Xeridise. Auditing Report

Hardening Blockchain Security with Formal Methods |

FOR

Sehed Succinct Labs

Veridise Inc.
March 11, 2023

» Prepared For:

Succinct Labs
https://succinct.xyz/

» Prepared By:

Kostas Ferles

Shankara Pailoor

Alp Bassa

Stefanos Chaliasos

Hanzhi Liu

» Contact Us: contact@veridise.com

» Version History:

January 19, 2023 V1
March 11,2023 V2

© 2022 Veridise Inc. All Rights Reserved.

https://succinct.xyz/
contact@veridise.com

Contents

Contents iii
1 Executive Summary 1
2 Project Dashboard 3
3 Audit Goals and Scope 5
31 AuditGoals. 5
3.2 Audit Methodology & Scope 5
3.3 Classification of Vulnerabilities 6
4 Vulnerability Report 7
41 Detailed DescriptionofBugs 8
411 V-SUC-VUL-001: ArrayXOR is under constrained 8

412 V-SUC-VUL-002: Template CoreVerifyPubkeyGl does not perform input
validation. L L 9

413 V-SUC-VUL-003: Zero Padding for Sha256 in ExpandMessageXMD is
vulnerable toanoverflow o o oL 10

414 V-SUC-VUL-004: Sync committee can be rotated successfully with random
publickeys 12

415 V-SUC-VUL-005: Template LongToShortNoEndCarry is incomplete for
some instantiationso o oo oo oL 14
416 V-SUC-VUL-006: ModSumPFour is Incorrect 16

417 V-SUC-VUL-007: Template GIAddMany assumes that no intermediate
sum is equal to the point atinfinity. 17

41.8 V-SUC-VUL-008: VerifySyncCommittee should make sure that not all the
aggregationbitsareO Lo L L oL 18

419 V-SUC-VUL-009: Templates Split and SplitThree have non-deterministic
instantiations o L 19
4110 V-SUC-VUL-010: Implicit assumption in BigMult 20
4111 V-SUC-VUL-011: BigMod does not work for all instantiations 21
4112 V-SUC-VUL-012: BigMod2 does not work for all instantiations 22
4113 V-SUC-VUL-013: BigModInv does not work for all instantiations .23
4114 V-SUC-VUL-014: Implicit Assumption in BigModInv 24

4115 V-SUC-VUL-015: Constant 512 should be replaced with SYNC_COMMIT-
TEESIZE e 25
4116 V-SUC-VUL-016: Fp2Invert does not work for all valid instantiations . . 26
4117 V-SUC-VUL-017: SignedFp2Divide does not work for all valid instantiations =~ 27

4118 V-SUC-VUL-018: Constant 32 should be replaced with B_IN_BYTES in
ExpandMessageXMD 28
4119 V-SUC-VUL-019: PrimeReduce does not work for all valid instantiations 29

4.1.20 V-SUC-VUL-020: SSZPhase0SyncCommittee should use template param-
eters L 30
41.21 V-SUC-VUL-021: SSZLayer assumes numBytes 64. 32
Veridise Audit Report: Succinct Labs © 2022 Veridise Inc.

4.1.22
4.1.23

4.1.24
4.1.25

4.1.26
4.1.27
4.1.28
4.1.29

41.30

4.1.31
4.1.32

4.1.33
4.1.34

4.1.35
4.1.36

V-SUC-VUL-022: SSZRestoreMerkelRoot signal value is unused
V-SUC-VUL-023: EllipticCurveAddUnequal doesn’t work for all instanti-
ations
V-SUC-VUL-024: Fp12Invert doesn’t work for all instantiations
V-SUC-VUL-025: SignedCheckCarryModToZero doesn’t work for all
instantiations oL o
V-SUC-VUL-026: long_add4 doesn’t work for all invocations
V-SUC-VUL-027: long_add_unequal doesn’t work for all invocations . .
V-SUC-VUL-028: SignedFpCarryModP doesn’t work for all instantiations
V-SUC-VUL-029: Assumptions in long_add_unequal should be asserted
explicitly
V-SUC-VUL-030: Intermediate Signal add.out is under constrained in
BigSubModP
V-SUC-VUL-031: HashToField is under constrained
V-SUC-VUL-032: Make all depth constants the floorlog2 of their index
constants
V-SUC-VUL-033: Parameter N is unused in template PoseidonG1Array .
V-SUC-VUL-034: Input signal aggregatePubkeyBigInt can be dropped
from template Rotate without comprimising security
V-SUC-VUL-035: Duplicate Code Snippet
V-SUC-VUL-036: Gratuitous constraints in SerializeLightClientStepInputs

34
35

36
37
38
39

40

41
42

43
44

45
46
47

& Executive Summary

From October 25 to December 10, Succinct Labs engaged Veridise to review the security
of the circom circuits used in the implementation of Telepathy, the first decentralized and
permissionless interoperability layer for Ethereum. The review covered all circuits implemented
by Succinct Labs engineers as well as circuits from the circom-pairing library, which was heavily
utilized within Telepathy. Veridise conducted the assessment over 25 person-weeks, with 5
engineers reviewing code over 5 weeks on commit f61894e. The auditing strategy involved a
tool-assisted analysis of the source code performed by Veridise engineers as well as extensive
manual auditing.

Code assessment. Succinct Labs” Telepathy project is a decentralized and permissionless
interoperability layer for Ethereum. Specifically, Telepathy allows one blockchain to verify the
validity of accepted blocks in another blockchain in a decentralized manner. At its current
state, Telepathy is designed for blockchains whose consesus protocol is based on Proof of
Stake (PoS). The main challenge in designing such a layer is verifying the validity of blocks
accepted in a different chain. To do that for a PoS blockchain, one would need the ability to verify
cryptographic signatures in an efficient way. To tackle this challenge, Succinct Labs has employed
Zero-Knowledge circuits, which significantly reduce the amount of computation performed
on chain. Finally, it is worth mentioning that Succinct Labs has already used Telepathy to
implement a bridge between several chains.

Succinct Labs provided the source code for the Telepathy circuits for review. Additionally, we
were also pointed to the version of the circom-pairing library used by Telepathy, since it was
also in scope of this audit. Both projects were accompanied by adequate documentation and
extensive test suites. The intended behavior for the circuits was further communicated on calls
with the client.

Summary of issues detected. The audit uncovered 36 issues, 4 of which are assessed to be of
critical severity by the Veridise auditors. Specifically, bug V-SUC-VUL-002 is a missing input
validation for a crucial circuit in the circom-pairing library that is used to verify signatures. This
omission would have exposed a huge attack surface that malicious actors could exploit in order
to forge signatures. Another critical bug discovered by Veridise engineers allowed attackers to
control the rotation of the sync committee, which would allow them again to forge signatures and
validate invalid blocks. The Veridise auditors also identified several moderate-severity issues,
including missing checks when calculating aggregate signatures (V-SUC-VUL-007), circuits with
invalid instantiations (V-SUC-VUL-005, V-SUC-VUL-008, V-SUC-VUL-010, V-SUC-VUL-011,
V-SUC-VUL-012), and many more (see Section 4).

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be

Veridise Audit Report: Succinct Labs © 2022 Veridise Inc.

https://github.com/yi-sun/circom-pairing

1 Executive Summary

liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

© 2022 Veridise Inc. Veridise Audit Report: Succinct Labs

%5 Project Dashboard

Table 2.1: Application Summary.

Platform

Succinct Labs Telepathy f61894e Circom Ethereum

Table 2.2: Engagement Summary.

Method Consultants Engaged Level of Effort

Oct. 25 - Dec. 10,2022 Manual & Tools 25 person-weeks

Table 2.3: Vulnerability Summary.

Critical-Severity Issues 4 4
High-Severity Issues 0 0
Medium-Severity Issues 4 4
Low-Severity Issues 21 21
Warning-Severity Issues 4 4
Informational-Severity Issues 3 3
TOTAL 36 36

Table 2.4: Category Breakdown.

Logic Error 7
Maintainability 19
Optimization 2
Data Validation 8

Veridise Audit Report: Succinct Labs © 2022 Veridise Inc.

& Audit Goals and Scope

3.1 Audit Goals

The engagement was scoped to provide a security assessment of the circuit portion of Telepathy.
In our audit, we sought to answer the following questions:

» Are all circuits properly constrained? In other words, are there cases where the verifier
can accept more solutions than anticipated?

» Do all circuits always generate the expected witness?

» Can malicious users forge signatures of the sync committee?

» Can users tamper with Telepathy’s protocol execution?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a combination of
human experts and automated program analysis & testing tools. In particular, we conducted
our audit with the aid of the following techniques:

» Static analysis. To identify potential common vulnerabilities, we leveraged our static
analyzer Vanguard, which supports circom circuits. Currently, Vanguard is equipped
with detectors designed to find instances of common circuit vulnerabilities, such as
unconstrained input or output signals.

» Fuzzing. We also leveraged fuzz testing to determine if the circom-pairing circuits may
deviate from their expected behavior. To do this, we used existing elliptic pairing libraries
as oracles and then used our custom fuzzing framework to determine if a violation of the
specification can be found. Our fuzzer automatically tested several core components of
the pairing for several days. In total, our fuzzer ran for more than 6 millions iterations
across all tested circuits.

Scope. This audit reviewed the circom circuits of Telepathy, including the circuits from the
circom-pairing library. As such, Veridise auditors first inspected the provided tests to better
understand the desired behavior of the provided circuits at a more granular level. They then
began a multi-week manual audit of the code assisted by both static analyzers and automated
testing.

In terms of the audit, the key components include the following;:

» The Telepathy protocol circuits.
» Circuits in the circom-pairing library used by Telepathy.

Limitations. Due to the scope of our audit, the recommendations provided in this report are
limited to the functional specification provided by the Succinct Labs developers. The overall
security of the system can be compromised if any component outside the scope of the audit is
vulnerable. For Telepathy, such components include, but are not limited to, the following:

Veridise Audit Report: Succinct Labs © 2022 Veridise Inc.

3 Audit Goals and Scope

» Circuit deployment: If the circuits are not deployed according to industry standards, i.e.,
following a secure trusted setup ceremony, the whole protocol can be at risk in case the
information used in the creation of the common reference string (CRS) is leaked.

» Smart Contracts: Security can also be compromised if the smart contracts that verify
proofs contain bugs. As the smart contracts of Telepathy is outside the scope of this audit,
this report does not make any guarantees to that extend.

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking

Not Likely NI MSSRE M I LoW i Medium
Likely [0 Wasing 0l Low. | Medium [0 High 0
Very Likely [oboweo | Medium [g IR

In this case, we judge the likelihood of a vulnerability as follows:

Not Likely | A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)
Likely | -OR -

Requires a small set of users to perform an action

Very Likely | Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows:

Somewhat Bad | Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad | -OR-

Affects a very small number of people and requires aid to fix

Affects a large number of people and requires aid to fix

Very Bad | -OR -

Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking | Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2022 Veridise Inc. Veridise Audit Report: Succinct Labs

https://zkproof.org/2021/06/30/setup-ceremonies/

%5 Vulnerability Report

In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowleged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

V-SUC-VUL-001 ArrayXOR is under constrained Critical Fixed
V-SUC-VUL-002 No input validation in template CoreVerifyPubkeyG1 Critical Fixed
V-SUC-VUL-003 Zero padding vulnerable to overflow Critical Fixed
V-SUC-VUL-004 Sync committee can be rotated with random public keys Critical Fixed
V-SUC-VUL-005 LongToShortNoEndCarry has incomplete instantiations Medium Fixed
V-SUC-VUL-006 ModSumFour is Incorrect Medium Fixed

V-SUC-VUL-007 GlAddMany assumes no intermediate sum equal to the point Medium Fixed
V-SUC-VUL-008 VerifySyncCommittee lacking 0 check on aggregation bits Medium Fixed

V-SUC-VUL-009 Templates have non-deterministic instantiations Low Fixed
V-SUC-VUL-010 Implicit assumption in BigMult Low Fixed
V-SUC-VUL-011 BigMod does not work for all instantiations Low Fixed
V-SUC-VUL-012 BigMod2 does not work for all instantiations Low Fixed
V-SUC-VUL-013 BigModInv does not work for all instantiations Low Fixed
V-SUC-VUL-014 Implicit Assumption in BigModInv Low Fixed
V-SUC-VUL-015 Constant 512 should be SYNC-COMMITTEE-SIZE instead Low Fixed
V-SUC-VUL-016 Fp2Invert does not work for all valid instantiations Low Fixed
V-SUC-VUL-017 SignedFp2Divide does not work for all valid instantiations Low Fixed
V-SUC-VUL-018 Constant 32 should be B-IN-BYTES in ExpandMessageXMD Low Fixed
V-SUC-VUL-019 PrimeReduce does not work for all valid instantiations Low Fixed
V-SUC-VUL-020 SSZPhase0SyncCommittee should use template parameters Low Fixed
V-SUC-VUL-021 SSZLayer assumes numBytes Greater than Or Equal 64 Low Fixed
V-SUC-VUL-022 SSZRestoreMerkelRoot signal value is unused Low Fixed
V-SUC-VUL-023 EllipticCurveAddUnequal doesn’t work for all instantiations Low Fixed
V-SUC-VUL-024 Fpl2Invert doesn’t work for all instantiations Low Fixed
V-SUC-VUL-025 SignedCheckCarryModToZero doesn’t work for instantiations ~ Low Fixed
V-SUC-VUL-026 long-add4 doesn’t work for all invocations Low Fixed
V-SUC-VUL-027 long-add-unequal doesn’t work for all invocations Low Fixed
V-SUC-VUL-028 SignedFpCarryModP doesn’t work for all instantiations Low Fixed
V-SUC-VUL-029 Long-add-unequal assumptions should be asserted Low Fixed
V-SUC-VUL-030 Intermediate Signal add.out is under constrained Warning Won't Fix
V-SUC-VUL-031 HashToField is under constrained Warning Fixed
V-SUC-VUL-032 Make all depth constants the floorlog?2 of index constants Warning Won't Fix
V-SUC-VUL-033 Parameter N is unused in template PoseidonG1Array Warning Won't Fix
V-SUC-VUL-034 Input aggregatePubkeyBigInt can be removed Info Fixed
V-SUC-VUL-035 Duplicate Code Snippet Info Won't Fix
V-SUC-VUL-036 Gratuitous constraints in SerializeLightClientStepInputs Info Won't Fix

Veridise Audit Report: Succinct Labs © 2022 Veridise Inc.

o U A W N

4 Vulnerability Report

4.1 Detailed Description of Bugs
4.1.1 V-SUC-VUL-001: ArrayXOR is under constrained

Critical f61894ea121d9b1b885

Logic Error Fixed
circuits/circuits/hash_to_field.circom

Template ArrayXOR

Template ArrayXOR is not properly constrained due to the use of operator <-- (see attached
snippet).

for (var i = 0; i < n; i++) {
// xors[i] = XOR()
// xors[i].a <== a[il;
// xors[i].b <== b[il];
out[i] <-- a[i] ~ b[i];

}

Impact The ArrayXOR circuit is used to hash a message to a field element. By leaving this
circuit underconstrained, an attacker can select nearly any field element as the hash of the
message, allowing them to forge the sync committee’s BLS signatures.

Recommendation Replace operator <- - with equivalent operations that use operator <==.

Developer Response The developers acknowledged and fixed the issue in this commit.

© 2022 Veridise Inc. Veridise Audit Report: Succinct Labs

https://github.com/succinctlabs/telepathy/pull/55/commits/83466cc969135443f604a009f42d966a7d555ebf

O W N o U~ W

11
12
13
14
15
16
17
18
19

4.1 Detailed Description of Bugs

4.1.2 V-SUC-VUL-002: Template CoreVerifyPubkeyG1 does not perform input
validation

Functions

Template CoreVerifyPubkeyGl instantiates several BigLessThan templates whose output signal is

never used.

component 1t[10];

Critica
L

ogic Error

Fixed

circuits/ pairing /bls_signature.circom
Template CoreVerifyPubkeyGl

f61894ea121d9b1b885

// check all len k input arrays are correctly formatted bigints < q (BigLessThan
calls Num2Bits)
for(var i=0; i<10; i++){

1t[i] = BigLessThan(n, k);

for(var idx=0;

idx<k; idx++)

1t[i].b[idx] <== q[idx];

}

for(var idx=0; idx<k; idx++){

1t[o]
1t[1]
1t[2]
1t[3]
1t[4]
1t[5]
1t[6]
1t[7]
1t[8]
1t[9]

.alidx]
.alidx]
.a[idx]
.alidx]
.alidx]
.a[idx]
.a[idx]
.alidx]
.alidx]
.a[idx]

<==

pubkey[0] [idx];
pubkey[1][idx];
signature[0][0][idx];
signature[0][1][idx];
signature[1][0][idx];
signature[1][1][idx];
hash[0][0][idx];
hash[0][1][idx];
hash[1][0][idx];
hash[1][1][idx];

Impact The aim of this check is to ensure that all inputs satisfy the assumptions made by the

core circom-pairing circuits. Skipping this check increases the attack surface of the code base

significantly.

Recommendation Ensure that the output signal of every template in array 1t are properly

constrained.

Developer Response The developers acknowledged and fixed the issue here.

Veridise Audit Report: Succinct Labs

© 2022 Veridise Inc.

https://github.com/succinctlabs/telepathy-circuits/blob/main/circuits/pairing/bls_signature.circom#L96-L98

10

© 00 N O U B W N =

N N B B B B B B B e e
H © W 00 N o U B W N B O

1

4 Vulnerability Report

4.1.3 V-SUC-VUL-003: Zero Padding for Sha256 in ExpandMessageXMD is
vulnerable to an overflow

Critical f61894ea121d9b1b885

Logic Error Fixed
circuits/circuits/hash_to_field.circom

Template ExpandMessageXMD

The template ExpandMessageXMD computes the Sha256 hash of the following bit string b_0
= sha256(Z_pad || msg || l_i_b_str || i2osp(®, 1) || DST_prime) where Z_pad is the zero

padding. The zero-padding should be an array of 64 zeros but it can in fact be set to many
different values. This is because it is computed using the template I20SP shown below:

template I20SP(1) {
signal input in;
signal output out[1l];

var value = in;

for (var i =1 - 1; i >=0; i--) {
out[i] <-- value & 255;
value = value \ 256;

signal acc[1];
for (var i = 0; i < 1; i++) {

if (i ==0) {
acc[i] <== out[il];
} else {
acc[i] <== 256 *x acc[i-1] + out[i];
}
}
acc[l-1] === in;

}

This template computes the bigint representation of in where 1 is the maximum number of
digits and the base is 256. However, if 561 > log_2(p) where p is the baby-jubjub prime, then
we can have multiple representations for a given in. In this case, 1 = 64 which is much larger
than 5610g_2(p) In particular, if in is 0, then out can be the following:

[48, 100, 78, 114, 225, 49, 160, 41, 184, 80, 69, 182, 129, 129, 88, 93, 40, 51, 232,
72, 121, 185, 112, 145, 67, 225, 245, 147, 240, 0, 0, 1]

This is the bigint representation of p and results in acc[1-1] = o.

Impact An attacker can fill in this zero padding array with any bigint representation of a
multiple of p . This allows attackers to map a given message to multiple field elements thereby
increasing the surface area for forgeries.

Recommendation We suggest multiple fixes. We first suggest that the zero pad registers are
explicitly set to zero rather than using 120SP. This can be done as shown below:

© 2022 Veridise Inc. Veridise Audit Report: Succinct Labs

O© 00 N O U A W N =

11
12
13
14
15
16
17
18
19

4.1 Detailed Description of Bugs

component i2ospLibStr = I20SP(2);
i20spLibStr.in <== EXPANDED_LEN;

// b_0 = sha256(Z_pad || msg || l_i_b_str || i20sp(0, 1) || DST_prime)
var S256_0_INPUT_BYTE_LEN = R_IN_BYTES + MSG_LEN + 2 + 1 + DST_LEN + 1;

component sha@ = Sha256Bytes(5256_0_INPUT_BYTE_LEN);
for (var i = 0; i < S256_0_INPUT_BYTE_LEN; i++) {
if (i < R_LIN_BYTES) {
sha0.in[i] <== 0; // THE FIX
} else if (i < R_IN_BYTES + MSG_LEN) {
sha0.in[i] <== msg[i - R_IN_BYTES];
} else if (i < R_IN_BYTES + MSG_LEN + 2) {
sha0.in[i] <== i2o0splLibStr.out[i - R_IN_BYTES - MSG_LEN];
} else if (i < R_IN_BYTES + MSG_LEN + 2 + 1) {
sha0.in[i] <== 0;
} else {
sha0.in[i] <== dstPrime[i - R_IN_BYTES - MSG_LEN - 2 - 1];

}

We also suggest that an assertion be added to I20SP to prevent potential overflows. One assertion

could be:

1 | assert(l < 31);

This will prevent acc[1-1] from overflowing as lacc[1-1] < 256”3 < p.

Developer Response The developers acknowledged and fixed the issue in this commit.

Veridise Audit Report: Succinct Labs

© 2022 Veridise Inc.

https://github.com/succinctlabs/telepathy/pull/55/commits/1153ddaaf36a4ee82389fdf6ba4f06ecbe1035b6

12

© 00 N O U A W N =

S T B T B B T R R S I
© VW 00 N O U A W N R ©

4 Vulnerability Report

4.1.4 V-SUC-VUL-004: Sync committee can be rotated successfully with random
public keys

Critical f61894ea121d9b1b885
Logic Error Fixed
circuits/circuits/rotate.circom

Template Rotate

Template Rotate calculates the new Poseidon commitment based on both coordinates of the

input public keys, pubkeysBigInt (second part of attached snippet). However, only the first
coordinate of the public keys are used to verify the root of the next sync committee (first part of
attached snippet). Therefore, an attacker can create a valid proof for Rotate by selecting random
y coordinates for all public keys stored in pubkeysBigInt.

/* VERIFY THE SSZ ROOT OF THE SYNC COMMITTEE =x/
component sszSyncCommittee = SSZPhase@SyncCommittee();
for (var i = 0; 1 < SYNC_COMMITTEE_SIZE; i++) {
for (var j = 0; j < 48; j++) {
sszSyncCommittee.pubkeys[i][j] <== pubkeysBytes[i]l[j];

}

/* VERIFY THE POSEIDON ROOT OF THE SYNC COMMITTEE =x/
component computePoseidonRoot = PoseidonGlArray(
SYNC_COMMITTEE_SIZE,
N,
K
);
for (var 1 = 0; i < SYNC_COMMITTEE_SIZE; i++) {
for (var j = 0; j < K; j++) {
computePoseidonRoot.pubkeys[i][0][j] <== pubkeysBigInt[i][O][j];
computePoseidonRoot.pubkeys[i][1][j] <== pubkeysBigInt[i][1]1[j];

Impact Such an attack can render the step function of telepathy unusable for a whole period
and lock user funds indefinitely, since the smart contract allows the commitment to be updated
only once per period. At an extreme, this attack can turn into a DoS if an attacker is able to
maliciously rotate the committee on every period.

Recommendation We recommend computing the Poseidon commitment by using only the x
coordinates of the committee’s public keys.

Developer Response Our teams iterated over this issue multiple times after the official end
of our audit. Our initial recommendation for committing only to the x-coordinates of each
key required an additional subgroup check for every committee member, which resulted in
a prohibitively expensive circuit. After several interactions with the Succinct Labs team, we
discovered that the most significant bits of the x-coordinate encode the sing of y-coordinate of

© 2022 Veridise Inc. Veridise Audit Report: Succinct Labs

4.1 Detailed Description of Bugs 13

every public key (recall that elliptic curves are symmetric on the x-axis). This opened the door to
the following cheaper and straightforward check: First, recover the sign from the x-coordinate
of the provided key. Then, simply check that the sign agrees with the y-coordinate of the key
and that the (x,) lies on the BLS curve. The Succinct Labs team implemented this logic in their
final version of their code.

Veridise Audit Report: Succinct Labs © 2022 Veridise Inc.

14

O W N OO U~ W N

11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

4 Vulnerability Report

4.1.5 V-SUC-VUL-005: Template LongToShortNoEndCarry is incomplete for some
instantiations

Medium f61894eal121d9b1b885
Logic Error Fixed
circuits/ pairing /bigint.circom

Template LongToShortNoEndCarry

Template LongToShortNoEndCarry implementation performs a split case on one of its parameters,
k, in order to calculate its output signal. However, when k is either 1 or 2, out[k] is never set.

template LongToShortNoEndCarry(n, k) {
assert(n <= 126);
signal input in[k];
signal output out[k+1];

var split[k][3];
for (var i = 0; i < k; i++) {
split[i] = SplitThreeFn(in[i]l, n, n, n);

var carry[kl];
carry[0] = 0;
out[0] <-- split[0][0];
if (k > 1) {
var sumAndCarry[2] = SplitFn(split[0][1] + split[1][@], n, n);
out[1l] <-- sumAndCarry[0];
carry[1l] = sumAndCarry[1];
}
if (k > 2) {
for (var i = 2; i < k; i++) {
var sumAndCarry[2] = SplitFn(split[i][0] + split[i-1][1] + split[i-2][2]
+ carry[i-1], n, n);
out[i] <-- sumAndCarry[0];
carry[i] = sumAndCarry[1];
}
out[k] <-- split[k-11[1] + split[k-2][2] + carry[k-1];

component outRangeChecks[k+1];

for (var i = 0; i < k+1; i++) {
outRangeChecks[i] = Num2Bits(n);
outRangeChecks[i].in <== out[il];

signal runningCarryl[k];

component runningCarryRangeChecks[k];

runningCarry[0] <-- (in[0@] - out[@]) / (1 << n);
runningCarryRangeChecks[0] = Num2Bits(n + log_ceil(k));
runningCarryRangeChecks[0].in <== runningCarry[0];
runningCarry[0] * (1 << n) === in[0] - out[0];

for (var i = 1; i < k; i++) {

© 2022 Veridise Inc. Veridise Audit Report: Succinct Labs

41
42
43
44
45
46

47

4.1 Detailed Description of Bugs

runningCarry[i] <-- (in[i] - out[i] + runningCarry[i-1]) / (1 << n);
runningCarryRangeChecks[i] = Num2Bits(n + log_ceil(Kk));
runningCarryRangeChecks[i].in <== runningCarry[i];

runningCarry[i] * (1 << n) === in[i] - out[i] + runningCarry[i-1];

}
runningCarry[k-1] === out[k];

Impact Instantiations of this template where k = 1 or k = 2 will lead to incorrect witnesses
that won't be verifiable.

Recommendation Set out[k] to the expected value for the aforementioned cases.

Developer Response The developers partially fixed this issue by blocking invalid instantiations
in this commit.

Veridise Audit Report: Succinct Labs © 2022 Veridise Inc.

15

https://github.com/succinctlabs/telepathy/pull/55/commits/5e4813a21efd039753ec874e4e4b874823061117

16

O 00 N O U B W N =

e e =
A W N =B O

© 0 N O U~ W N

= o= e
N R ©

4 Vulnerability Report

4.1.6 V-SUC-VUL-006: ModSumFour is Incorrect

Medium f61894ea121d9b1b885

Logic Error Fixed
circuits/pairing/bigint.circom

Template ModSumFour

ModSumFour , shown below, incorrectly asserts thatn + 2 <= 253. This allows n to be large enough
such thata + b + ¢ + d overflows the prime. For example, a, b, ¢, dcanbe 27252-1 and so
their sum would be 54272 - 4 which is larger than the baby-jubjub prime.

template ModSumFour(n) {

assert(n + 2 <= 253);

signal input a;

signal input b;

signal input c;

signal input d;

signal output sum;

signal output carry;

component n2b = Num2Bits(n + 2);

n2b.in <==a + b + ¢ + d;

carry <== n2b.out[n] + 2 * n2b.out[n + 1];

sum <==a + b + c +d - carry *x (1 << n);
}

Impact Currently no other templates use ModSumFour but if it was to be used this needs to be
changed.

Recommendation We recommend a fix like the following:

template ModSumFour(n) {

assert(n + 3 <= 253);
signal input a;
signal input b;
signal input c;
signal input d;

component n2b = Num2Bits(n + 3);

n2b.in <==a + b + c + d;

carry <== n2b.out[n] + 2 * n2b.out[n + 1] + 4*n2b.out[n+2];
sum <==a + b +c+d - carry *x (1 << n);

Developer Response The developers removed this unused template in this commit.

© 2022 Veridise Inc. Veridise Audit Report: Succinct Labs

https://github.com/succinctlabs/telepathy/pull/55/commits/ec5fecadd7048916459c7b0ff11ca9f693a6b1aa

4.1 Detailed Description of Bugs

4.1.7 V-SUC-VUL-007: Template G1IAddMany assumes that no intermediate sum is
equal to the point at infinity.

f61894ea121d9b1b885
ata Validation Fixed
circuits/circuits/bls.circom

Template GIAddMany

The template G1AddMany adds all the public keys used to sign the block header. It aggregates the
keys using the template G1Add which in turn usesEllipticCurveAddUnequal. The latter template

Medium
D

assumes that the inputs are unequal and do not sum to the point at infinity, however there is no
check making sure the inputs are unequal and the sum cannot be the point at infinity.

Impact Since EllipticCurveAddUnequal assumes that the inputs are not points at infinity, it is
possible that a correctly signed header is rejected because at some point in the computation, the
public keys end up adding to infinity. Similarly in case both input are equal. Moreover, it is
possible that EllipticCurveAddUnequal can produce a point on the curve (since it is undefined if
the sum actually adds to the point at infinity) and thus allow a bogus header to get published.

Recommendation We recommend the template G1Add add a check to make sure the two points
do not sum to infinity. Such a check would make sure the x coordinates of the public keys are
not the same.

Developer Response The developers acknowledged and fixed the issue in this commit.

Veridise Audit Report: Succinct Labs © 2022 Veridise Inc.

17

https://github.com/succinctlabs/telepathy/pull/55/commits/4ab1f5c930bace77fe1bf25400546c7334dbde00

18

© 0 N O U~ W N

4 Vulnerability Report

4.1.8 V-SUC-VUL-008: VerifySyncCommittee should make sure that not all the
aggregation bits are 0

Medium f61894ea121d9b1b885
Data Validation Fixed
circuits/circuits /sync_committee.circom

Template VerifySyncCommittee

If all the aggregation bits are zero, then GlAddArray returns the point (6, 0)in the circuit

VerifySyncCommittee.

Impact Currently, this will not cause issues because (0, 0) is not on the curve but if the
signature scheme changes and (0, 0) is on the curve then someone can publish an unsigned
fake header by setting all aggregation bits to 0.

Recommendation Werecommend adding the following lightweight check to VerifySyncCommittee

/* RANGE CHECK AGGREGATION BITS x/

var sum = 0;

for (var i = 0; i < SYNC_COMMITTEE_SIZE; i++) {
aggregationBits[i] * (aggregationBits[i] - 1) === 0;
sum += aggregationBits[i];

}

component zeroCheck = IsZero();

zeroCheck.in <== sum;

zeroCheck.out === 0;

Developer Response The developers acknowledged and fixed the issue at this location.

© 2022 Veridise Inc. Veridise Audit Report: Succinct Labs

https://github.com/succinctlabs/telepathy-circuits/blob/main/circuits/sync_committee.circom#L88-L90

© 00 N O U B W N =

e i e =
U A W N R O

4.1 Detailed Description of Bugs

4.1.9 V-SUC-VUL-009: Templates Split and SplitThree have non-deterministic
instantiations

Low f61894ea121d9b1b885
Data Validation Fixed
circuits /pairing /bigint.circom

Templates Split and SplitThree

Templates Split and SplitThree can have non-deterministic instantiations due to missing
parameter validation. Specifically, template Split does not restrict parameter m, which is used to
instantiate a Num2Bits template from the circom library. If m is greater than 253, then the output

signals of Split will not be uniquely identified by input signals. Similarly template SplitThree
does not put any restrictions on arguments m and k.

template Split(n, m) {
assert(n <= 126);
component n2b_big = Num2Bits(m);

}

template SplitThree(n, m, k) {
assert(n <= 126);
component n2b_medium = Num2Bits(m);
n2b_medium.in <== medium;
component n2b_big = Num2Bits(Kk);

}

Counterexample A counterexample has been constructed using Veridise’s tool Picus.

Impact Client code may wrongly instantiate these templates and also become non-deterministic.

Recommendation Template Split: consider adding assertionn + m < 254.

Template SplitThree: consider adding assertionn + m + k < 254.

Developer Response The developers acknowledged and fixed the issue in this commit.

Veridise Audit Report: Succinct Labs © 2022 Veridise Inc.

19

https://github.com/succinctlabs/telepathy/pull/55/commits/06e72b9f02a6d3843da0ef51e709262d45ade649

20

© 0 N OO U~ W N

=
N R ©

4 Vulnerability Report

4.1.10 V-SUC-VUL-010: Implicit assumption in BigMult

Low f61894ea121d9b1b885

Data Validation Fixed
circuits/pairing/bigint.circom

Template BigMult

Template BigMult implicitly assumes that k <= 2°n. As shown in the attached code snippet,
BigMult is a composition of circuits BigMultShortLong and LongToShortNoEndCarry. The output of
BigMultShortLong consists of 2k - 1 registers with each register containing integers in the range
[0, 27(2n + log(k)). This output is then passed as input to LongToShortNoEndCarry circuit,
which converts the output of BigMultShortLong to proper integer representation. Additionally,
circuit LongToShortNoEndCarry assumes that each register of the input fits in 3n bits. Therefore,
from the above it follows that 2n + log(k) <= 3n. However, this is not enforced by BigMult.

var LOGK = log_ceil(k);
component mult = BigMultShortLong(n, k, 2xn + LOGK);
for (var i = 0; i < k; i++) {

mult.a[i] <== al[i];

mult.b[i] <== b[i];

// no carry is possible in the highest order register
component longshort = LongToShortNoEndCarry(n, 2 *x k - 1);
for (var i = 0; i <2 *x k - 1; i++) {

longshort.in[i] <== mult.out[i];

Impact Improper instantiation of BigMult may lead to wrong output signals.

Recommendation Please consider adding an assertion in BigMult.

Developer Response The developers acknowledged and fixed the issue in this commit.

© 2022 Veridise Inc. Veridise Audit Report: Succinct Labs

https://github.com/succinctlabs/telepathy/pull/55/commits/7cf3e1b8d1c7f9987dcfd6c1d916d769d4e47b36

o U A W N

4.1 Detailed Description of Bugs

4.1.11 V-SUC-VUL-011: BigMod does not work for all instantiations

Low f61894ea121d9b1b885

Maintainability Fixed
circuits/pairing/bigint.circom

Template BigMod

If the template is instantiated with k >= 50, then the following excerpt from BigMod is
incorrect:

div[k] <-- longdiv[0][K];

component div_range_checks[k + 1];

for (var i = 0; i <= k; i++) {
div_range_checks[i] = Num2Bits(n);
div_range_checks[i].in <== div[i];

}

This is because the second dimension of longdiv is of size 50 and if k > 50 this will result in an
index out of bounds during witness generation.

Impact No impact to the current code base but any users of the template should be careful.
Recommendation Add an assertion assert(k < 50) at the beginning of the method.

Developer Response The developers acknowledged and fixed the issue in this commit.

Veridise Audit Report: Succinct Labs © 2022 Veridise Inc.

21

https://github.com/succinctlabs/telepathy/pull/55/commits/952a7af00742e9db4fe58b11426c1827c8788d39

22

N o oA WN =

4 Vulnerability Report

4.1.12 V-SUC-VUL-012: BigMod2 does not work for all instantiations

Low f61894ea121d9b1b885

Maintainability Fixed
circuits/pairing/bigint.circom

Template BigMod2

If the template is instantiated with k > 50 or m - k >= 50, then the following excerpt from
BigMod2 is incorrect:

var longdiv[2][50] = long_div2(n, k, m-k, a, b);
for (var i = 0; 1 < k; i++) {
mod[i] <-- longdiv[1l][i];
}
for (var i = 0; i <= m-k; i++) {
div[i] <-- longdiv[0][i];
}

This is because the second dimension of long_div2 is of size 50 and if any of the above conditions
hold this will result in an index out of bounds during witness generation.

Impact No impact to the current code base but any users of the template should be careful.

Recommendation Add an assertion assert(k <= 50 & m - k < 50) at the beginning of the
method.

Developer Response The developers acknowledged and fixed the issue in this commit.

© 2022 Veridise Inc. Veridise Audit Report: Succinct Labs

https://github.com/succinctlabs/telepathy/pull/55/commits/d2b55950b4da60b68079838bfd69fed7eabe1ba6

v A W N =

4.1 Detailed Description of Bugs

4.1.13 V-SUC-VUL-013: BigModInv does not work for all instantiations

Low f61894ea121d9b1b885

Maintainability Fixed
circuits/pairing/bigint.circom

Template BigModInv

The template BigModInv does not work for all instantiations of k. In particular, if k > 56 then this
can cause witness generation to fail. In particular, the following excerpt from the template is

buggy:

// length k

var inv[50] = mod_inv(n, k, in, p);

for (var i = 0; i < k; i++) {
out[i] <-- inv[i];

}

This is because the access inv[i] can be out-of-bounds when k >= 50
Impact If a client instantiates this template with k >= 50 then witness generation will fail.

Recommendation Since BigModInv calls BigMod we believe adding the apprioriate assert (k <
50) to the beginning of BigMod should fix this issue as well.

Developer Response The developers acknowledged and fixed the issue in this commit.

Veridise Audit Report: Succinct Labs © 2022 Veridise Inc.

23

https://github.com/succinctlabs/telepathy/pull/55/commits/ae9d6bb29a539859961b518f624614f19af797c1

24 4 Vulnerability Report

4.1.14 V-SUC-VUL-014: Implicit Assumption in BigModInv

Low f61894ea121d9b1b885

Maintainability Fixed
circuits/pairing/bigint.circom

Template BigModInv

BigModInv is only correct if p represents a prime number. This assumption is not made explicit
in the comments.

Impact Any clients who do not pass in a prime p will not get a well defined output
Recommendation Add a comment saying // p represents a prime.

Developer Response The developers acknowledged and fixed the issue in this commit.

© 2022 Veridise Inc. Veridise Audit Report: Succinct Labs

https://github.com/succinctlabs/telepathy/pull/55/commits/9e5cc79660d9fbf5cb51b407eae6a384099c80e0

© 0 N O U~ W N

10
11

4.1 Detailed Description of Bugs

4.1.15 V-SUC-VUL-015: Constant 512 should be replaced with
SYNC_COMMITTEE_SIZE

Low £61894ea121d9b1b885
Maintainability Fixed
circuits/ circuits /bls.circom

Template GIAddMany

The template G1AddMany shown below takes the parameter SYNC_COMMITTEE_SIZE. The variable
BATCH_SIZE should use SYNC_COMMITTEE_SIZE instead of 512

template GlAddMany(SYNC_COMMITTEE_SIZE, LOG_2_SYNC_COMMITTEE_SIZE, N, K) {
signal input pubkeys[SYNC_COMMITTEE_SIZE][2][K];
signal input bits[SYNC_COMMITTEE_SIZE];
signal output out[2][K];

component reducers[LOG_2_SYNC_COMMITTEE_SIZE];
for (var i = 0; i < LOG_2_SYNC_COMMITTEE_SIZE; i++) {
var BATCH_SIZE = 512 \ (2 *x i);
reducers[i] = GlReduce(BATCH_SIZE, N, K);
for (var j = 0; j < BATCH_SIZE; j++) {
if (i == 0) {

Developer Response The developers acknowledged and fixed the issue in this commit.

Veridise Audit Report: Succinct Labs © 2022 Veridise Inc.

25

https://github.com/succinctlabs/telepathy/pull/55/commits/79427a8a11055b949a1b3041dbc38e0818f3fd30

26 4 Vulnerability Report

4.1.16 V-SUC-VUL-016: Fp2Invert does not work for all valid instantiations

Low f61894eal21d9b1b885

Maintainability Fired
circuits/ pairing /bigint.circom

Template Fp2Invert

If the template is instantiated with k > 50, then the following excerpt from Fp2Invert is
incorrect:

1 var inverse[2][50] = find_Fp2_inverse(n, k, in, p); // 2 x 50, only 2 x k
relevant
for (var i = 0; i <2; i ++) {
for (var j =0; j < k; j ++) {
out[i][j] <-- inverse[ill[j];

}

o U~ W N

}

This is because the second dimension of pow2nk is of size 50 and if k > 50 this will result in an
index out of bounds during witness generation.

Impact No impact to the current code base but any users of the template should be careful.

Recommendation Add an assertion assert(k <= 50) at the beginning of the method.

Developer Response The developers acknowledged and fixed the issue in this commit.

© 2022 Veridise Inc. Veridise Audit Report: Succinct Labs

https://github.com/succinctlabs/telepathy/pull/55/commits/4c60be57e021d7a183eed64a2cdf4d8dd97835c9

© 0 N OO U~ W N

D T T B B T B
© W 00 N oo U A W N H O

21
22

4.1 Detailed Description of Bugs

4.1.17 V-SUC-VUL-017: SignedFp2Divide does not work for all valid instantiations

Low f61894ea121d9b1b885

Maintainability Fixed
circuits/pairing/bigint.circom

Template SignedFp2Divide

If the template is instantiated with k > 50, then the following excerpts from SignedFp2Divide
are incorrect:

var a_mod[2][50];
var b_mod[2][50];
for(var eps=0; eps<2; eps++){
// 2”{overflow} <= 2"~{nxceil(overflow/n)}
var temp[2][50] = get_signed_Fp_carry_witness(n, k, ma, aleps], p);
a_mod[eps] = temp[l];
temp = get_signed_Fp_carry_witness(n, k, mb, b[eps]l, p);
b_mod[eps] = temp[l];
}

// precompute 1/b

var b_inv[2][50] = find_Fp2_inverse(n, k, b_mod, p);

// precompute a/b

var out_var[2][50] = find_Fp2_product(n, k, a_mod, b_inv, p);

var m = max(mb + k, ma);
// get mult = out * b = pxX" + Y’
var XY[2][2]1[50] = get_signed_Fp2_carry_witness(n, k, m, mult.out, p); // total value
is < 2°{nk} * 2”™{nxk + overflowb - n + 1}
// get a = pxX’' + Y’
var XY1[2][2][50] = get_signed_Fp2_carry_witness(n, k, m, a, p); // same as above, m
extra registers enough

This is because all of these arrays have a dimension of size 50 and if k > 50 this will result in an
index out of bounds during witness generation.
Impact No impact to the current code base but any users of the template should be careful.

Recommendation Add an assertion assert(k <= 50) at the beginning of the method.

Developer Response The developers acknowledged and fixed the issue in this commit.

Veridise Audit Report: Succinct Labs © 2022 Veridise Inc.

27

https://github.com/succinctlabs/telepathy/pull/55/commits/4e8858003894932631ec23be63e94fa154ebf06c

28

© 0 N O U~ W N

4 Vulnerability Report

4.1.18 V-SUC-VUL-018: Constant 32 should be replaced with B_IN_BYTES in
ExpandMessageXMD

Low f61894ea121d9b1b885

Maintainability Fixed
circuits/circuits/hash_to_field.circom

Template ExpandMessageXMD

In the template ExpandMessageXMD the constant 32 is used in many places instead of the variable
B_IN_BYTES. The following code snippet is one example:

for (var i = 0; i < S256S_O_INPUT_BYTE_LEN; i++) {
if (1 < 32) {
$256s[0].in[i] <== sha®.out[i];
} else if (i <32 + 1) {
s256s[0].in[i] <== 1;
} else {
s256s[0].in[i] <== dstPrime[i - 32 - 1];
}

Impact If the value of B_IN_BYTES changes all these usages of 32 need to be changed as well.
Failure to change one of them will break the functional correctness of the template.

Recommendation We recommend replacing usages of the constant 32 with B_IN_BYTES.

Developer Response The developers acknowledged and fixed the issue in this commit.

© 2022 Veridise Inc. Veridise Audit Report: Succinct Labs

https://github.com/succinctlabs/telepathy/pull/55/commits/6373df77fba11874610594469d0a1095e1a64ca5

v A W N =

4.1 Detailed Description of Bugs

4.1.19 V-SUC-VUL-019: PrimeReduce does not work for all valid instantiations

Low f61894ea121d9b1b885

Maintainability Fixed
circuits/pairing/bigint.circom

Template PrimeReduce

If the template is instantiated with k > 50, then the following excerpt from PrimeReduce is
incorrect:

e[0] = n;
var pow2n[50] = mod_exp(n, k, two, p, €);
e[0] = k;

assert(k < (l<<n));
var pow2nk[50] = mod_exp(n, k, pow2n, p, e);

This is because pow2nk is of size 50 and if k > 50 this will result in an index out of bounds during
witness generation.
Impact No impact to the current code base but any users of the template should be careful.

Recommendation Add an assertion assert(k <= 50) at the beginning of the method.

Developer Response The developers acknowledged and fixed the issue at this location.

Veridise Audit Report: Succinct Labs © 2022 Veridise Inc.

29

https://github.com/succinctlabs/telepathy-circuits/blob/main/circuits/pairing/bigint.circom#L790

30

4 Vulnerability Report

4.1.20 V-SUC-VUL-020: SSZPhase0SyncCommittee should use template parameters

Low £61894ea121d9b1b885
Maintainability Fixed
circuits/ circuits/ssz.circom

Template SSZPhase0SyncCommittee

The template SSZPhasedSyncCommittee hard codes the number of public keys to be 512 but it
should take a parameter SYNC_COMMITTEE_SIZE.

Impact If the SYNC_COMMITTEE_SIZE changes, the array pubkeys needs to be redeclared and the
loop condition here has to be changed.

Recommendation We recommend the following fix:

template SSZPhase0SyncCommittee(SYNC_COMMITTEE_SIZE, LOG_SYNC_COMMITTEE_SIZE) {
assert(SYNC_COMMITTEE_SIZE > 0);
assert (2xxL0OG_SYNC_COMMITTEE_SIZE == SYNC_COMMITTEE_SIZE);
signal input pubkeys[SYNC_COMMITTEE_SIZE][48];
signal input aggregatePubkey[48];
signal output out[32];

component sszPubkeys = SSZArray(SYNC_COMMITTEE_SIZEx64, LOG_SYNC_COMMITTEE_SIZE
+1);
for (var i = 0; 1 < SYNC_COMMITTEE_SIZE; i++) {

for (var j = 0; j < 64; j++) {

if (j < 48) {
sszPubkeys.in[i * 64 + j] <== pubkeys[i][j];
} else {

sszPubkeys.in[i * 64 + j] <== 0;

component sszAggregatePubkey = SSZArray(64, 1);
for (var i = 0; i < 64; i++) {

if (i < 48) {
sszAggregatePubkey.in[i] <== aggregatePubkey[i];
} else {

sszAggregatePubkey.in[i] <== 0;

component hasher = Sha256Bytes(64);
for (var i = 0; 1 < 64; i++) {

if (1 < 32) {
hasher.in[i] <== sszPubkeys.out[i];
} else {

hasher.in[i] <== sszAggregatePubkey.out[i - 32];

© 2022 Veridise Inc. Veridise Audit Report: Succinct Labs

https://github.com/succinctlabs/telepathy/blob/audit/circuits/circuits/ssz.circom#L64

35
36
37
38
39
40

}
for (var i = 0; 1 < 32; i++) {
out[i] <== hasher.out[i];
}
}

4.1 Detailed Description of Bugs

Developer Response The developers acknowledged and fixed the issue in this commit.

Veridise Audit Report: Succinct Labs

© 2022 Veridise Inc.

31

https://github.com/succinctlabs/telepathy/pull/55/commits/6c0a31f33b689586ab0dd05404a3728f6a2ad5bc

32

© 0 N OO U~ W N

11
12
13
14
15
16
17
18
19
20

4 Vulnerability Report

4.1.21 V-SUC-VUL-021: SSZLayer assumes numBytes 64

Low f61894ea121d9b1b885

Data Validation Fixed
circuits/circuits/ssz.circom

Template SSZLayer

The template SSZLayer , shown below, implicitly assumes parameter numBytes 64. However
there is no assertion enforcing this.

template SSZLayer(numBytes) {
signal input in[numBytes];
signal output out[numBytes\ 2];
var numPairs = numBytes \ 64;
component hashers[numPairs];
for (var i = 0; 1 < numPairs; i++) {
hashers[i] = Sha256Bytes(64);
for (var j = 0; j < 64; j++) {
hashers[i].in[j] <== in[i * 64 + j];
}
}
for (var i = 0; i < numPairs; i++) {
for (var j =0; j < 32; j++) {
out[i * 32 + j] <== hashers[i].out[j];
}
}
}

Impact If numBytes < 64, then numPairs = 0 and both loops are skipped. Thus out will be
completely underconstrained.

This has no impact in the codebase currently since the calling templates force numBytes 64 .
However, if this template is used somewhere else and numBytes is < 64 then it can result in an
underconstrained bug.

Recommendation We recommend adding an assertion numBytes 64

Developer Response The developers acknowledged and fixed the issue in this commit.

© 2022 Veridise Inc. Veridise Audit Report: Succinct Labs

https://github.com/succinctlabs/telepathy/pull/55/commits/9eca8a27fc0d90256d491a7c5e9a299a424ab71f

4.1 Detailed Description of Bugs

4.1.22 V-SUC-VUL-022: SSZRestoreMerkelRoot signal value is unused

Low f61894€a121d9b1b885

Maintainability Fixed
circuits/circuits/ssz.circom

Template SSZRestoreMerkelRoot

The intermediate signal value is not used in template SSZRestoreMerkelRoot.
Impact This should not affect the rest of the circuit but affects readability.
Recommendation We recommend removing that signal.

Developer Response The developers acknowledged and fixed the issue in this commit.

Veridise Audit Report: Succinct Labs © 2022 Veridise Inc.

https://github.com/succinctlabs/telepathy/pull/55/commits/7080a61994bb40ddf223fc60d298a1c420879dec

34

o U A W N

4 Vulnerability Report

4.1.23 V-SUC-VUL-023: EllipticCurveAddUnequal doesn’t work for all
instantiations

Low f61894ea121d9b1b885
Maintainability Fixed
circuits/ pairing/curve.circom

Template EllipticCurveAddUnequal

If the template is instantiated with k >= 50, then the following excerpt from EllipticCurveAddUnequal
is incorrect:

signal output out[2][K];

// Ignored multiple lines

for(var i = 0; i < k; i++){
out[0][i] <-- x3[i];
out[1][i] <-- y3[i];

}

This is because the second dimension of out is of size 50 and if k > 50 this will result in an index
out of bounds during witness generation.

Impact No impact on the current code base but any users of the template should be careful.

Recommendation Add an assertion assert(k < 50) at the beginning of the method.

Developer Response The developers acknowledged and fixed the issue in this commit.

© 2022 Veridise Inc. Veridise Audit Report: Succinct Labs

https://github.com/succinctlabs/telepathy/pull/55/commits/645fe96c69a4c82e303a6fd7f6ee12b74ebede06

0o N o U~ W N

4.1 Detailed Description of Bugs

4.1.24 V-SUC-VUL-024: Fp12Invert doesn’t work for all instantiations

Low f61894eal21d9b1b885

Maintainability Fired
circuits/pairing/fp12.circom

Template Fp12Invert

If the template is instantiated with k >= 50, then the following excerpt from Fpl2Invert is
incorrect:

var inverse[6][2][50] = find_Fpl2_inverse(n, k, p, in); // 6 x 2 x 50, only 6 x 2
x k relevant
for (var i =0; 1 <6; i ++) {
for (var j =0; j <2; j ++) {
for (varm=0; m < k; m ++) {
out[i][j][m] <-- inverse[i]l[j]l[m];

}

}

This is because the third dimension of inverse is of size 50 and if k > 50 this will result in an
index out of bounds during witness generation.

Impact No impact on the current code base but any users of the template should be careful.
Recommendation Add an assertion assert(k < 50) at the beginning of the method.

Developer Response The developers acknowledged and fixed the issue in this commit.

Veridise Audit Report: Succinct Labs © 2022 Veridise Inc.

35

https://github.com/succinctlabs/telepathy/pull/55/commits/414d6581adafbd0331d01b9478f8994b83190f8f

36 4 Vulnerability Report

4.1.25 V-SUC-VUL-025: SignedCheckCarryModToZero doesn’t work for all
instantiations

Low f61894ea121d9b1b885
Maintainability Fixed
circuits/pairing/fp.circom

Template SignedCheckCarryModToZero

If the template is instantiated with k >= 50, then the following excerpt from SignedCheckCarryModToZero
is incorrect:

var Xvar[2][50] = get_signed_Fp_carry_witness(n, k, m, in, p);
component X_range_checks[m];

for(var i=0; i<m; i++){
X[i] <-- Xvar[0][il;
X_range_checks[i] = Num2Bits(n+1);
X_range_checks[i].in <== X[i] + (1l<<n); // X[i] should be between [-2"n, 27"n)

0o N o U~ W NP

}

This is because the second dimension of Xvar is of size 50 and if m > 50 this will result in an
index out of bounds during witness generation.

Impact No impact on the current code base but any users of the template should be careful.

Recommendation Add an assertion assert(m < 50) at the beginning of the method.

Developer Response The developers acknowledged and fixed the issue at this location.

© 2022 Veridise Inc. Veridise Audit Report: Succinct Labs

https://github.com/succinctlabs/telepathy-circuits/blob/main/circuits/pairing/fp.circom#L200

4.1 Detailed Description of Bugs

4.1.26 V-SUC-VUL-026: long_add4 doesn’t work for all invocations

Low f61894ea121d9b1b885

Data Validation Fixed
circuits/pairing/bigintfunc.circom

Function long,dd4

If the function is called with k >= 50, then the following excerpt from long_add4 is incorrect:

function long_add4(n, k, a, b, c, d){
var carry = 0;
var sum[50];
for(var i=0; i < k; i++){
var sumAndCarry[2] = SplitFn(a[i] + b[i] + c[i] + d[i] + carry, n, n);
sum[i] = sumAndCarry[O];
carry = sumAndCarry[1];
}
sum[k] = carry;
return sum;
}

This is because the first dimension of sumis of size 50 and if k > 50 this will result in an index
out of bounds during execution.

Impact No impact on the current code base but any users of the function should be careful.

Recommendation Add an assertion assert(k < 50) at the beginning of the method.

Developer Response The developers acknowledged and fixed the issue in this commit.

Veridise Audit Report: Succinct Labs © 2022 Veridise Inc.

37

https://github.com/succinctlabs/telepathy/pull/55/commits/7266d6479e2c59d7d22b978e7c929d69c29094e8

38

4 Vulnerability Report

4.1.27 V-SUC-VUL-027: long_add_unequal doesn’t work for all invocations

Low f61894ea121d9b1b885

Data Validation Fixed
circuits/pairing /bigint_func.circom

Function long_add_unequal

If the function is called with k1 >= 50, then the following excerpt from long_add_unequal is
incorrect:

function long_add_unequal(n, k1, k2, a, b){
var carry = 0;
var sum[50];
for(var i=0; i<kl; i++){
if (1 < k2) {
var sumAndCarry[2] = SplitFn(a[i] + b[i] + carry, n, n);
sum[i] = sumAndCarry[0];
carry = sumAndCarry[1];
} else {
var sumAndCarry[2] = SplitFn(a[i] + carry, n, n);
sum[i] = sumAndCarry[0];
carry = sumAndCarry[1];
}
1
sum[kl] = carry;
return sum;
}

This is because the first dimension of sumis of size 50 and if k1 >= 50 this will result in an index
out of bounds during execution.

Impact No impact on the current code base but any users of the function should be careful.

Recommendation Add an assertion assert(kl < 50) at the beginning of the method.

Developer Response The developers acknowledged and fixed the issue in this commit.

© 2022 Veridise Inc. Veridise Audit Report: Succinct Labs

https://github.com/succinctlabs/telepathy/pull/55/commits/dd13777dc09d754e16f3ad058df4b2f848f3789c

© 0 N OO U~ W N

=
N R ©

4.1 Detailed Description of Bugs

4.1.28 V-SUC-VUL-028: SignedFpCarryModP doesn’t work for all instantiations

Low f61894ea121d9b1b885

Maintainability Fixed
circuits/pairing/fp.circom

Template SignedFpCarryModP

If the template is instantiated with k >= 50, then the following excerpt from SignedFpCarryModP
is incorrect:

var Xvar[2][50] = get_signed_Fp_carry_witness(n, k, m, in, p);
component X_range_checks[m];

component range_checks[k];

//component 1t = BigLessThan(n, k);

for(var i=0; i<k; i++){
out[i] <-- Xvar[l][i];
range_checks[i] = Num2Bits(n);
range_checks[i].in <== out[i];
//lt.a[i] <== out[il];
//1t.b[i] <== p[il;

}

This is because the second dimension of Xvar is of size 50 and if k >= 56 this will result in an
index out of bounds during witness generation.

Impact No impact on the current code base but any users of the template should be careful.
Recommendation Add an assertion assert(k < 50) at the beginning of the method.

Developer Response The developers acknowledged and fixed the issue in this commit.

Veridise Audit Report: Succinct Labs © 2022 Veridise Inc.

39

https://github.com/succinctlabs/telepathy/pull/55/commits/29395b5dfe1376c8ea6abef9fa7e02584fe2b522

40 4 Vulnerability Report

4.1.29 V-SUC-VUL-029: Assumptions in long_add_unequal should be asserted
explicitly

Low f61894ea121d9b1b885
Data Validation Fixed
circuits/pairing/bigint_func.circom

Function long_add_unequal

k1l > k2 should assert explicitly according to the comment here.

1 // n bits per register

2 // a has k1 registers

3 // b has k2 registers

4 // assume k1l > k2

5 // output has kl+1 registers

6 function long_add_unequal(n, k1, k2, a, b){
7 var carry = 0;

8 var sum[501];

9 for(var i=0; i<kl; i++){

10 if (1 < k2) {

11 var sumAndCarry[2] = SplitFn(a[i] + b[i] + carry, n, n);
12 sum[i] = sumAndCarry[O];

13 carry = sumAndCarry[1];

14 } else {

15 var sumAndCarry[2] = SplitFn(a[i] + carry, n, n);
16 sum[i] = sumAndCarry[O];

17 carry = sumAndCarry[1];

18 }

19 }

20 sum[kl] = carry;

21 return sum;

22 }

Impact No impact on the current code base but any users of the function should be careful.

Recommendation Add an assertion assert(kl > k2) at the beginning of the method.

Developer Response The developers acknowledged and fixed the issue in this commit.

© 2022 Veridise Inc. Veridise Audit Report: Succinct Labs

https://github.com/succinctlabs/telepathy/pull/55/commits/1fe80d3b8f2ace6deeec90e96bfcbb62db0a4f8a

O 0 N OO U~ W N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

4.1 Detailed Description of Bugs

4.1.30 V-SUC-VUL-030: Intermediate Signal add.out is under constrained in
BigSubModP

Warning f61894ea121d9b1b885
Maintainability Won't Fix
circuits/pairing/bigint.circom

Template BigSubModP

In the circuit BigSubModP, shown below, the intermediate signals add. out are underconstrained.

// calculates (a - b) % p, where a, b <p
// note: does not assume a >= b
template BigSubModP(n, k){
assert(n <= 252);
signal input alkl];
signal input b[k];
signal input p[k];
signal output out[k];
component sub = BigSub(n, Kk);
for (var i = 0; i < k; i++){
sub.al[i] <== a[il;
sub.b[i] <== b[i];
}
signal flag;
flag <== sub.underflow;
component add = BigAdd(n, Kk);
for (var i = 0; i < k; i++){
add.a[i] <== sub.out[i];
add.b[i] <== p[i];
}
signal tmplkl];
for (var 1 = 0; i < k; i++){
tmp[i] <== (1 - flag) * sub.out[i];
out[i] <== tmp[i] + flag * add.out[i];
1
}

If flag = 0 note that add.out is not included in any assertion. Similarly, if flag = 1 then
add.out[k] is not included in any constrained.

Impact We think that there is no apparent vulnerability due to this, however we think it is
worth mentioning as a warning since we can’t prove that it is not possible to exploit.

Recommendation Add a comment noting that add[k]is unrestricted in the implementation.

Developer Response This mainly affects the circom-pairing library maintainability. Thus, it is
not crucial for fixing it in the context of this project.

Veridise Audit Report: Succinct Labs © 2022 Veridise Inc.

41

42 4 Vulnerability Report

4.1.31 V-SUC-VUL-031: HashToField is under constrained

Warning f61894ea121d9b1b885

Logic Error Fixed
circuits/circuits/hash_to_field.circom

Template HashToField

The template HashToField is underconstrained as the function SignedFpCarryModP is under-
constrained. This would normally be okay since CoreVerifyPublicKeyG1 checks that the field
element is less than the prime; however, that check is incorrect.

Developer Response This is implicitly fixed by the fix of the CoreVerifyPubkeyG1 data valida-
tion issue.

© 2022 Veridise Inc. Veridise Audit Report: Succinct Labs

4.1 Detailed Description of Bugs 43

4.1.32 V-SUC-VUL-032: Make all depth constants the floorlog?2 of their index
constants

Warning f61894ea121d9b1b885
Maintainabilty Wont Fix
circuits/circuits/constants.circom

Functions that return depth of an index.

There are atleast three index constants which have corresponding depth constants: FinalizedHeaderIndex
, ExecutionStateRootIndex, and SyncCommitteeIndex . Since the depth constants should always

be the floor of the log_2 of the index constants, we recommend changing the functions which

get the depth constants to compute the floorlog2 of the corresponding index constant rather

than returning a hardcoded constant. This way if one of the index constants is changed, the

depth constant should not need to be updated .

Impact If the index constant is changed but depth constant isn’t then the implementation will
not be correct.

Recommendation We recommend writing a function that computes floorlog2 and making
the functions which get the depth constants use it on their corresponding index functions. For
example, we recommend changing getFinalizedHeaderDepth to:

1 function getFinalizedHeaderDepth() {
2 return log2_floor(getFinalizedHeaderIndex());
3 }

Developer Response The developers acknowledged this issue but chose not to implement
our recommendation at this point.

Veridise Audit Report: Succinct Labs © 2022 Veridise Inc.

44

4 Vulnerability Report

4.1.33 V-SUC-VUL-033: Parameter N is unused in template PoseidonG1Array

Warning f61894ea121d9b1b885

Maintainability Wont Fix
circuits/circuits /poseidon.cirocm

Template PoseidonGlArray

The template PoseidonG1Array shown below takes a parameter N which is not used.

template PoseidonGlArray(LENGTH, N, K) {

signal input pubkeys[LENGTHI[2][KI;
signal output out;

component hasher = PoseidonFieldArray(LENGTH * 2 * K);
for (var i = 0; i < LENGTH; i++) {
for (var j =0; j < K; j++) {
for (var 1 =0; 1 < 2; 1++) {
hasher.in[(i *x K * 2) + (j * 2) + 1] <== pubkeys[i][l][j];

}

out <== hasher.out;

Impact The main impact is readability. It would be good to have some documentation for why
N is taken as a parameter even though it is unused

Recommendation We recommend that N is removed or a comment is added indicating the
parameter is unused and why it is important.

Developer Response This is a minor issue that does not affect the overall application.

© 2022 Veridise Inc. Veridise Audit Report: Succinct Labs

4.1 Detailed Description of Bugs

4.1.34 V-SUC-VUL-034: Input signal aggregatePubkeyBigInt can be dropped from
template Rotate without comprimising security

Info f61894ea121d9b1b885
Optimization Fixed
circuits/circuits/rotate.circom

Template Rotate

The template Rotate takes a private input signal aggregatePubkeyBigInt which is only used to
validate that the conversion of aggregatePubkey bytes to bigints is done correctly. However, this
check is not necessary since a malicious attacker can always compute G1BytesToBigInt locally

for a given aggregatePubkey and use the corresponding output when generating the proof.

Impact The input and code which uses it makes the implementation unnecessarily complex.

Recommendation We recommend removing this input along with all code using it as this
would reduce the number of constraints and simplify the implementation as a whole.

Developer Response The developers acknowledged and fixed the issue in this commit.

Veridise Audit Report: Succinct Labs © 2022 Veridise Inc.

45

https://github.com/succinctlabs/telepathy/pull/55/commits/b57dcb6e96f95f3a866c68d17f79cfb871ff6cd6

46 4 Vulnerability Report

4.1.35 V-SUC-VUL-035: Duplicate Code Snippet

Info f61894eal21d9b1b885

Maintainability SIE(O M Won't Fix
circuits/circuits /inputs.circom

Template SerializeLightClientStepInputs

The code that converts signals to little endian format has been duplicated inside SerializeLightClientStepInputs

1 /* participationLE = tolLittleEndian(participation) =*/
2 component bitify® = Num2Bits_strict();

3 bitify0.in <== participation;

4 component byteify0@[32];

5 for (var i = 0; i < 32; i++) {

6 byteifyQ[i] = Bits2Num(8);

7 for (var j = 0; j < 8; j++) {

8 if (i%8+j < TRUNCATED_SHA256_SIZE) {

9 byteify0[i].in[j] <== bitify0.out[ix8+j];
10 } else {

11 byteify0[i].in[j] <== 0;

12 }

13 }

14 }

15

16

17

18 /* syncCommitteePoseidonLE = toLittleEndian(syncCommitteePoseidon) x*/
19 component bitifyl = Num2Bits_strict();

20 bitifyl.in <== syncCommitteePoseidon;

21 component byteifyl[32];

22 for (var i = 0; i < 32; i++) {

23 byteifyl[i] = Bits2Num(8);

24 for (var j =0; j < 8; j++) {

25 if (ix8+j < 254) {

26 byteifyl[i].in[j] <== bitifyl.out[ix8+j];
27 } else {

28 byteifyl[i].in[j] <== 0;

29 }

30 }

31 }

Impact This can create maintainability issues in the future.

Recommendation We recommend creating a new template for little endian conversion and
use it in the above locations.

Developer Response The developers acknowledged this issue but chose not to implement
our recommendation at this point.

© 2022 Veridise Inc. Veridise Audit Report: Succinct Labs

O 0w N OO U~ W N

=
N B ©

4.1 Detailed Description of Bugs

4.1.36 V-SUC-VUL-036: Gratuitous constraints in SerializeLightClientStepInputs

Info f61894ea121d9b1b885

Optimization Wont Fix
circuits/circuits/input.circom

Template SerializeLightClientStepInputs

Template SerializeLightClientStepInputs converts the result of sha3 into bits unnecessarily.
Template Sha256, which is used internally in Sha256Bytes, returns the hash in bit format. That
means the result of Sha256 is first converted to bytes and then back to bits again.

/* h = sha256(h, syncCommitteePoseidonLE) x*/
component sha3 = Sha256Bytes(64);
for (var i = 0; 1 < 32; i++) {
sha3.in[i] <== sha2.out[il];
sha3.in[32+i] <== byteifyl[i].out;

component bitifiers[32];

for (var i = 0; i < 32; i++) {
bitifiers[i] = Num2Bits(8);
bitifiers[i].in <== sha3.out[i];

Impact This adds unnecessary constraints in a system with millions of constraints.

Recommendation We recommend replacing Sha256Bytes with two separate templates in
circuits/circuits/sha256.circom: 1. Sha256BytesToBytes, which will be equivalent to the cur-
rent Sha256Bytes template and 2. Sha256BytesToBits, which will omit the conversion of Sha256’s
result to bytes.

Developer Response The developers acknowledged this issue but chose not to implement
our recommendation at this point.

Veridise Audit Report: Succinct Labs © 2022 Veridise Inc.

47

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Bugs

	Detailed Description of Bugs
	V-SUC-VUL-001: ArrayXOR is under constrained
	V-SUC-VUL-002: Template CoreVerifyPubkeyG1 does not perform input validation
	V-SUC-VUL-003: Zero Padding for Sha256 in ExpandMessageXMD is vulnerable to an overflow
	V-SUC-VUL-004: Sync committee can be rotated successfully with random public keys
	V-SUC-VUL-005: Template LongToShortNoEndCarry is incomplete for some instantiations
	V-SUC-VUL-006: ModSumFour is Incorrect
	V-SUC-VUL-007: Template G1AddMany assumes that no intermediate sum is equal to the point at infinity.
	V-SUC-VUL-008: VerifySyncCommittee should make sure that not all the aggregation bits are 0
	V-SUC-VUL-009: Templates Split and SplitThree have non-deterministic instantiations
	V-SUC-VUL-010: Implicit assumption in BigMult
	V-SUC-VUL-011: BigMod does not work for all instantiations
	V-SUC-VUL-012: BigMod2 does not work for all instantiations
	V-SUC-VUL-013: BigModInv does not work for all instantiations
	V-SUC-VUL-014: Implicit Assumption in BigModInv
	V-SUC-VUL-015: Constant 512 should be replaced with SYNC_COMMITTEE_SIZE
	V-SUC-VUL-016: Fp2Invert does not work for all valid instantiations
	V-SUC-VUL-017: SignedFp2Divide does not work for all valid instantiations
	V-SUC-VUL-018: Constant 32 should be replaced with B_IN_BYTES in ExpandMessageXMD
	V-SUC-VUL-019: PrimeReduce does not work for all valid instantiations
	V-SUC-VUL-020: SSZPhase0SyncCommittee should use template parameters
	V-SUC-VUL-021: SSZLayer assumes numBytes ≥ 64
	V-SUC-VUL-022: SSZRestoreMerkelRoot signal value is unused
	V-SUC-VUL-023: EllipticCurveAddUnequal doesn’t work for all instantiations
	V-SUC-VUL-024: Fp12Invert doesn’t work for all instantiations
	V-SUC-VUL-025: SignedCheckCarryModToZero doesn’t work for all instantiations
	V-SUC-VUL-026: long_add4 doesn’t work for all invocations
	V-SUC-VUL-027: long_add_unequal doesn’t work for all invocations
	V-SUC-VUL-028: SignedFpCarryModP doesn’t work for all instantiations
	V-SUC-VUL-029: Assumptions in long_add_unequal should be asserted explicitly
	V-SUC-VUL-030: Intermediate Signal add.out is under constrained in BigSubModP
	V-SUC-VUL-031: HashToField is under constrained
	V-SUC-VUL-032: Make all depth constants the floorlog2 of their index constants
	V-SUC-VUL-033: Parameter N is unused in template PoseidonG1Array
	V-SUC-VUL-034: Input signal aggregatePubkeyBigInt can be dropped from template Rotate without comprimising security
	V-SUC-VUL-035: Duplicate Code Snippet
	V-SUC-VUL-036: Gratuitous constraints in SerializeLightClientStepInputs

