Neither appears to be done.

Impact Arbitrary users can call this function, setting important variables like the owner id.

Recommendation Add the #[private] annotation.

Veridise Audit Report: Tonic © 2022 Veridise Inc.

https://docs.near.org/develop/contracts/anatomy

20 4 Vulnerability Report

4.1.8 V-TNC-VUL-008: Storage of unchecked String

Severity Medium Commit 1f30b00
Type Data Validation Status Fixed
Files referrals.rs

Functions Contract::create_referral_code

The public function VContract::create_referral_code stores user-supplied argument referral_code
: String (via invocation of Contract::create_referral_code) without checking the length of
referral_code (e.g. as in Contract::set_user_referral_code).

1 #[near_bindgen]

2 impl VContract {

3

4 #[payable]

5 pub fn create_referral_code(&mut self, referral_code: String) {

6 //

7 contract.create_referral_code(env::predecessor_account_id(), referral_code);

8 //

9 }

10 }

11

12 impl Contract {

13 pub fn create_referral_code(&mut self, account_id: AccountId, referral_code:

String) {

14 if referral_code.is_empty() {

15 env::panic_str("Referral code length can not be 0");

16 }

17 if self

18 .referral_code_owners

19 .insert(&referral_code, &(account_id.clone(), ReferrerTier::Tier1))

20 .is_some()

21 {

22 env::panic_str("Referral code already exists");

23 }

24 //

25 }

26 }

Impact

▶ Malicious users can pay to force the contract to store arbitrarily long (up to transaction
size limits) referral codes.

▶ Well-intentioned users may accidentally create a referral code which is unusable by
set_user_referral_code.

Recommendation Add a check_referral_code function which enforces valid referral code
lengths, and call it at the beginning of Contract::set_user_referral_code and Contract::

create_referral_code.

© 2022 Veridise Inc. Veridise Audit Report: Tonic

4.1 Detailed Description of Bugs 21

4.1.9 V-TNC-VUL-009: Assumed collateral and underlying assets are the same in
value calculation

Severity Medium Commit 1f30b00
Type Logic Error Status Fixed
Files perps/limit_order.rs

Functions Contract::get_collateral_in_usd

In get_collateral_in_usd, the value of the collateral in USD (at the execution time) is determined
by multiplying the collateral asset amount and the underlying price. This will only work as
intended if the two are the same asset type.

1 fn get_collateral_in_usd(&self, limit_order: &LimitOrder) -> DollarBalance {

2 if matches!(limit_order.order_type, OrderType::Decrease) {

3 return limit_order.collateral_delta;

4 }

5

6 if limit_order.is_long {

7 ratio(

8 limit_order.attached_collateral,

9 limit_order.price,

10 self.assets

11 .unwrap(&limit_order.collateral_id)

12 .denomination(),

13)

14 } else {

15 limit_order.attached_collateral

16 }

17 }

Impact When issuing an order for a long position where the collateral and underlying assets
are different, this check may rule out valid limit orders.

Recommendation Do appropriate conversions to ensure that the check computes the value in
USD of the collateral at the execution time.

Veridise Audit Report: Tonic © 2022 Veridise Inc.

22 4 Vulnerability Report

4.1.10 V-TNC-VUL-010: Lost funds on cancelled limit orders

Severity Medium Commit 1f30b00
Type Logic Error Status Fixed
Files perps/limit_order.rs

Functions Contract::update_limit_orders

In update_limit_orders, limit orders that are not valid are removed from the set of limit orders.
In the case that a limit order is for increasing a position, the user attaches collateral to the limit
order. However, when such a limit order is removed in this function, the attached collateral is
never returned to the user.

1 pub fn update_limit_orders(&mut self, account_id: &AccountId, position: &Position) {

2 if let Some(user_orders) = self.limit_order_ids_map.get(account_id) {

3 let underlying_id = position.underlying_id.clone().into();

4 let underlying = self.assets.unwrap(&underlying_id);

5 let limit_orders = if let Some(limit_orders) = self.limit_orders.get(&

underlying_id) {

6 limit_orders

7 } else {

8 return;

9 };

10

11 for (limit_order_id, asset_id) in user_orders {

12 if asset_id != underlying_id {

13 continue;

14 }

15

16 let limit_order = limit_orders.get_by_id(&limit_order_id).unwrap();

17

18 if limit_order.collateral_id == position.collateral_id.clone().into()

19 && limit_order.is_long == position.is_long

20 {

21 ...

22 // Remove limit orders that are not valid.

23 self.remove_limit_order(

24 &position.account_id,

25 &limit_order_id,

26 RemoveOrderReason::Invalid,

27);

28 }

29 }

30 }

31 }

Impact Users can lose their funds if certain limit orders are removed.

Recommendation Check the output of remove_limit_order which returns a users collateral
when necessary.

© 2022 Veridise Inc. Veridise Audit Report: Tonic

4.1 Detailed Description of Bugs 23

4.1.11 V-TNC-VUL-011: Users liquidated when below minimum leverage

Severity Medium Commit 1f30b00
Type Logic Error Status Acknowledged
Files perps/mod.rs

Functions Contract::liquidate_position

In liquidate position, a user’s position can be liquidated and their funds lost if they are deemed
to have below the minimum allowed leverage. Being below this threshold means they have too
much collateral backing their position — this does not seem like a reason to liquidate someone’s
account.

Impact Users who have provided plenty of collateral for their positions could be liquidated.

Recommendation Only liquidate for accounts that are over-leveraged.

Veridise Audit Report: Tonic © 2022 Veridise Inc.

24 4 Vulnerability Report

4.1.12 V-TNC-VUL-012: set_user_referral_code uses predecessor instead of signer

Severity Low Commit 1f30b00
Type Logic Error Status Fixed
Files referrals.rs

Functions VContract::set_user_referral_code

VContract::set_user_referral_code assigns the referral code to the predecessor, rather than
the signer.

1 impl VContract {

2 #[payable]

3 pub fn set_user_referral_code(&mut self, referral_code: String) {

4 let contract = self.contract_mut();

5 contract.assert_running();

6 contract.set_user_referral_code(env::predecessor_account_id(), referral_code)

;

7

8 //

9 }

10 }

In the case of actions initiated using attached FT tokens (e.g. a swap_and_send initiated via
ft_on_transfer), the FT token contract will receive the referral code instead of the user who
initiated the sequence with an ft_transfer_call†.

Impact A user invoking an Actionwith an attached referral code via someFT::ft_transfer_call
will not cause the contract to set the referral code for the user. Instead, the contract will set the
referral code for someFT.

Recommendation Use env::signer_account_id() in place of env::predecessor_account_id()
.

† NEP-141: Fungible Token standard

© 2022 Veridise Inc. Veridise Audit Report: Tonic

https://nomicon.io/Standards/Tokens/FungibleToken/Core

4.1 Detailed Description of Bugs 25

4.1.13 V-TNC-VUL-013: Stale state before external call

Severity Low Commit 1f30b00
Type Logic Error Status Acknowledged
Files lp_token/ft.rs

Functions Contract::ft_transfer_call

The call to self.internal_transfer(&sender_id, &receiver_id, amount, memo) is processed
before it is known that the call will be successful.

1 fn ft_transfer_call(

2 &mut self,

3 receiver_id: AccountId,

4 amount: U128,

5 memo: Option<String>,

6 msg: String,

7) -> PromiseOrValue<U128> {

8 ...

9 self.internal_transfer(&sender_id, &receiver_id, amount, memo);

10 // Initiating receiver’s call and the callback

11 ext_ft_receiver::ext(receiver_id.clone())

12 .with_static_gas(env::prepaid_gas() - GAS_FOR_FT_TRANSFER_CALL)

13 .ft_on_transfer(sender_id.clone(), amount.into(), msg)

14 .then(

15 ext_ft_resolver::ext(env::current_account_id())

16 .with_static_gas(GAS_FOR_RESOLVE_TRANSFER)

17 .ft_resolve_transfer(sender_id, receiver_id, amount.into()),

18)

19 .into()

20 }

The callback function will only return funds to the sender if the receiver has enough funds to
cover the rebate.

1 pub fn internal_ft_resolve_transfer(

2 &mut self,

3 sender_id: &AccountId,

4 receiver_id: AccountId,

5 amount: U128,

6) -> u128 {

7 let amount: Balance = amount.into();

8

9 // Get the unused amount from the ‘ft_on_transfer‘ call result.

10 let unused_amount = match env::promise_result(0) {

11 PromiseResult::NotReady => env::abort(),

12 PromiseResult::Successful(value) => {

13 if let Ok(unused_amount) = near_sdk::serde_json::from_slice::<U128>(&

value) {

14 std::cmp::min(amount, unused_amount.0)

15 } else {

16 amount

17 }

18 }

Veridise Audit Report: Tonic © 2022 Veridise Inc.

26 4 Vulnerability Report

19 PromiseResult::Failed => amount,

20 };

21

22 if unused_amount > 0 {

23 let receiver_balance = self.accounts.get(&receiver_id).unwrap_or(0);

24 if receiver_balance > 0 {

25 let refund_amount = std::cmp::min(receiver_balance, unused_amount);

26 self.internal_save_balance(&receiver_id, receiver_balance -

refund_amount);

27

28 let sender_balance = self.internal_unwrap_balance_of(sender_id);

29 self.internal_save_balance(sender_id, sender_balance + refund_amount)

;

30

31 FtTransfer {

32 old_owner_id: &receiver_id,

33 new_owner_id: sender_id,

34 amount: &U128(refund_amount),

35 memo: Some("refund"),

36 }

37 .emit();

38 return amount - refund_amount;

39 }

40 }

41 amount

42 }

Impact This could be vulnerable to a front-running attack. In particular, if the receiver of the
transaction is malicious and knows the transaction will fail (perhaps by monitoring transactions
on chain), they could front-run a transaction that drains their funds (e.g., a swap or withdraw) to
avoid having to pay back the sender of the original transfer. Because the sender is only refunded
if the receiver has sufficient funds, their funds have effectively been stolen by the receiver.

Example Suppose Alice wants to send some LP token to a contract C which excepts bids for
an Auction. However, Alice doesn’t realize when she sends her LP token bid that the Auction is
now closed. Alice’s bid will eventually revert, but when she calls ft_on_transfer, the contract C
will be granted the LP token. Because the auction is now closed, the auction owner withdraws
their LP token, leaving their balance at 0. When Alice’s bid fails, in the callback, the auction
contract no longer has the balance to pay Alice back, so she is out her investment.

Recommendation In this case, waiting to update internal state until after the callback could
also be unsafe, as it would allow the sender to perform a similar attack. This design pattern
is borrowed from the example fungible token contracts released by NEAR; we are still in
discussions with NEAR developers about the best way to resolve this issue. We encourage the
developers to follow-up with NEAR dev team to best resolve this issue.

© 2022 Veridise Inc. Veridise Audit Report: Tonic

4.1 Detailed Description of Bugs 27

4.1.14 V-TNC-VUL-014: Short position checks total stable available liquidity instead
of collateral available liquidity

Severity Low Commit 1f30b00
Type Logic Error Status Fixed
Files perps/mod.rs

Functions Contract::increase_position

When increasing a position, some amount of collateral must be reserved (reserve_delta). Before
recording reserve_delta as reserved inside the collateral asset, a check is performed to ensure
the collateral has enough liquidity, copied below:

1 if is_long {

2 if reserve_delta > collateral.available_liquidity() {

3 env::panic_str("Not enough reserve to allow the long position");

4 }

5 } else {

6 let total_available_liquidity = self.total_stable_available_liquidity();

7 if size_delta > total_available_liquidity {

8 env::panic_str("Not enough reserve to allow the short position");

9 }

10 }

In the short case, we check that there is enough liquidity across all stable assets, rather than
just the collateral. This could lead to a state in which the reserve amount of collateral is larger
than the balance.

This state is be exhibited in the following test case:

1 #[test]

2 fn test_open_short_position_multiple_stables() {

3 let (mut context, mut vcontract) = setup();

4

5 // Add new stable coin: USDT

6 set_predecessor(&mut context, Admin);

7 vcontract.add_asset("usdt".to_string(), 6, true, 50);

8

9 // add $1000 liquidity split evenly between both stable coins USDC

10 let total_liquid_usd = dollars(1000);

11 let asset_id_names = ["usdt".to_string(), usdc_id()];

12 let asset_ids: Vec<_> = asset_id_names.iter()

13 .map(|name| AssetId::Ft(name.parse().unwrap()))

14 .collect();

15 for asset_id in &asset_ids {

16 vcontract

17 .contract_mut()

18 .add_liquidity(asset_id, total_liquid_usd / asset_ids.len() as u128);

19 }

20

21 // add liquidity to NEAR

22 vcontract

23 .contract_mut()

24 .add_liquidity(&AssetId::NEAR, near(100));

Veridise Audit Report: Tonic © 2022 Veridise Inc.

28 4 Vulnerability Report

25

26 // Set stable coins to $1 and near to $5

27 update_near_price(&mut vcontract, dollars(5));

28 let update_requests = asset_id_names.iter()

29 .cloned()

30 .map(|asset_id| UpdateIndexPriceRequest{

31 asset_id,

32 price: U128::from(dollars(1)),

33 spread: None,

34 })

35 .collect();

36 vcontract.update_index_price(update_requests);

37

38 // Open a 4x leveraged position short NEAR - stable USDT

39 // Collateral = $200, size = $800

40 //

41 // This should cause an error! There is not enough usdt to cover the short

42 set_predecessor_token(&mut context, "usdt".to_string());

43 vcontract.ft_on_transfer(

44 get_account(Alice),

45 dollars(200).into(),

46 serde_json::to_string(&Action::IncreasePosition(IncreasePositionRequest {

47 underlying_id: near_id(),

48 size_delta: dollars(800).into(),

49 is_long: false,

50 referrer_id: None,

51 }))

52 .unwrap(),

53);

54

55 // We can observe the error by comparing reserved amount to poool balance

56 let assets = vcontract.contract().get_assets();

57 let usdt = assets.get(&AssetId::Ft("usdt".parse().unwrap()))

58 .expect("Expected usdt");

59 assert!(usdt.reserved_amount <= usdt.pool_balance,

60 "Reserved amount is greater than pool balance ({} > {})",

61 usdt.reserved_amount, usdt.pool_balance

62);

63 }

which errors with the following output:

1 running 1 test

2 test test_open_short_position_multiple_stables ... FAILED

3

4 failures:

5

6 ---- test_open_short_position_multiple_stables stdout ----

7 {"type":"OracleUpdate","data":{"asset_id":"usdc","price":"1000000","spread_bps":0,"

source":"tonic"}}

8 {"type":"EditPoolBalance","data":{"amount_native":500000000,"new_pool_balance_native"

:500000000,"increase":true,"account_id":"charlie","asset_id":"usdt"}}

9 {"type":"EditPoolBalance","data":{"amount_native":500000000,"new_pool_balance_native"

:500000000,"increase":true,"account_id":"charlie","asset_id":"usdc"}}

© 2022 Veridise Inc. Veridise Audit Report: Tonic

4.1 Detailed Description of Bugs 29

10 {"type":"EditPoolBalance","data":{"amount_native":100000000000000000000000000,"

new_pool_balance_native":100000000000000000000000000,"increase":true,"account_id"

:"charlie","asset_id":"near"}}

11 {"type":"OracleUpdate","data":{"asset_id":"near","price":"5000000","spread_bps":0,"

source":"tonic"}}

12 {"type":"OracleUpdate","data":{"asset_id":"usdt","price":"1000000","spread_bps":0,"

source":"tonic"}}

13 {"type":"OracleUpdate","data":{"asset_id":"usdc","price":"1000000","spread_bps":0,"

source":"tonic"}}

14 Position Size: 0, cum Fun rate: 480, entry rate: 0

15 {"type":"EditFees","data":{"fee_native":0,"fee_usd":0,"fee_type":"funding","

new_accumulated_fees_native":0,"new_accumulated_fees_usd":0,"increase":true,"

account_id":"charlie","asset_id":"usdt"}}

16 {"type":"EditFees","data":{"fee_native":0,"fee_usd":0,"fee_type":"position","

new_accumulated_fees_native":0,"new_accumulated_fees_usd":0,"increase":true,"

account_id":"charlie","asset_id":"usdt"}}

17 Position Size: 800000000, cum Fun rate: 480, entry rate: 480

18 {"type":"EditReservedAmount","data":{"amount_native":800000000,"

new_reserved_amount_native":800000000,"increase":true,"account_id":"charlie","

asset_id":"usdt"}}

19 {"type":"EditPosition","data":{"direction":"increase","account_id":"charlie","

position_id":"DKpTpMoqf5pL8dTyCoNWgEvwxYgWYVsGExZCSkMMmaHz","collateral_token":"

usdt","underlying_token":"near","collateral_delta_native":"200000000","

collateral_delta_usd":"200000000","size_delta_usd":"800000000","new_size_usd":"

800000000","is_long":false,"price_usd":"5000000","usd_out":"0","total_fee_usd":"0

","margin_fee_usd":"0","position_fee_usd":"0","total_fee_native":"0","

margin_fee_native":"0","position_fee_native":"0","referral_code":null,"

realized_pnl_to_date_usd":"0","adjusted_delta_usd":"0","state":"created","

limit_order_id":null,"liquidator_id":null}}

20 {"type":"TokenDepositWithdraw","data":{"amount_native":"200000000","deposit":true,"

method":"ft_on_transfer","receiver_id":"alice","account_id":"alice","asset_id":"

usdt"}}

21 thread ’test_open_short_position_multiple_stables’ panicked at ’Reserved amount is

greater than pool balance (800000000 > 500000000)’, crates/tonic-perps/tests/

test_increase_position.rs:194:5

22 note: run with ‘RUST_BACKTRACE=1‘ environment variable to display a backtrace

23

24 failures:

25 test_open_short_position_multiple_stables

26

27 test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured; 22 filtered out;

finished in 0.00s

Impact Users taking out large shorts may be able to increase the reserve amount past the
pool balance. In this case, the contract may not have enough funds to pay out the short. For
instance, if all the USDC liquid is spent, and the short pays out maximally, the contract will be
insolvent.

Note that, once this state is reached, it can be resolved by swapping from one stable coin into
the “over-reserved” coin until the reserved amount is below the pool balance.

Veridise Audit Report: Tonic © 2022 Veridise Inc.

30 4 Vulnerability Report

Recommendation Replace the check against total_stable_liquidity with a check against
collateral.available_liquidity().

© 2022 Veridise Inc. Veridise Audit Report: Tonic

4.1 Detailed Description of Bugs 31

4.1.15 V-TNC-VUL-015: Withdrawals from NEAR asset never check storage
requirements

Severity Low Commit 1f30b00
Type Denial of Service Status Won’t Fix
Files perps/mod.rs, trading.rs, mint.rs

Functions NA

The liquidity pool relies on the pool balance of NEAR to cover storage costs. By repeatedly
burning LP Tokens for NEAR, exchanging NEAR for some other asset on an external exchange,
and then minting LP Tokens with the new asset, an attacker could greatly reduce the pool’s
NEAR balance before launching some sort of storage-taking denial of service attack. See, for
example, V-TNC-VUL-014 and V-TNC-VUL-015.

Impact If attackers drain the NEAR pool balance, the entire pool becomes more vulnerable to
storage-taking attacks.

Recommendation Check storage usage before allowing a withdrawal from NEAR. If the pool
comes close to its storage limit, take action to either boost the NEAR supply or reduce storage.

Veridise Audit Report: Tonic © 2022 Veridise Inc.

32 4 Vulnerability Report

4.1.16 V-TNC-VUL-016: Storage Taking attack: transferring LP Tokens to bogus
accounts

Severity Low Commit 1f30b00
Type Denial of Service Status Fixed
Files lp_token/ft.rs

Functions Contract::ft_transfer

Based on our profiling, performing an ft_transfer to a bogus account costs more to the contract
(via increased storage) than it does to the attacker.

1 Attack: LP Token FT Transfer Attack

2 Gas: 0.6294453907627 TGas

3 Atk Deposit: 0.0000000000000000000001 mNear

4 Atk Cost: 0.06294453907627 mNear

5 Storage: 75 bytes

6 Storage Cost: 0.075 mNear

7 Attack Eff: 119.15251283216544 %

Impact A dedicated enough adversary may perform a denial of service attack by minting LP
tokens, then distributing out the token into its 10ˆ18 parts amongst 10ˆ18 bogus accounts (or
however many bogus accounts are required to shut down the contract).

Recommendation Require account minimums close to the cost of this attack, or reduce the
number of decimals in LP Token.

© 2022 Veridise Inc. Veridise Audit Report: Tonic

4.1 Detailed Description of Bugs 33

4.1.17 V-TNC-VUL-017: Malicious set user referral code induces large storage cost

Severity Low Commit 1f30b00
Type Denial of Service Status Fixed
Files referrals.rs

Functions VContract::set_user_referral_code

Based on our profiling, performing a set_user_referral_code costs more to the contract (via
increased storage) than it does to the attacker.

1 Attack: Set User Referral Code Length: 32

2 Sybil Acc Gas: 0.180657225 TGas // Gas to make new acct

3 Gas: 0.6265628230021 TGas

4 Atk Deposit: 0 mNear

5 Atk Cost: 0.08072200480021 mNear

6 Storage: 264 bytes

7 Storage Cost: 0.264 mNear

8 Attack Eff: 327.04836884739166 %

Impact Any attacker may create a new account, then set a referral code for that user to incur a
large storage cost to the client. This attacker needs only 1/3 the pool’s NEAR balance in order to
be successful.

Recommendation Check that user referral tokens are valid and that they are only assigned to
a limited number of users at any given time. The cost to create a referral code is then amortized
across the calls to set the user referral code.

Veridise Audit Report: Tonic © 2022 Veridise Inc.

34 4 Vulnerability Report

4.1.18 V-TNC-VUL-018: ft_on_transfer uses signer account rather than sender

Severity Low Commit 1f30b00
Type Logic Error Status Fixed
Files token_receiver.rs

Functions Contract::ft_on_transfer

The Swap and MintLp actions use parameter sender_id as the relevant action initiator. However,
IncreasePosition and PlaceLimitOrder use the signer account ID.

Based on the description of ft_resolve_transfer in the NEP-141 standard, the sender_id should
be treated as the initiator of the action.

Impact A long sequence of cross-contract calls ending in a call to ft_transfer_call on perps
could lead to the incorrect account being assigned ownership of a limit order or position.

Recommendation Use the sender_id in place of env::signer_account_id().

© 2022 Veridise Inc. Veridise Audit Report: Tonic

https://nomicon.io/Standards/Tokens/FungibleToken/Core#reference-level-explanation

4.1 Detailed Description of Bugs 35

4.1.19 V-TNC-VUL-019: Possible limit order ID collisions

Severity Low Commit 1f30b00
Type Logic Error Status Acknowledged
Files perps/limit_order_id.rs

Functions new

When creating an ID for a new limit order, it is assumed the price (which is set by the user) is
64 bits. However, the limit_order.price field is a u128, meaning it can contain 128 bits. Thus,
there two limit orders with different prices could have the same ID.

1 const SEQUENCE_MASK: u128 = (1u128 << 62) - 1;

2

3 // 64 bits starting at the second bit

4 const PRICE_MASK: u128 = ((1u128 << 126) - 1) - ((1u128 << 62) - 1);

5

6 impl LimitOrderId {

7 pub fn new(limit_order: &LimitOrder, seq_number: u64) -> LimitOrderId {

8 let first_bit = if limit_order.is_long { 0 } else { 1u128 << 127 };

9 let second_bit = if matches!(limit_order.threshold, ThresholdType::Below) {

10 0

11 } else {

12 1u128 << 126

13 };

14

15 let seq = SEQUENCE_MASK & (seq_number as u128);

16

17 LimitOrderId(first_bit | second_bit | ((limit_order.price << 62) & PRICE_MASK

) | seq)

18 }

19

20 ...

21 }

Impact In the code, it is assumed every limit order for a given user and underlying asset type
has a unique ID. Thus, in the event of a collision, a limit order could be dropped and attached
collateral lost.

Recommendation Change the type of limit_order.price to u64.

Veridise Audit Report: Tonic © 2022 Veridise Inc.

36 4 Vulnerability Report

4.1.20 V-TNC-VUL-020: Pool can lose money on liquidation

Severity Low Commit 1f30b00
Type Logic Error Status Fixed
Files perps/mod.rs

Functions Contract::liquidate_position

The liquidation reward is a flat fee of 25USD. See, e.g. its usage in liquidate_position, and its
definition in VContract::new.

Since the contract must pay out the fee to the liquidator, the contract will lose money when the
liquidating collateral is less than the reward.

Impact An adversarial liquidator could consistently take money from the pool by opening a
small short position which can be liquidated before its losses exceed 25USD (or whatever the
reward is). Then, the adversary can hedge their short position by liquidating as soon as the
position is insolvent, gaining a profit from the pool.

Recommendation Make the liquidation fee a percentage of the liquidated collateral.

© 2022 Veridise Inc. Veridise Audit Report: Tonic

4.1 Detailed Description of Bugs 37

4.1.21 V-TNC-VUL-021: Confusing function usage

Severity Warning Commit 1f30b00
Type Maintainability Status Acknowledged
Files trading.rs

Functions Contract::swap

In swap, a call is made to the function convert_assets as follows:

1 let amount_out = {

2 convert_assets(

3 amount_in,

4 asset_in.min_price(),

5 asset_out.denomination(),

6 asset_out.max_price(),

7 asset_in.denomination(),

8)

9 };

The implementation of this function is the following:

1 pub fn convert_assets(

2 amount_in: Balance,

3 num_1: u128,

4 num_2: u128,

5 denom_1: u128,

6 denom_2: u128,

7) -> u128 {

8 let num = BN!(num_1).mul(num_2).as_u128();

9 let denom = BN!(denom_1).mul(denom_2).as_u128();

10 ratio(amount_in, num, denom)

11 }

The 3rd and 4th arguments are referred to as denom_1 and denom_2 which we believe is meant to
refer to the fact they are used as "denominators". However, because the function is often passed
"denominations" (such as the call-site form swap pictured above), we suspect future developer s
may confuse the argument ordering leading to errors.

Impact If developers confuse these arguments in the future, it could lead to drastically incorrect
calculations which could have wide-ranging consequences.

Recommendation Rename arguments and improve documentation for convert_assets to
clarify what the function does and the intended arguments.

Veridise Audit Report: Tonic © 2022 Veridise Inc.

38 4 Vulnerability Report

4.1.22 V-TNC-VUL-022: Multiple functions made payable unnecessarily

Severity Warning Commit 1f30b00
Type Logic Error Status Fixed
Files perps/mod.rs, referrals.rs

Functions multiple

The functions decrease_position, liquidate_position, remove_limit_order, execute_limit_order
, and remove_outdated_limit_order in perps/mod.rs are marked as #[payable] but it is not
clear why / if it is necessary. Similarly, set_user_referral_code in referrals.rs is #[payable]

but does not need to be.

Impact Users can unnecessarily send NEAR to these functions and lose their money with no
benefit.

Recommendation Remove the #[payable] annotations.

© 2022 Veridise Inc. Veridise Audit Report: Tonic

4.1 Detailed Description of Bugs 39

4.1.23 V-TNC-VUL-023: is_liquidator uses unmodified field Contract::liquidators

Severity Warning Commit 1f30b00
Type Logic Error Status Fixed
Files views.rs, lib.rs

Functions VContract::is_liquidator

The field Contract::liquidators is never modified. The only time it is used is in VContract::

is_liquidator, which will always return false.

Another list of liquidators is maintained in the Contract::admins field, which is used elsewhere
in the codebase.

Impact The view function VContract::is_liquidator may produce incorrect results.

Recommendation Remove the field Contract::liquidators and alter all uses of liquidators to
check the Contract::adminsfield using the appropriate functions (e.g. Contract::check_admin_role
).

The Contract::is_admin function might also want to check that the role is AdminRole::FullAdmin
in order to be consistent with Contract::assert_admin.

Veridise Audit Report: Tonic © 2022 Veridise Inc.

40 4 Vulnerability Report

4.1.24 V-TNC-VUL-24: Out-of-date class documentation for LimitOrderID

Severity Warning Commit 1f30b00
Type Maintainability Status Fixed
Files perps/limit_order_id.rs

Functions struct LimitOrderId

The documentation of LimitOrderID does not match the implementation. The documentation
describes

▶ 1 bit for long or short.
▶ 64 bits for price.
▶ 63 bits for sequence number.

However, the implemented representation uses

▶ 1 bit for long or short.
▶ 1 bit for threshold type.
▶ 64 bits for price.
▶ 62 bits for sequence number.

Impact Future developers may be confused about the implemented layout, and misuse bit
patterns.

Recommendation Update the documentation to reflect the changes made to LimitOrderId.

© 2022 Veridise Inc. Veridise Audit Report: Tonic

4.1 Detailed Description of Bugs 41

4.1.25 V-TNC-VUL-025: Out-of-date function documentation for
get_lp_redemption_amount

Severity Warning Commit 1f30b00
Type Maintainability Status Fixed
Files lp_token/mint.rs

Functions Contract::get_lp_redemption_amount

The documentation states that get_lp_redemption_amount

1 /// Returns [Err] when pool liquidity is insufficient to honor the redemption.

However, this is not the case. The function will only error in cases of over/underflow in the
multiplied arguments.

Impact Future library developers may rely on the method throwing an error when the liquidity
is insufficient to honor the redemption.

Recommendation Remove this line from the documentation.

Veridise Audit Report: Tonic © 2022 Veridise Inc.

42 4 Vulnerability Report

4.1.26 V-TNC-VUL-026: Add limit order does not check if NEAR sent on decrease

Severity Warning Commit 1f30b00
Type Logic Error Status Invalid
Files perps/mod.rs

Functions Contract::add_limit_order

The function add_limit_order is required to be #[payable] for adding Increase orders. However,
on Decrease orders, any attached NEAR will just be lost.

Impact Users can unnecessarily send NEAR to this functions and lose their money with no
benefit.

Recommendation Add an assertion that no NEAR are attached when Decrease orders are
sent.

© 2022 Veridise Inc. Veridise Audit Report: Tonic

4.1 Detailed Description of Bugs 43

4.1.27 V-TNC-VUL-027: Referral code creation may charge more than
CREATE_REFERRER_FEE

Severity Info Commit 1f30b00
Type Usability Issue Status Fixed
Files referrals.rs

Functions VContract::create_referral_code

VContract::create_referral_code may charge the entire attached amount rather than the
CREATE_REFERRER_FEE.

Impact If this is the intended behavior, it is not an issue.

Otherwise, users who send much more than the required 0.05 NEAR may be upset if the excess
amount is not refunded.

Recommendation If the attached deposit is much larger than the CREATE_REFERRER_FEE, return
excess attached NEAR to the predecessor.

Veridise Audit Report: Tonic © 2022 Veridise Inc.

44 4 Vulnerability Report

4.1.28 V-TNC-VUL-028: Minimum amount out in swap is checked before fees

Severity Info Commit 1f30b00
Type Usability Issue Status Intended Behavior
Files trading.rs

Functions Contract::swap

Contract::swap checks that amount_out is at least min_amount_out before fees have been de-
ducted.

1 impl Contract {

2 fn swap(..., min_amount_out: Option<Balance>, ...) -> Balance {

3 // ...

4 if let Some(min_amount_out) = min_amount_out {

5 assert!(amount_out >= min_amount_out, "Exceeded slippage tolerance");

6 }

7 let (after_fee_amount, fees, swap_fee_bps) = // ...

8 //

9

10 return after_fee_amount;

11 }

12 }

Impact If this is not the intended interpretation of min_amount_out, then users may receive
less from a swap than they desired.

If this is the intended interpretation, then there is not an issue.

Recommendation If min_amount_out is intended to refer to the final after fee amount, check that
after_fee_amount >= min_amount_out in place of checking amount_out >= min_amount_out.

© 2022 Veridise Inc. Veridise Audit Report: Tonic

4.1 Detailed Description of Bugs 45

4.1.29 V-TNC-VUL-029: Redundant function call

Severity Info Commit 1f30b00
Type Gas Optimization Status Fixed
Files lp_token/mod.rs

Functions FungibleTokenFreeStorage::internal_withdraw

The call to self.accounts.insert(account_id, &new_balance) in internal_withdraw is redun-
dant as this is performed in self.internal_save_balance(account_id, new_balance).

1 pub fn internal_save_balance(&mut self, account_id: &AccountId, balance: Balance) {

2 if balance > 0 {

3 self.accounts.insert(account_id, &balance);

4 } else {

5 self.accounts.remove(account_id);

6 }

7 }

8 ...

9 pub fn internal_withdraw(&mut self, account_id: &AccountId, amount: Balance) {

10 let balance = self.internal_unwrap_balance_of(account_id);

11 if let Some(new_balance) = balance.checked_sub(amount) {

12 self.accounts.insert(account_id, &new_balance);

13 self.internal_save_balance(account_id, new_balance);

14 self.total_supply = self

15 .total_supply

16 .checked_sub(amount)

17 .unwrap_or_else(|| env::panic_str("Total supply overflow"));

18 } else {

19 env::panic_str("The account doesn’t have enough balance");

20 }

21 }

Impact This extra call increases gas costs for users unnecessarily.

Recommendation Remove the redundant call.

Veridise Audit Report: Tonic © 2022 Veridise Inc.

46 4 Vulnerability Report

4.1.30 V-TNC-VUL-030: Incorrect type annotation

Severity Info Commit src/lp_token/mint.rs
Type Maintainability Status Fixed
Files lp_token/mint.rs

Functions get_lp_mint_amount

The after_fee_argument passed to get_lp_mint_amount is listed as type DollarBalance, but actual
parameters and usages are of type Balance (both Balance and DollarBalance are aliased to type
U128).

An example usage can be found here in mint_lp_token.

Impact Maintainers and new developers may be slightly confused about the usage of this
function.

Recommendation Change after_fee_amount from type DollarBalance to type Balance.

Refactoring to use Tuple Structs without Named Fields could prevent similar errors at the cost
of some additional code. See V-TNC-VUL-027.

© 2022 Veridise Inc. Veridise Audit Report: Tonic

https://doc.rust-lang.org/book/ch05-01-defining-structs.html#using-tuple-structs-without-named-fields-to-create-different-types

4.1 Detailed Description of Bugs 47

4.1.31 V-TNC-VUL-031: Code structure suggestion: use Rust Tuple Structs to track
currency unit types

Severity Info Commit 1f30b00
Type Maintainability Status Open
Files NA

Functions NA

While auditing the code, our auditors found that a common source of error and confusion in
the code has to do with the interchanging of various currency types (i.e., NEAR vs. USDC vs.
underlying asset). Right now, the developers distinguish these values by using some common
naming schemes, such as using “_native” to indicate NEAR. We suggest that the developers
instead use Rust’s Tuple Structs‡ to differentiate these types, which would enable Rust to
automatically rule out certain mistakes. We believe this will make the current code more robust
and will significantly reduce the risk of introducing errors in future generations of the code.

‡ See also the New Type Idiom

Veridise Audit Report: Tonic © 2022 Veridise Inc.

https://doc.rust-lang.org/book/ch05-01-defining-structs.html#using-tuple-structs-without-named-fields-to-create-different-types
https://doc.rust-lang.org/rust-by-example/generics/new_types.html

48 4 Vulnerability Report

4.1.32 V-TNC-VUL-032: Code structure suggestion: check contract invariants first

Severity Info Commit 1f30b00
Type Maintainability Status Fixed
Files NA

Functions NA

While auditing the code, our auditors found that tracking the safety of certain portions of the
code was made significantly more challenging by virtue of the fact that parameter validation
and contract invariant checking was often performed throughout the computation, as opposed
to only at the beginning. As an example, validation for adding multiple limit orders of the same
type for a current position occurs at the end of the add_limit_order function, while most of the
checking occurs before this in check_limit_order.§

§ See also: the Checks-Effects-Interactions Pattern from Solidity

© 2022 Veridise Inc. Veridise Audit Report: Tonic

https://docs.soliditylang.org/en/v0.8.17/security-considerations.html#use-the-checks-effects-interactions-pattern

4.1 Detailed Description of Bugs 49

4.1.33 V-TNC-VUL-033: Code structure suggestion: split logic for short and long
positions

Severity Info Commit 1f30b00
Type Maintainability Status Won’t Fix
Files NA

Functions NA

While auditing the code, our auditors found that understanding the logic for long and short
positions was made significantly more challenging by the fact that a single function handles
increasing/decreasing both longs and shorts. To make this more understandable now, and to
avoid issues in the future when updating the code, we suggest splitting this logic into separate
functions for longs and shorts, abstracting common logic into a separate function.

Veridise Audit Report: Tonic © 2022 Veridise Inc.

50 4 Vulnerability Report

4.1.34 V-TNC-VUL-034: Add in logging for internal transfer failure

Severity Info Commit 1f30b00
Type Logic Error Status Fixed
Files lp_token/mod.rs

Functions NA

In the event that an internal_transfer fails, there is currently no callback used to track failures.
As stated in V-TNC-VUL-004, we suggest the users provide callback logic here to avoid potential
risks involved with failure of this call. However, developer’s have suggested such failures will
be avoided with frontend screening. If this is the case, we at least suggest developers add a
callback to log failed transfers such that failures could be rectified manually by administrators
as warranted.

© 2022 Veridise Inc. Veridise Audit Report: Tonic

4.1 Detailed Description of Bugs 51

4.1.35 V-TNC-VUL-035: Use #[must_use] for any functions which return balances
that must be sent to a user

Severity Info Commit 1f30b00
Type Maintainability Status Fixed
Files NA

Functions NA

Some functions in the protocol return a balance that is expected to be sent to a user. We found
one bug (V-TNC-VUL-010) which happened because such a return value was ignored. Rust
allows the use of #[must_use], which can statically determine if such a bug occurs. Thus, we
suggest any function which has a return value indicating a balance that should be sent (or really
any function whose return value should be used) should be annotated with #[must_use].

Veridise Audit Report: Tonic © 2022 Veridise Inc.

52 4 Vulnerability Report

4.1.36 V-TNC-VUL-036: Replace complicated limit order merge logic

Severity Info Commit 1f30b00
Type Maintainability Status Won’t Fix
Files perps/limit_order.rs

Functions Contract::add_limit_order

When multiple limit orders of the same type with the same underlying/collateral asset types
are submitted, they are merged to save storage. When existing limit orders are fetched, they are
fetched in multiple stages. First, the limit orders for the current underlying asset are fetched.
Then, all limit orders from on that underlying asset with a matching price, threshold type, and
long vs. short setting are fetched from a B-tree which is presumably used for efficient lookups.
Finally, these are filtered by owner and order type to find the appropriate limit order to merge
(if there is any). We believe this process is somewhat confusing and error prone (we found one
critical limit order merging issue in our audit). While this approach could offer some modest
efficiency improvements, we believe that it could lead to bugs in the future.

Suggestion To reduce the likelihood of bugs being introduced in the future, we suggest that
all fields relevant to merging be included in the computation of limit order ids, and ids be used
as the mechanism for detecting limit order which should be merged.

© 2022 Veridise Inc. Veridise Audit Report: Tonic

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Bugs

	Detailed Description of Bugs
	V-TNC-VUL-001: Potential unlimited LP Token minting/burning
	V-TNC-VUL-002: Reserved amounts not preserved when burning LP Tokens
	V-TNC-VUL-003: Limit orders are merged even with different collateral types
	V-TNC-VUL-004: No callback given for call to ft_transfer
	V-TNC-VUL-005: Potential DOS on asset withdrawal
	V-TNC-VUL-006: Limit on max asset price change could be abused by short takers
	V-TNC-VUL-007: Public initialization function
	V-TNC-VUL-008: Storage of unchecked String
	V-TNC-VUL-009: Assumed collateral and underlying assets are the same in value calculation
	V-TNC-VUL-010: Lost funds on cancelled limit orders
	V-TNC-VUL-011: Users liquidated when below minimum leverage
	V-TNC-VUL-012: set_user_referral_code uses predecessor instead of signer
	V-TNC-VUL-013: Stale state before external call
	V-TNC-VUL-014: Short position checks total stable available liquidity instead of collateral available liquidity
	V-TNC-VUL-015: Withdrawals from NEAR asset never check storage requirements
	V-TNC-VUL-016: Storage Taking attack: transferring LP Tokens to bogus accounts
	V-TNC-VUL-017: Malicious set user referral code induces large storage cost
	V-TNC-VUL-018: ft_on_transfer uses signer account rather than sender
	V-TNC-VUL-019: Possible limit order ID collisions
	V-TNC-VUL-020: Pool can lose money on liquidation
	V-TNC-VUL-021: Confusing function usage
	V-TNC-VUL-022: Multiple functions made payable unnecessarily
	V-TNC-VUL-023: is_liquidator uses unmodified field Contract::liquidators
	V-TNC-VUL-24: Out-of-date class documentation for LimitOrderID
	V-TNC-VUL-025: Out-of-date function documentation for get_lp_redemption_amount
	V-TNC-VUL-026: Add limit order does not check if NEAR sent on decrease
	V-TNC-VUL-027: Referral code creation may charge more than CREATE_REFERRER_FEE
	V-TNC-VUL-028: Minimum amount out in swap is checked before fees
	V-TNC-VUL-029: Redundant function call
	V-TNC-VUL-030: Incorrect type annotation
	V-TNC-VUL-031: Code structure suggestion: use Rust Tuple Structs to track currency unit types
	V-TNC-VUL-032: Code structure suggestion: check contract invariants first
	V-TNC-VUL-033: Code structure suggestion: split logic for short and long positions
	V-TNC-VUL-034: Add in logging for internal transfer failure
	V-TNC-VUL-035: Use #[must_use] for any functions which return balances that must be sent to a user
	V-TNC-VUL-036: Replace complicated limit order merge logic

