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Executive Summary 1

From July 28 to November 15, 2022, through a joint effort among 0xPRAC Community, Ethereum
Foundation, and Veridise, we reviewed the security of the circom-bigint curcuit implementa-
tion and its dependent library circomlib . The review covered all circuits implemented using cir-
com in the circom-bigint ’s repository (https://github.com/0xbok/circom-bigint/tree/
audit) ∗ and its dependant library (https://github.com/iden3/circomlib) †. We conducted
this assessment over 24 person-weeks, with 4 engineers working on commit 7505e5c of the
client’s repository (cff5ab6 of its dependant repository). The auditing strategy involved both
manual and tool-assisted analysis of the source code performed by engineers from 0xPARC
Community, EF, and Veridise. The tools that were used in the audit include a combination of
static analysis and interactive theorem prover using Coq. The outcome of the auditing includes
1) this auditing report, and 2) 20K+ lines of machine-checkable proof in Coq.

Summary of issues detected. The audit uncovered 14 issues in circomlib , including 9 issue
of critical severity. The critical severity issues (V-BIGINT-COD-001, V-CIRCOMLIB-PIC-001
∼ V-CIRCOMLIB-PIC-008) correspond to underconstrained issues in circuits, which allow
attackers to construct spurious proofs that violate the intended functional behavior yet bypass
the validation checks, thus compromising potential functionality of the system that incorporates
the target circuits. The rest of the issues include 5 low-severity issues (V-BIGINT-VUL-001
∼ V-BIGINT-VUL-003, V-CIRCOMLIB-PIC-009, V-CIRCOMLIB-PIC-010) that involves empty
circuit templates that could potentially cause underconstrained errors when used, as well as
optimizations on constraint size and documentations. In addition to the above-mentioned issues,
we also formally verified (with machine-checkable proof in Coq) the functional correctness of
the circuits with respect to their specifications written by 0xPARC Community and proved the
absence of underconstrained issues.

Code assessment. The core circom-bigint library implements big integer operations in
circom. The core logic of the library is split into the following 3 parts:

▶ bigint.circom : This contains the core logic and major templates for big integer operations.
▶ bigint_4x64_mult.circom : This contains pre-defined big integer functions for use in

Secp256k1 elliptic curve.
▶ bigint_func.circom : This contains the core helper functions for the major templates.

The repository is intended to be used as a library to support scenarios that involve big
integer operations, e.g. ECDSA operations as seen in circom-ecdsa library. However, as our
investigation uncovered, there’s insufficient documentation on the library templates provided.
Specifically, documentations about some templates’ input/output assumptions and functional
properties are missing, which, as suggested in the detailed analysis report in the follow-up
sections, could induce critical issues when misused by developers. We would strongly encourage

∗ commit:7505e5c
† commit:cff5ab6
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2 1 Executive Summary

the developers to improve the documentation of the project, especially on some indispensable
security related assumptions for using the templates from the library.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall any of the parties and auditors be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

© 2022 | 0xPARC | Ethereum Foundation | Veridise Inc. Auditing Report | circom-bigint



Project Dashboard 2

Table 2.1: Application Summary.

Name Version Type Platform

circom-bigint 2eceb9c Circom Native/Linux
circomlib cff5ab6 Circom Native/Linux

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort

July 28-Nov 15, 2022 Manual & Tools 4 24 person-weeks

Table 2.3: Vulnerability Summary.

Name Number Fixed

High-Severity Issues 9 0
Medium-Severity Issues 0 0
Low-Severity Issues 5 0

Table 2.4: Category Breakdown.

Name Number

Optimization 3
Underconstrained Error 11

Auditing Report | circom-bigint © 2022 | 0xPARC | Ethereum Foundation | Veridise Inc.





Audit Goals and Scope 3

3.1 Audit Goals

The engagement was scoped to provide a security assessment of the circom-bigint and its
dependent library circomlib . Specifically, we sought to answer the following questions:

▶ Are the circuits implemented according to their functional specification?
▶ Are the circuits secured against adversaries?
▶ Are all circuit (critical) components properly constrained?
▶ Does the protocol perform all necessary data validation and checks for its inputs?

3.2 Audit Methodology & Scope

Audit Methodology. Because this audit includes a wide range of goals, some of which are not
amenable to automation, our audit methodology involved a combination of human experts and
a variety of automated program analysis tools. In particular, during our audit, we leveraged the
following technologies:

▶ Static analysis. To ensure that the circom-bigint circuits and their dependencies are free
of any common defects, we used an open-source static analysis tool, Picus, developed by
Veridise. Specifically, Picus aims to perform the following two tasks: 1. detect common
buggy patterns in circom circuits and 2. determine whether all circuit templates are
properly constrained, which is a crucial security property for ZK circuits. Additionally,
when a buggy pattern or underconstrained signal is found, Picus invokes a process based
on automated theorem proving to reason about and compute a concrete counterexampmle,
which is a set of witnesses that violate the security properties yet admitted by the constraint
system.

▶ Formal verification. Notably, we formally verified the circuits in circom-bigint using
Veridise’s tool Coda. The formal verification includes functional specifications from the
original authors as well as 20K+ machine-checkable proof in Coq. A brief summary of
our formal verification using Coda can be found in Section 4.

▶ Manual inspection. We further performed manual inspection on the entire codebase in
circom-bigint and suggest a couple of improvement regarding the performance of the

circuits (Section 5).

Scope. The scope of this audit includes all circom-bigint circom circuits, as well as its dependant
library circomlib . As such, Our security engineers first reviewed the provided documentation
to understand the desired behavior of the protocol as a whole. They then inspected the provided
tests to understand the desired behavior of the protocol’s circuits as well as how users are
expected to interact with them.

Auditing Report | circom-bigint © 2022 | 0xPARC | Ethereum Foundation | Veridise Inc.
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6 3 Audit Goals and Scope

Limitations. Due to the scope of our audit, the recommendations provided in this report are
limited to the functional specification provided by the circom-bigint developers. The overall
security of the system can be compromised if:

1. the circuits are not deployed according to industry standards, i.e., following a secure
trusted setup ceremony, the whole protocol can be at risk in case the common reference
string (CRS) is leaked,

2. the original specification is not strong enough to cover the actual behavior, or
3. any component outside the scope of the audit is vulnerable.

3.3 Classification of Vulnerabilities

When our auditors discover a possible security vulnerability, they must estimate its severity by
weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Moderate

Likely Warning Low Moderate High
Very Likely Low Moderate High Critical

In this case, we judge the likelihood of a vulnerability as follows:

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows:

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2022 | 0xPARC | Ethereum Foundation | Veridise Inc. Auditing Report | circom-bigint
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Formal Verification Results 4

As mentioned in Section 3, part of our audit efforts include formal verification using tools
developed by Veridise, namely Coda and Picus. Coda is an open-source library that can be
used to prove the functional correctness of zero-knowledge circuits by leveraging the Coq proof
assistant. Picus is an open-source security analysis tool that can be used to automatically find
safety bugs in zero-knowledge circuits.

In what follows, we elaborate on the verification results from both tools. Specifically:

▶ For proving functional correctness on circom-bigint using Coda, we first give an
overview about necessary background, workflow along with additional assumptions.
Then we give a high-level overview of the templates certified, and go with details about
the findings.

▶ For findings of underconstrained bugs on circom-bigint ’s dependent library circomlib

using Picus, we list out the details of each of them found, with potential impacts and
recommendations for patching.

Both Coda and Picus are open-source tools developed by Veridise. They are available on
Github:

▶ Coda: https://github.com/Veridise/Coda
▶ Picus: https://github.com/Veridise/Picus

Auditing Report | circom-bigint © 2022 | 0xPARC | Ethereum Foundation | Veridise Inc.
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8 4 Formal Verification Results

4.1 Formal Verification Using Coda

In this section we elaborate on the formal verification process in order to prove the functional
correctness of a circuit from circom-bigint and its dependant library circomlib using Coda.

Overview Coda is an open-source Coq library for semi-automatically performing formal
verification on zero-knowledge circuits. To improve the degree of automation, Coda provides a
set of useful tactics for formally verifying functional correctness of ZK circuits.

Workflow To verify the functional correctness of a given template, Coda starts with its
specification from the original repository (see here and here), where the following conditions
are given:

▶ Pre-conditions, including inputs 𝑋 and assumptions of relations between them 𝜙(𝑋);
▶ Post-conditions, including outputs 𝑌 and properties of relations between them 𝜓(𝑌).

Coda then incorporates a semi-automated transpilation process that converts the original
circuit template into its corresponding Coq constraint representation �(𝑋,𝑌). Together with
the pre-conditions and post-conditions from specification, Coda can certify the functional
correctness of a given template, if the following holds:

∀𝑋,𝑌. (𝜙(𝑋) ∧ �(𝑋,𝑌)) ⇒ 𝜓(𝑌).

Otherwise, we derive additional conditions to verify the template but mark it as "Not Certified".

Assumptions and background Sometimes, the provided specification is insufficient to prove
circuit soundness. This is usually remedied via the following means:

▶ Adding/Strengthening pre-conditions:

• It can be the case that the developer forgets to make explicit some assumptions about
the parameters of a circuit, perhaps because the circuit has only been instantiated
internally and hence all said assumptions are satisfied implicitly. However, if the
circuit is to be made for public use, explicitly stating those assumptions becomes
critical. In practice, as circuit verifiers, we try to add the weakest pre-conditions that
can make the post-condition hold.

• Since most circuits make liberal use of loops, we also need to supply loop invariants
when constructing a correctness proof, and prove that those loop invariants hold.
In practice, the loop invariants are either trivial, or can be easily derived from the
post-condition (or back propagation of the post-condition).

▶ In order for Coq to be able to reason about circuit correctness, we need to encode, or
embed, circuits as native Coq terms. The Coq embedding of circuits that we have chosen
is straightforward, and can be coded into a mechanical procedure:

• A circuit template is represented as a record type that has as its fields the public
signals, and a special field cons that represents the circuit body as a relation over the
public signals.

© 2022 | 0xPARC | Ethereum Foundation | Veridise Inc. Auditing Report | circom-bigint
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4.1 Formal Verification Using Coda 9

• We use existential quantifiers to represent private signals and circuit components
(i.e. instantiation).

• Loops are represented using the high-order function:

iter: (nat -> A -> A) -> nat -> A -> A .

That is, we represent the loop body as an anonymous function fof type nat -> A -> A ,
where nat is the current loop index, and A is the type of the variables that are
modified inside the loop (called states). Then, iter takes the number of iterations
n and the initial state, and outputs the final state obtained by applying f to the

initial state n times.

▶ We use the following external libraries in addition to Coq’s standard library.

• We use the formalization of finite fields developed by fiat-crypto.
• We use coqprime to generate primality proof for the BabyJubjub prime.

Auditing Report | circom-bigint © 2022 | 0xPARC | Ethereum Foundation | Veridise Inc.
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10 4 Formal Verification Results

Results Table 4.1 summarizes the verification results from Coda. In total, 30 templates from
both circom-bigint and circomlib are verified by Coda, where one of them is found buggy∗

and we provide a fix for it ( 380e5430fe3e4effbd62fdb5abb7ea93af686f97 ). We elaborate in the
following sections more details on the results. The full set of Coda proofs for circom-bigint

and circomlib can be found here and here.

Table 4.1: Summary of Coda verification results.

Library Template Status

circomlib/circuits/bitify.circom Num2Bits Certified
circomlib/circuits/bitify.circom Bits2Num Certified
circomlib/circuits/comparators.circom IsZero Certified
circomlib/circuits/comparators.circom IsEqual Certified
circomlib/circuits/comparators.circom LessThan Certified
circomlib/circuits/gates.circom AND Certified
circomlib/circuits/gates.circom OR Certified
circomlib/circuits/gates.circom XOR Certified
circomlib/circuits/gates.circom NAND Certified
circomlib/circuits/gates.circom NOR Certified
circomlib/circuits/gates.circom NOT Certified
circomlib/circuits/multiplexer.circom EscalarProduct Certified
circuits/bigint.circom BigIsEqual Certified
circuits/bigint.circom BigIsZero Certified
circuits/bigint.circom ModSubThree Certified
circuits/bigint.circom ModSumThree Certified
circuits/bigint.circom ModProd Certified
circuits/bigint.circom Split Certified
circuits/bigint.circom SplitThree Certified
circuits/bigint.circom BigAdd Certified
circuits/bigint.circom BigMultShortLongUnequal In Progress
circuits/bigint.circom LongToShortNoEndCarry In Progress
circuits/bigint.circom BigMult In Progress
circuits/bigint.circom BigLessThan Certified
circuits/bigint.circom BigMod Fixed
circuits/bigint.circom BigAddModP Certified
circuits/bigint.circom BigSub Certified
circuits/bigint.circom BigSubModP Certified
circuits/bigint.circom BigModInv In Progress
circuits/bigint.circom CheckCarryToZero Certified

Properties [| x |] denotes the value of a big integer x.

Num2Bits(n)

Convert a signal vector to the number it represents in little-endian
base-2 representation.

Pre-condition ⊤
Post-condition in =

∑n−1
𝑖=0 2𝑖 · out[𝑖] ∧ (∀𝑖 < n.out[𝑖] = 0 ∨ out[𝑖] = 1)

Property -

∗ The bug only appeared in bigInt used by the circom-pairing library.

© 2022 | 0xPARC | Ethereum Foundation | Veridise Inc. Auditing Report | circom-bigint
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4.1 Formal Verification Using Coda 11

IsZero(n) Check if given input is equal to zero.
Pre-condition ⊤

Post-condition ite(in = 0, out = 1, out = 0)
Property -

IsEqual(n) Check if the two given inputs are equal.
Pre-condition ⊤

Post-condition ite(in[0] = in[1], out = 1, out = 0)
Property -

LessThan(n) Check if a given bigint is less than the other.
Pre-condition n ≤ 252 ∧ in[0] ≤ 2n − 1 ∧ in[1] ≤ 2n − 1

Post-condition ite(toZ(in[0]) <ℤ toZ(in[1]), out = 1, out = 0)
Property -

BigIsEqual(k) Check if two bigints are equal.
Pre-condition 1 ≤ k ≤ 253

Post-condition (a = b ⇒ out = 1) ∧ (a ≠ b ⇒ out = 0)
Property if a equals b, out equals 1; otherwise, out equals 0.

BigIsZero(k) Check if bigint a is equal to zero.
Pre-condition 1 ≤ k ≤ 253

Post-condition (in = 0 ⇒ out = 1) ∧ (in ≠ 0 ⇒ out = 0)
Property If in equals 0, out equals 1; otherwise, out equals 0.

ModSubThree(n) Compute a − b − c with borrow bit.
Pre-condition n ≤ 251 ∧ a ≤ 2n − 1 ∧ b ≤ 2n − 1 ∧ bin(c)

Post-condition out = (a + borrow · 2n) − b − c ∧ out ≤ 2n − 1 ∧ bin(borrow)∧
(borrow = 1 ⇔ a < b + c)

Property 1 out = a − b − c + borrow · 2n ∧ out < 2n − 1
Property 2 borrow is binary and borrow = 1 if and only if a < b + c

ModSumThree(n) Compute addition mod 2n with carry bit.
Pre-condition n ≤ 252 ∧ a ≤ 2n − 1 ∧ b ≤ 2n − 1 ∧ bin(s)

Post-condition sum + carry · 2n = a + b + c ∧ sum ≤ 2n − 1 ∧ bin(c)
Property 1 sum equals a + b + c − carry · 2n and is less than 2n − 1
Property 2 carry is binary

ModProd(n) Compute product mod 2n with carry.
Pre-condition 2 · n <= k

Post-condition carry · 2n + prod = a · b ∧ prod ≤ 2n − 1
Property 1 carry · 2n + prod = a · b
Property 2 prod ≤ 2n − 1

Split(n, m) Split a (n + m) bit input into two outputs.
Pre-condition ⊤

Post-condition small ≤ 2n − 1 ∧ big ≤ 2m − 1 ∧ in = small + big · 2n

Property -

Auditing Report | circom-bigint © 2022 | 0xPARC | Ethereum Foundation | Veridise Inc.



12 4 Formal Verification Results

SplitThree(n, m, k) Split a (n + m + k) bit input into three outputs.
Pre-condition ⊤

Post-condition small ≤ 2n − 1 ∧ medium ≤ 2m − 1 ∧ big ≤ 2k − 1∧
in = small + medium · 2n + big · 2(n+m)

Property -

BigAdd(n, k) Add two bigints.
Pre-condition n > 0 ∧ k > 0 ∧ n ≤ 252 ∧ bigint(a) ∧ bigint(b)

Post-condition [|out|] = [|a|] + [|b|] ∧ bigint(out)
Property -

BigLessThan(n, k) Check which of two bigints is larger.
Pre-condition n ≤ 252 ∧ 2 ≤ k ∧ bigint(a) ∧ bigint(b)

Post-condition binary(out) ∧ (out = 1 ⇔ [|a|] < [|b|])
Property -

BigMod(n, k) Division with remainder of two bigints.
Pre-condition n > 0 ∧ k > 0 ∧ n ≤ 251 ∧ bigint(a) ∧ bigint(b)

Post-condition bigint(div) ∧ bigint(mod) ∧ [|a|] = [|div|] · [|b|] + [|mod|]
Property -

BigAddModP(n, k) Add two bigints.

Pre-condition n > 0 ∧ k > 0 ∧ n <= 251 ∧ bigint(a) ∧ bigint(b) ∧ bigint(p)∧
[|a|] < [|p|] ∧ [|b|] < [|p|]

Post-condition [|out|] = ([|a|] + [|b|]) mod [|p|] ∧ bigint(out)
Property -

BigSub Subtract two bigints.
Pre-condition n > 0 ∧ k > 0 ∧ n ≤ 251 ∧ bigint(a) ∧ bigint(b)

Post-condition
bigint(out) ∧ bin(underflow) ∧ ([|a|] ≥ [|b|] ⇒ underflow = 0∧
[|out|] = [|a|] − [|b|]) ∧ ([|a|] < [|b|] ⇒ underflow = 1∧
[|out|] = 2(n·k) + [|a|] − [|b|])

Property 1 out = a − b

Property 2 underflow equals how much is borrowed at the highest register of
subtraction; only nonzero if a < b

BigSubModP Subtract two bigints.

Pre-condition n > 0 ∧ k > 0 ∧ n ≤ 251 ∧ bigint(a) ∧ bigint(b) ∧ bigint(p)∧
[|a|] < [|p|] ∧ [|b|] < [|p|]

Post-condition bigint(out) ∧ [|out|] = ([|a|] − [|b|]) mod [|p|]
Property -

CheckCarryToZero(n, m, k)

Constrain that in[] (signed overflow representation)
evaluated at X = 2n as a big integer equals zero.

Pre-condition 1 ≤ n ≤ m ∧ k ≥ 2 ∧ m ≤ 251 ∧ ∀𝑖 < k. in[𝑖] ∈ (−2m−1 , 2m−1)
Post-condition [|𝑖𝑛 |] = 0

Property -

© 2022 | 0xPARC | Ethereum Foundation | Veridise Inc. Auditing Report | circom-bigint



4.1 Formal Verification Using Coda 13

4.1.1 Example: BigIsEqual(k)

BigIsEqual is an important circuit in the library since it is used by both circom-pairing and
circom-ecdsa. Essentially, this circuit checks if k-register variables a, b are equal everywhere.

1 template BigIsEqual(k) {

2 signal input a[k];

3 signal input b[k];

4 signal output out;

5

6 component isEquals[k];

7 var total = k;

8 for (var i = 0; i < k; i ++) {

9 isEquals[i] = IsEqual();

10 isEquals[i].in[0] <== a[i];

11 isEquals[i].in[1] <== b[i];

12 total -= isEquals[i].out;

13 }

14 component checkZero = IsZero();

15 checkZero.in <== total;

16 out <== checkZero.out;

17 }

To prove correctness of this circuit, we have to first translate the above specification into a
program written in Coda’s specification language. This corresponds to the following code snippet
taken from the Coda repository:

1 Definition spec (c: t) : Prop :=

2 (* pre-condition *)

3 1 <= k <= 253 →
4 (* post-condition *)

5 if (forallb (fun x ⇒ (fst x = snd x)? ) (ListUtil.map2 pair (’ c.(a)) (’ c.(b))))

6 then

7 c.(out) = 1

8 else

9 c.(out) = 0

Assuming that 1 <= 𝑘 <= 253, this specification ensures the following property:

▶ if k-register variables a, b are equal everywhere, out is equal to 1. if not, out is equal to 0

The property of this circuit can be verified by manually providing the following loop invariant
in Coda:

1 pose (Inv := fun (i:nat) ’((total, _cons): (F * Prop)) ⇒ _cons →
2 total = (fold_left

3 (fun x y ⇒ if (fst y = snd y)? then x - 1 else x)

4 (ListUtil.map2 pair (’ a [:i]) (’ b [:i]))

5 (F.of_nat q k))).

Auditing Report | circom-bigint © 2022 | 0xPARC | Ethereum Foundation | Veridise Inc.



14 4 Formal Verification Results

4.1.2 Example: BigAdd(n, k)

BigAdd is a crucial component of the library as it is used by real-world applications such as
circom-pairing. Essentially, this circuit performs addition on big integers.

1 template BigAdd(n, k) {

2 assert(n <= 252);

3 signal input a[k];

4 signal input b[k];

5 signal output out[k + 1];

6

7 component unit0 = ModSum(n);

8 unit0.a <== a[0];

9 unit0.b <== b[0];

10 out[0] <== unit0.sum;

11

12 component unit[k - 1];

13 for (var i = 1; i < k; i++) {

14 unit[i - 1] = ModSumThree(n);

15 unit[i - 1].a <== a[i];

16 unit[i - 1].b <== b[i];

17 if (i == 1) {

18 unit[i - 1].c <== unit0.carry;

19 } else {

20 unit[i - 1].c <== unit[i - 2].carry;

21 }

22 out[i] <== unit[i - 1].sum;

23 }

24 out[k] <== unit[k - 2].carry;

25 }

The functional correctness of BigAdd corresponds to the following code snippet taken from the
Coda repository:

1 Definition spec (w: t) : Prop :=

2 (* pre-condition *)

3 n > 0 →
4 k > 0 →
5 (n <= 252)%Z →
6 (* a and b are proper big int *)

7 ’w.(a) |: (n) →
8 ’w.(b) |: (n) →
9 (* post-condition *)

10 ([|| w.(out) ||] = [|| w.(a) ||] + [|| w.(b) ||])%Z ∧
11 ’w.(out) |: (n).

Assuming that 0 < 𝑛 <= 252 and 𝑘 > 0, this specification ensures the following properties for
BigAdd if a and b are in proper big integer representation:

▶ out is in proper big integer representation
▶ [| out |] = [| a |] + [| b |]
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4.1.3 V-BIGINT-COD-001: Missing range checks in BigMod

Severity Critical Commit cff5ab6
Type Underconstrained Error Status Open
Files circuits/bigint.circom

Functions template BigMod(n, k)

The big integer remainders mod[i] is not properly constrained (missing additional constraints)
as opposed to div[i] , as shown below:

1 ...

2 template BigMod(n, k) {

3 ...

4 div[k] <-- longdiv[0][k];

5 component range_checks[k + 1];

6 for (var i = 0; i <= k; i++) {

7 range_checks[i] = Num2Bits(n);

8 range_checks[i].in <== div[i];

9 }

10 ...

It is insufficient to guarantee that mod[i] is in proper big integer representation. Specifically,
in big integer base 2𝑛 is used, so templates need to maintain the invariant that every digit is
less than 2𝑛 . However, in this template, it only enforce this invariant for div[i] and not for
mod[i] , which makes it possible for a malicious prover to supply illegal values that break the

invariant.

Coda requires proper post-conditions of mod[i] to finish the proof. In order to use the property
of BigAdd when proving the soundness of BigMod, add.b[i] needs to be in proper big integer
representation (the pre-condition of BigAdd), but since no range check is performed on mod[i] ,
this condition cannot be obtained, as shown below (line 8):

1 ...

2 template BigMod(n, k) {

3 ...

4 component add = BigAdd(n, 2 * k + 2);

5 for (var i = 0; i < 2 * k; i++) {

6 add.a[i] <== mul.out[i];

7 if (i < k) {

8 add.b[i] <== mod[i];

9 } else {

10 add.b[i] <== 0;

11 }

12 }

13 ...

Impact Attackers can bypass checking for the results by constructing a counterexample, thus
potentially breaking down the protocol.

Recommendation Add additional range checking constraints for mod[i] . An example fix
would be:
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1 ...

2 template BigMod(n, k) {

3 ...

4 component div_range_checks[k + 1];

5 for (var i = 0; i <= k; i++) {

6 div_range_checks[i] = Num2Bits(n);

7 div_range_checks[i].in <== div[i];

8 }

9 component mod_range_checks[k];

10 for (var i = 0; i < k; i++) {

11 mod_range_checks[i] = Num2Bits(n);

12 mod_range_checks[i].in <== mod[i];

13 }

14 ...
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4.2 Formal Verification Using Picus

In this section we elaborate on an extended process we followed to verify circom-bigint ’s
dependent library: circomlib , using Picus, an open-source tool developed by Veridise.

Overview Picus leverages the power of static analysis and SMT solver to perform security
analysis over zero-knowledge circuits. As shown in Figure 4.1, given a ZK circuit, Picus analyzes
its security by invoking an interaction loop between its two components: the analyzer and SMT
solver, where for each signal of the circuit, the analyzer performs light-weight inference and
SMT solver performs in-depth semantic reasoning. Picus proves a circuit unsafe by finding an
underconstrained signal from it with automatically synthesized concrete exploit/counterexam-
ple.

SMT SolverAnalyzerZK 
Circuit

Counterexample

VerifiedPICUS

Figure 4.1: Framework overview of Picus.

Workflow Picus identifies an underconstrained bug by finding a counterexample that violates
the uniqueness property: a circuit is unsafe (breaks the uniqueness property) if there exists two
sets of signals that share the same input signals but differ on output signals. We refer to such two
sets of signals as models, and they form a counterexample that attacker can use for conducting
potential exploits. Thus, a counterexample is a crucial indicator for the safety of a circuit.

Since Picus works on circuit level, we perform the security analysis on a set of 163 circuits that
are instantiated from circomlib with carefully picked arguments to ensure the coverage of the
analysis. The set of instantiated circuits can be found here and here.
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Results Table 4.2 shows a summary of the verification results of the security analysis. While
majority of the circuits are properly constrained, Picus is able to identify 10 vulnerability
issues, with 8 of them being critical underconstrained bugs. Picus attaches with each bug a
concrete counterexample that demonstrates how an exploit should be performed by a potential
attacker.

Table 4.2: Summary of Picus verification results.

ID Description Severity Status

V-CIRCOMLIB-PIC-001 Decoder accepting bogus output signal Critical Open
V-CIRCOMLIB-PIC-002 Underconstrained: Edwards2Montgomery Critical Open
V-CIRCOMLIB-PIC-003 Underconstrained: Montgomery2Edwards Critical Open
V-CIRCOMLIB-PIC-004 Underconstrained: MontgomeryAdd Critical Open
V-CIRCOMLIB-PIC-005 Underconstrained: MontgomeryDouble Critical Open
V-CIRCOMLIB-PIC-006 Underconstrained: BitElementMulAny Critical Open
V-CIRCOMLIB-PIC-007 Underconstrained: Window4 Critical Open
V-CIRCOMLIB-PIC-008 Underconstrained: WindowMulFix Critical Open
V-CIRCOMLIB-PIC-009 Underconstrained: Bits2Point Warning Open
V-CIRCOMLIB-PIC-010 Underconstrained: Point2Bits Warning Open

We elaborate the findings in the sections followed.
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4.2.1 V-CIRCOMLIB-VUL-001: Decoder accepting bogus output signal

Severity Critical Commit cff5ab6
Type Underconstrained Error Status Open
Files circomlib/circuits/multiplexer.circom

Functions template Decoder(w)

The Decoder template from multiplexer can be instantiated into a circuit that attempts
to convert a number inp into its "one-hot" representation, which is an array out with
corresponding index set to 1 while others remaining 0 . When the specified number is larger
than the size of the array, the Decoder instantiated circuit is expected to return 0 (indicating
failure of the process), otherwise 1 (indicating success of the process).

While the output representation array out is not properly constrained, this allows attackers to
construct exploits that cause inconsistency between the decoded representation array out and
the state indicator success , when the target template is not properly called. The root cause is
shown as below:

1 ...

2 for (var i=0; i<w; i++) {

3 out[i] <-- (inp==i) ? 1 : 0;

4 out[i] * (inp-i) === 0

5 lc = lc + out[i];

6 }

7 lc ==> success;

8 ...

Here, even though the usage of <-- states the relations between inp , i and out[i] on signal
computation phase, such a relation does not propagate into the constraint generation phase.
As a result, as long as out[i]=0 , the constraints generated will always be satisfied, no matter
what value inp gets. For instance, in Table 4.3 we show the following counterexample (for the
instantiated circuit with w=2 ) that demonstrates the underconstrained bug described above,
where given the same input signal, at least two sets of outputs are allowed by the generated
constraints with contradictory success signals.

Table 4.3: A counterexample for Decoder template instantiated with w=2 . sig indicates input
signal of main component, sig indicates output signal of main component.

model 1 model 2
inp 1 1
out[0] 0 0
out[1] 1 0
success 1 0

Impact Attackers can bypass checking for the decoding results by constructing a counterex-
ample as shown above, if the Decoder template is not used in a proper way.

Recommendation Based on the nature and design of circomlib and the semantics of the
Decoder template, we recommend one of the following fixes:
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▶ Clarify the proper usage of the Decoder template, where an assertion about the valuation
of its output success should be explicitly added when called;

▶ Properly constrain all the output signals from within the Decoder template itself, using
IsZero template from circomlib . We provide an example fixed version as below:

1 include "comparators.circom";

2 template Decoder(w) {

3 signal input inp;

4 signal output out[w];

5 signal output success;

6 var lc = 0;

7

8 component checkZero[w];

9 for (var i=0; i<w; i++) {

10 checkZero[i] = IsZero();

11 checkZero[i].in <== inp - i;

12 checkZero[i].out ==> out[i];

13 lc = lc + out[i];

14 }

15 lc ==> success;

16 }
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4.2.2 V-CIRCOMLIB-VUL-002: Underconstrained points in Edwards2Montgomery

Severity Critical Commit cff5ab6
Type Underconstrained Error Status Open
Files circomlib/circuits/montgomery.circom

Functions template Edwards2Montgomery()

The Edwards2Montgomery converts a point ( in[0] , in[1] ) from Edwards curve to its equivalent
point ( out[0] , out[1] ) on Montgomery curve, which is given by:

out[0] =
1 + in[1]

1 − in[1]
, out[1] =

1 + in[1]

(1 − in[1] ) · in[0]

The Edwards2Montgomery template places additional implicit restrictions over in[0] and in[1]

in signal computation phase, as shown by the code snippet below (line 4-5):

1 template Edwards2Montgomery() {

2 signal input in[2];

3 signal output out[2];

4 out[0] <-- (1 + in[1]) / (1 - in[1]);

5 out[1] <-- out[0] / in[0];

6 out[0] * (1-in[1]) === (1 + in[1]);

7 out[1] * in[0] === out[0];

8 }

where 1 − in[1] ≠ 0 and in[0] ≠ 0. However, such restrictions are not properly propagated
to constraint generation phase (line 6-7), where when 1 − in[1] or in[0] is set to 0, their
corresponding multipliers in the same terms, namely out[0] and out[1] become under-
constrained. Attackers can construct an exploit to bypass the restrictions on circuit outputs.
For instance, in Table 4.4 we show the following counterexample for the instantiated circuit
of Edwards2Montgomery that demonstrates the underconstrained bug described above, where
given the same inputs ( in[0] and in[1] ), there exist two satisfying sets of outputs, which
contradicts with the semantics of signal computation phase.

Table 4.4: A counterexample for Edwards2Montgomery template. sig indicates input signal of
main component, sig indicates output signal of main component.

model 1 model 2
in[0] 0 0
in[1] -1 -1
out[0] 0 0
out[1] 0 1

Impact Attackers can bypass restrictions for the outputs ( out[0] and out[1] ) by setting the
inputs ( in[0] and in[1] ) with carefully designed values, thus could potentially exploit the
application circuit, if the Edwards2Montgomery template is not used in a proper way.
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Recommendation Based on the nature and design of circomlib and the semantics of the
Edwards2Montgomery template, we recommend one of the following fixes:

▶ Clarify the proper usage of the Edwards2Montgomery template, where assertions about
the valuation of its inputs (pre-conditions) should be satisfied when calling the template.
In particular, the following pre-conditions should be enforced by the caller:

in[1] ≠ 1 ∧ in[0] ≠ 0

▶ Properly and explicitly constrain all the input signals from within the Edwards2Montgomery

template itself, using IsZero template from circomlib . We provide an example fixed
version as below:

1 include "comparators.circom";

2 template Edwards2Montgomery() {

3 signal input in[2];

4 signal output out[2];

5 component checkZero0 = IsZero();

6 component checkZero1 = IsZero();

7

8 checkZero0.in <== in[0];

9 checkZero0.out === 0;

10

11 checkZero1.in <== 1 - in[1];

12 checkZero1.out === 0;

13

14 out[0] <-- (1 + in[1]) / (1 - in[1]);

15 out[1] <-- out[0] / in[0];

16 out[0] * (1-in[1]) === (1 + in[1]);

17 out[1] * in[0] === out[0];

18 }
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4.2.3 V-CIRCOMLIB-VUL-003: Underconstrained points in Montgomery2Edwards

Severity Critical Commit cff5ab6
Type Underconstrained Error Status Open
Files circomlib/circuits/montgomery.circom

Functions template Montgomery2Edwards()

The Montgomery2Edwards converts a point ( in[0] , in[1] ) from Montgomery curve to its
equivalent point ( out[0] , out[1] ) on Edwards curve, which is given by:

out[0] =
in[0]

in[1]
, out[1] =

in[0] − 1
in[0] + 1

The Edwards2Montgomery template places additional implicit restrictions over in[0] and in[1]

in signal computation phase, as shown by the code snippet below (line 4-5):

1 template Montgomery2Edwards() {

2 signal input in[2];

3 signal output out[2];

4 out[0] <-- in[0] / in[1];

5 out[1] <-- (in[0] - 1) / (in[0] + 1);

6 out[0] * in[1] === in[0];

7 out[1] * (in[0] + 1) === in[0] - 1;

8 }

where 1 + in[0] ≠ 0 and in[1] ≠ 0. However, such restrictions are not properly propagated
to constraint generation phase (line 6-7), where when 1 + in[0] or in[1] is set to 0, their
corresponding multipliers in the same terms, namely out[1] and out[0] become under-
constrained. Attackers can construct an exploit to bypass the restrictions on circuit outputs.
For instance, in Table 4.5 we show the following counterexample for the instantiated circuit
of Montgomery2Edwards that demonstrates the underconstrained bug described above, where
given the same inputs ( in[0] and in[1] ), there exist two satisfying sets of outputs, which
contradicts with the semantics of signal computation phase.

Table 4.5: A counterexample for Montgomery2Edwards template. sig indicates input signal of
main component, sig indicates output signal of main component.

model 1 model 2
in[0] 0 0
in[1] 0 0
out[0] 0 1
out[1] -1 -1

Impact Attackers can bypass restrictions for the outputs ( out[0] and out[1] ) by setting the
inputs ( in[0] and in[1] ) with carefully designed values, thus could potentially exploit the
application circuit, if the Montgomery2Edwards template is not used in a proper way.
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Recommendation Based on the nature and design of circomlib and the semantics of the
Montgomery2Edwards template, we recommend one of the following fixes:

▶ Clarify the proper usage of the Montgomery2Edwards template, where assertions about
the valuation of its inputs (pre-conditions) should be satisfied when calling the template.
In particular, the following pre-conditions should be enforced by the caller:

in[1] ≠ 0 ∧ in[0] ≠ −1

▶ Properly and explicitly constrain all the input signals from within the Montgomery2Edwards

template itself, using IsZero template from circomlib . We provide an example fixed
version as below:

1 include "comparators.circom";

2 template Montgomery2Edwards() {

3 signal input in[2];

4 signal output out[2];

5 component checkZero0 = IsZero();

6 component checkZero1 = IsZero();

7

8 checkZero0.in <== in[1];

9 checkZero0.out === 0;

10

11 checkZero1.in <== in[0] + 1;

12 checkZero1.out === 0;

13

14 out[0] <-- in[0] / in[1];

15 out[1] <-- (in[0] - 1) / (in[0] + 1);

16 out[0] * in[1] === in[0];

17 out[1] * (in[0] + 1) === in[0] - 1;

18 }
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4.2.4 V-CIRCOMLIB-VUL-004: Underconstrained points in MontgomeryAdd

Severity Critical Commit cff5ab6
Type Underconstrained Error Status Open
Files circomlib/circuits/montgomery.circom

Functions template MontgomeryAdd()

The MontgomeryAdd performs addition operation over two points on Montgomery curve. Given
two points ( in1[0] , in1[1] ) and ( in2[0] , in2[1] ), the addition operation is defined as
below:

out[0] = 𝐵 · lambda
2 − 𝐴 − in1[0] − in2[0]

out[1] = lambda · ( in1[0] − out[0] ) − in1[1] ,

where 𝐴 and 𝐵 are constants, and lambda is given by:

lambda =
in2[1] − in1[1]

in2[0] − in1[0]

The MontgomeryAdd template places additional implicit restrictions over in2[0] and in1[0] in
signal computation phase, as shown by the code snippet below (line 5):

1 template MontgomeryAdd() {

2 ...

3 signal lamda;

4

5 lamda <-- (in2[1] - in1[1]) / (in2[0] - in1[0]);

6 lamda * (in2[0] - in1[0]) === (in2[1] - in1[1]);

7

8 out[0] <== B*lamda*lamda - A - in1[0] -in2[0];

9 out[1] <== lamda * (in1[0] - out[0]) - in1[1];

10 }

where in2[0] − in1[0] ≠ 0. However, such restrictions are not properly propagated to
constraint generation phase (line 6), where when in2[0] − in1[0] is set to 0, its corresponding
multiplier in the same term, lambda becomes underconstrained, which further affects the
corresponding terms out[0] and out[1] from line 8-9. Attackers can construct an exploit to
bypass the restrictions on circuit outputs. For instance, in Table 4.6 we show a counterexample
for the instantiated circuit of MontgomeryAdd that demonstrates the underconstrained bug
described above, where 𝑝 corresponds to the prime of the field, and given the same inputs
( in1[0] , in1[1] , in2[0] , in2[1] ), there exist two satisfying sets of outputs, which contradicts
with the semantics of signal computation phase.

Impact Attackers can bypass restrictions for the outputs ( out[0] and out[1] ) by setting the
inputs with carefully designed values, thus could potentially exploit the application circuit, if
the MontgomeryAdd template is not used in a proper way.
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Table 4.6: A counterexample for MontgomeryAdd template. sig indicates input signal of main
component, sig indicates output signal of main component.

model 1 model 2
in1[0] 0 0
in1[1] 0 0
in2[0] 0 0
in2[0] 0 0
out[0] 𝑝-168698 𝑝-168697
out[1] 0 168697
lambda 0 1

Recommendation Based on the nature and design of circomlib and the semantics of the
MontgomeryAdd template, we recommend one of the following fixes:

▶ Clarify the proper usage of the MontgomeryAdd template, where assertions about the
valuation of its inputs (pre-conditions) should be satisfied when calling the template. In
particular, the following pre-conditions should be enforced by the caller:

in2[0] ≠ in1[0]

▶ Properly and explicitly constrain all the input signals from within the MontgomeryAdd

template itself, using IsZero template from circomlib . We provide an example fixed
version as below:

1 include "comparators.circom";

2 template MontgomeryAdd() {

3 signal input in1[2];

4 signal input in2[2];

5 signal output out[2];

6

7 var a = 168700;

8 var d = 168696;

9

10 var A = (2 * (a + d)) / (a - d);

11 var B = 4 / (a - d);

12

13 component checkZero = IsZero();

14 checkZero.in <== in2[0] - in1[0];

15 checkZero.out === 0;

16

17 signal lamda;

18

19 lamda <-- (in2[1] - in1[1]) / (in2[0] - in1[0]);

20 lamda * (in2[0] - in1[0]) === (in2[1] - in1[1]);

21

22 out[0] <== B*lamda*lamda - A - in1[0] -in2[0];

23 out[1] <== lamda * (in1[0] - out[0]) - in1[1];

24 }
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4.2.5 V-CIRCOMLIB-VUL-005: Underconstrained points in MontgomeryDouble

Severity Critical Commit cff5ab6
Type Underconstrained Error Status Open
Files circomlib/circuits/montgomery.circom

Functions template MontgomeryDouble()

The MontgomeryDouble performs doubling operation over a given point on Montgomery curve.
Given a point ( in[0] , in[1] ), the doubling operation is defined as below:

out[0] = 𝐵 · lambda
2 − 𝐴 − 2 · in[0]

out[1] = lambda · ( in[0] − out[0] ) − in[1] ,

where 𝐴 and 𝐵 are constants, and lambda is given by:

lambda =
3 · in[0]

2 + 2 · 𝐴 · in[0] + 1
2 · 𝐵 · in[1]

The MontgomeryDouble template places additional implicit restrictions over in[1] in signal
computation phase, as shown by the code snippet below (line 6):

1 template MontgomeryDouble() {

2 ...

3 signal lamda;

4 ...

5

6 lamda <-- (3*x1_2 + 2*A*in[0] + 1 ) / (2*B*in[1]);

7 lamda * (2*B*in[1]) === (3*x1_2 + 2*A*in[0] + 1 );

8

9 out[0] <== B*lamda*lamda - A - 2*in[0];

10 out[1] <== lamda * (in[0] - out[0]) - in[1];

11 }

where in[1] ≠ 0. However, such restrictions are not properly propagated to constraint
generation phase (line 7), where when in[1] is set to 0, its corresponding multiplier in the
same term, lambda becomes underconstrained, which further affects the corresponding terms
out[0] and out[1] from line 9-10. Attackers can construct an exploit to bypass the restrictions
on circuit outputs. For instance, we show the following counterexample in Table 4.7 for the
instantiated circuit of MontgomeryDouble that demonstrates the underconstrained bug described
above, where 𝑝 corresponds to the prime of the field, and given the same inputs, there exist two
satisfying sets of outputs, which contradicts with the semantics of signal computation phase.

Impact Attackers can bypass restrictions for the outputs ( out[0] and out[1] ) by setting the
inputs with carefully designed values, thus could potentially exploit the application circuit, if
the MontgomeryDouble template is not used in a proper way.
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Table 4.7: A counterexample for MontgomeryDouble template. sig indicates input signal of
main component, sig indicates output signal of main component.

model 1
main.in[0] 1919201053887612038854394017032965582736186453021883147377541836331787784350
main.in[1] 0
main.lambda 0
main.x1_2 in[0]2

main.out[0] 5322068362127053380761936828261197253630416030257971508159916442316514342224
main.out[1] 0

model 2
main.in[0] 1919201053887612038854394017032965582736186453021883147377541836331787784350
main.in[1] 0
main.lambda 1919201053887612038854394017032965582736186453021883147377541836331787784350
main.x1_2 in[0]2

main.out[0] 0
main.out[1] 11395287471962378606215025428882238971762841540906324053591198862844560648166

Recommendation Based on the nature and design of circomlib and the semantics of the
MontgomeryDouble template, we recommend one of the following fixes:

▶ Clarify the proper usage of the MontgomeryDouble template, where assertions about the
valuation of its inputs (pre-conditions) should be satisfied when calling the template. In
particular, the following pre-conditions should be enforced by the caller:

in[1] ≠ 0

▶ Properly and explicitly constrain all the input signals from within the MontgomeryDouble

template itself, using IsZero template from circomlib . We provide an example fixed
version as below:

1 include "comparators.circom";

2 template MontgomeryDouble() {

3 signal input in[2];

4 signal output out[2];

5 var a = 168700;

6 var d = 168696;

7 var A = (2 * (a + d)) / (a - d);

8 var B = 4 / (a - d);

9

10 component checkZero = IsZero();

11 checkZero.in <== in[1];

12 checkZero.out === 0;

13

14 signal lamda;

15 signal x1_2;

16 x1_2 <== in[0] * in[0];

17 lamda <-- (3*x1_2 + 2*A*in[0] + 1 ) / (2*B*in[1]);

18 lamda * (2*B*in[1]) === (3*x1_2 + 2*A*in[0] + 1 );

19 out[0] <== B*lamda*lamda - A - 2*in[0];

20 out[1] <== lamda * (in[0] - out[0]) - in[1];

21 }
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4.2.6 V-CIRCOMLIB-VUL-006: Underconstrained outputs in BitElementMulAny

Severity Critical Commit cff5ab6
Type Underconstrained Error Status Open
Files circomlib/circuits/escalarmulany.circom

Functions template BitElementMulAny()

The BitElementMulAny directly utilizes the MontgomeryAdd and MontgomeryDouble template
in its computation without explicit range checks for their inputs/outputs. As discussed in
previous sections about MontgomeryAdd and MontgomeryDouble , an attacker could construct a
counterexample that bypass the restrictions of the instantiated circuit and perform potential
exploits. We show a concrete counterexample in Table 4.8 (model 1) and Table 4.9 (model 2),
where given same set of inputs, the outputs are not properly constrained.

Table 4.8: A counterexample for BitElementMulAny template: Model 1. sig indicates input
signal of main component, sig indicates output signal of main component.

model 1
main.dblOut[0] 19227208690775748531865437331126676461733156385287048589618245965417551240156
main.dblOut[1] 0
main.addOut[0] 0
main.addOut[1] 0
main.sel 0
main.dblIn[0] 19227208690775748531865437331126676461733156385287048589618245965417551240156
main.dblIn[1] 0
main.addIn[0] 0
main.addIn[1] 0
main.adder.out[0] 2661034181063526690380968414130598626815208015128985754079958221158257086763
main.adder.out[1] 0
main.adder.in1[0] 19227208690775748531865437331126676461733156385287048589618245965417551240156
main.adder.in1[1] 0
main.adder.in2[0] 0
main.adder.in2[1] 0
main.adder.lamda 0
main.doubler.out[0] 19227208690775748531865437331126676461733156385287048589618245965417551240156
main.doubler.out[1] 0
main.doubler.in[0] 19227208690775748531865437331126676461733156385287048589618245965417551240156
main.doubler.in[1] 0
main.doubler.lamda 17227713526953394140741591647523112279518733089659685263306152777950041868941
main.doubler.x1_2 18039640916646237372880335511686420348069741665070947478680356439334569097561
main.selector.out[0] 0
main.selector.out[1] 0
main.selector.sel 0
main.selector.in[0][0] 0
main.selector.in[0][1] 0
main.selector.in[1][0] 2661034181063526690380968414130598626815208015128985754079958221158257086763
main.selector.in[1][1] 0
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Table 4.9: A counterexample for BitElementMulAny template: Model 2. sig indicates input
signal of main component, sig indicates output signal of main component.

model 2
main.dblOut[0] 5322068362127053380761936828261197253630416030257971508159916442316514342224
main.dblOut[1] 0
main.addOut[0] 0
main.addOut[1] 0
main.sel 0
main.dblIn[0] 19227208690775748531865437331126676461733156385287048589618245965417551240156
main.dblIn[1] 0
main.addIn[0] 0
main.addIn[1] 0
main.adder.out[0] 16566174509712221841484468916996077834917948370158062835538287744259293984695
main.adder.out[1] 0
main.adder.in1[0] 5322068362127053380761936828261197253630416030257971508159916442316514342224
main.adder.in1[1] 0
main.adder.in2[0] 0
main.adder.in2[1] 0
main.adder.lamda 0
main.doubler.out[0] 5322068362127053380761936828261197253630416030257971508159916442316514342224
main.doubler.out[1] 0
main.doubler.in[0] 19227208690775748531865437331126676461733156385287048589618245965417551240156
main.doubler.in[1] 0
main.doubler.lamda 0
main.doubler.x1_2 18039640916646237372880335511686420348069741665070947478680356439334569097561
main.selector.out[0] 0
main.selector.out[1] 0
main.selector.sel 0
main.selector.in[0][0] 0
main.selector.in[0][1] 0
main.selector.in[1][0] 16566174509712221841484468916996077834917948370158062835538287744259293984695
main.selector.in[1][1] 0

Impact Since this vulnerability is caused by MontgomeryAdd and MontgomeryDouble , please
check Section 4.2.4 and Section 4.2.5 for more details about potential impact.

Recommendation Since this vulnerability is caused by MontgomeryAdd and MontgomeryDouble ,
please check Section 4.2.4 and Section 4.2.5 for more details about potential recommendations.
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4.2.7 V-CIRCOMLIB-VUL-007: Underconstrained outputs in Window4

Severity Critical Commit cff5ab6
Type Underconstrained Error Status Open
Files circomlib/circuits/pedersen.circom

Functions template Window4()

The Window4 directly utilizes the MontgomeryAdd and MontgomeryDouble template in its compu-
tation without explicit range checks for their inputs/outputs. As discussed in previous sections
about MontgomeryAdd and MontgomeryDouble , an attacker could construct a counterexample
that bypass the restrictions of the instantiated circuit and perform potential exploits. We show a
concrete counterexample in Table 4.10, Table 4.11, Table 4.12 and Table 4.13, where given same
set of inputs, the outputs are not properly constrained.

4.2.8 V-CIRCOMLIB-VUL-008: Underconstrained outputs in WindowMulFix

Severity Critical Commit cff5ab6
Type Underconstrained Error Status Open
Files circomlib/circuits/escalarmulfix.circom

Functions template WindowMulFix()

The WindowMulFix directly utilizes the MontgomeryAdd and MontgomeryDouble template in
its computation without explicit range checks for their inputs/outputs. As discussed in
previous sections about MontgomeryAdd and MontgomeryDouble , an attacker could construct a
counterexample that bypass the restrictions of the instantiated circuit and perform potential
exploits. We show the counterexample in Section 4.2.7 as a reference for constructing a
counterexample for WindowMulFix .

Impact Since this vulnerability is caused by MontgomeryAdd and MontgomeryDouble , please
check Section 4.2.4 and Section 4.2.5 for more details about potential impact.

Recommendation Since this vulnerability is caused by MontgomeryAdd and MontgomeryDouble ,
please check Section 4.2.4 and Section 4.2.5 for more details about potential recommendations.
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Table 4.10: A counterexample for Window4 template: Model 1. sig indicates input signal of
main component, sig indicates output signal of main component.

model 1
main.out[0] 0
main.out[1] 0
main.out8[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.out8[1] 0
main.in[0] 0
main.in[1] 0
main.in[2] 143713101487658741028611111177432241573644682305993849736623517215016714561
main.in[3] 0
main.base[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.base[1] 0
main.adr3.out[0] 5322068362127053380761936828261197253630416030257971508159916442316514342224
main.adr3.out[1] 0
main.adr3.in1[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.adr3.in1[1] 0
main.adr3.in2[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.adr3.in2[1] 0
main.adr3.lamda 0
main.adr4.out[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.adr4.out[1] 0
main.adr4.in1[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.adr4.in1[1] 0
main.adr4.in2[0] 5322068362127053380761936828261197253630416030257971508159916442316514342224
main.adr4.in2[1] 0
main.adr4.lamda 0
main.adr5.out[0] 5322068362127053380761936828261197253630416030257971508159916442316514342224
main.adr5.out[1] 0
main.adr5.in1[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.adr5.in1[1] 0
main.adr5.in2[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.adr5.in2[1] 0
main.adr5.lamda 0
main.adr6.out[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.adr6.out[1] 0
main.adr6.in1[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.adr6.in1[1] 0
main.adr6.in2[0] 5322068362127053380761936828261197253630416030257971508159916442316514342224
main.adr6.in2[1] 0
main.adr6.lamda 0
main.adr7.out[0] 5322068362127053380761936828261197253630416030257971508159916442316514342224
main.adr7.out[1] 0
main.adr7.in1[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.adr7.in1[1] 0
main.adr7.in2[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.adr7.in2[1] 0
main.adr7.lamda 0
main.adr8.out[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.adr8.out[1] 0
main.adr8.in1[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
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Table 4.11: A counterexample for Window4 template: Model 1 (Cont’d). sig indicates input
signal of main component, sig indicates output signal of main component.

model 1 (cont’d)
main.adr8.in1[1] 0
main.adr8.in2[0] 5322068362127053380761936828261197253630416030257971508159916442316514342224
main.adr8.in2[1] 0
main.adr8.lamda 0
main.dbl2.out[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.dbl2.out[1] 0
main.dbl2.in[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.dbl2.in[1] 0
main.dbl2.lamda -4660529344885881081504814097734162809029631310756349080392051408625766626676
main.dbl2.x1_2 -3848601955193037849366070233570854740478622735345086865017847747241239398056
main.mux.out[0] 0
main.mux.out[1] 0
main.mux.c[0][0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.mux.c[0][1] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.mux.c[0][2] 5322068362127053380761936828261197253630416030257971508159916442316514342224
main.mux.c[0][3] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.mux.c[0][4] 5322068362127053380761936828261197253630416030257971508159916442316514342224
main.mux.c[0][5] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.mux.c[0][6] 5322068362127053380761936828261197253630416030257971508159916442316514342224
main.mux.c[0][7] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.mux.c[1][0] 0
main.mux.c[1][1] 0
main.mux.c[1][2] 0
main.mux.c[1][3] 0
main.mux.c[1][4] 0
main.mux.c[1][5] 0
main.mux.c[1][6] 0
main.mux.c[1][7] 0
main.mux.s[0] 0
main.mux.s[1] 0
main.mux.s[2] 143713101487658741028611111177432241573644682305993849736623517215016714561
main.mux.a210[0] 0
main.mux.a210[1] 0
main.mux.a21[0] 0
main.mux.a21[1] 0
main.mux.a20[0] 0
main.mux.a20[1] 0
main.mux.a2[0] 7983102543190580071142905242391795880445624045386957262239874663474771597685
main.mux.a2[1] 0
main.mux.a10[0] 0
main.mux.a10[1] 0
main.mux.a1[0] 0
main.mux.a1[1] 0
main.mux.a0[0] 0
main.mux.a0[1] 0
main.mux.a[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.mux.a[1] 0
main.mux.s10 0
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Table 4.12: A counterexample for Window4 template: Model 2. sig indicates input signal of
main component, sig indicates output signal of main component.

model 2
main.out[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.out[1] 0
main.out8[0] 5322068362127053380761936828261197253630416030257971508159916442316514342224
main.out8[1] 0
main.in[0] 0
main.in[1] 0
main.in[2] 143713101487658741028611111177432241573644682305993849736623517215016714561
main.in[3] 0
main.base[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.base[1] 0
main.adr3.out[0] 0
main.adr3.out[1] -10492955399876896616031380316375036116785522859509710290107005323731247847451
main.adr3.in1[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.adr3.in1[1] 0
main.adr3.in2[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.adr3.in2[1] 0
main.adr3.lamda 1919201053887612038854394017032965582736186453021883147377541836331787784350
main.adr4.out[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.adr4.out[1] 0
main.adr4.in1[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.adr4.in1[1] 0
main.adr4.in2[0] 0
main.adr4.in2[1] -10492955399876896616031380316375036116785522859509710290107005323731247847451
main.adr4.lamda -1919201053887612038854394017032965582736186453021883147377541836331787784350
main.adr5.out[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.adr5.out[1] 0
main.adr5.in1[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.adr5.in1[1] 0
main.adr5.in2[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.adr5.in2[1] 0
main.adr5.lamda -4660529344885881081504814097734162809029631310756349080392051408625766626676
main.adr6.out[0] 5322068362127053380761936828261197253630416030257971508159916442316514342224
main.adr6.out[1] 0
main.adr6.in1[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.adr6.in1[1] 0
main.adr6.in2[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.adr6.in2[1] 0
main.adr6.lamda 0
main.adr7.out[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.adr7.out[1] 0
main.adr7.in1[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.adr7.in1[1] 0
main.adr7.in2[0] 5322068362127053380761936828261197253630416030257971508159916442316514342224
main.adr7.in2[1] 0
main.adr7.lamda 0
main.adr8.out[0] 5322068362127053380761936828261197253630416030257971508159916442316514342224
main.adr8.out[1] 0
main.adr8.in1[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
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Table 4.13: A counterexample for Window4 template: Model 2 (Cont’d). sig indicates input
signal of main component, sig indicates output signal of main component.

model 2 (cont’d)
main.adr8.in1[1] 0
main.adr8.in2[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.adr8.in2[1] 0
main.adr8.lamda 0
main.dbl2.out[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.dbl2.out[1] 0
main.dbl2.in[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.dbl2.in[1] 0
main.dbl2.lamda -4660529344885881081504814097734162809029631310756349080392051408625766626676
main.dbl2.x1_2 -3848601955193037849366070233570854740478622735345086865017847747241239398056
main.mux.out[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.mux.out[1] 0
main.mux.c[0][0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.mux.c[0][1] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.mux.c[0][2] 0
main.mux.c[0][3] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.mux.c[0][4] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.mux.c[0][5] 5322068362127053380761936828261197253630416030257971508159916442316514342224
main.mux.c[0][6] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.mux.c[0][7] 5322068362127053380761936828261197253630416030257971508159916442316514342224
main.mux.c[1][0] 0
main.mux.c[1][1] 0
main.mux.c[1][2] -10492955399876896616031380316375036116785522859509710290107005323731247847451
main.mux.c[1][3] 0
main.mux.c[1][4] 0
main.mux.c[1][5] 0
main.mux.c[1][6] 0
main.mux.c[1][7] 0
main.mux.s[0] 0
main.mux.s[1] 0
main.mux.s[2] 143713101487658741028611111177432241573644682305993849736623517215016714561
main.mux.a210[0] 0
main.mux.a210[1] 0
main.mux.a21[0] 0
main.mux.a21[1] 0
main.mux.a20[0] 0
main.mux.a20[1] 0
main.mux.a2[0] 0
main.mux.a2[1] 0
main.mux.a10[0] 0
main.mux.a10[1] 0
main.mux.a1[0] 0
main.mux.a1[1] 0
main.mux.a0[0] 0
main.mux.a0[1] 0
main.mux.a[0] -2661034181063526690380968414130598626815208015128985754079958221158257255461
main.mux.a[1] 0
main.mux.s10 0
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4.2.9 V-CIRCOMLIB-VUL-009: Underconstrained outputs in Bits2Point

Severity Warning Commit cff5ab6
Type Underconstrained Error Status Open
Files circomlib/circuits/pointbits.circom

Functions template Bits2Point()

The Bits2Point does not have concrete signal computation code, nor constraint generation
code.

Impact Use of this template may lead to potential exploits due to underconstrained output
signals or failure to fulfill its functional correctness.

Recommendation Switch to Bits2Point_Strict or append proper constraints to the output
signals.

4.2.10 V-CIRCOMLIB-VUL-010: Underconstrained outputs in Point2Bits

Severity Warning Commit cff5ab6
Type Underconstrained Error Status Open
Files circomlib/circuits/pointbits.circom

Functions template Point2Bits()

The Point2Bits does not have concrete signal computation code, nor constraint generation
code.

Impact Use of this template may lead to potential exploits due to underconstrained output
signals or failure to fulfill its functional correctness.

Recommendation Switch to Point2Bits_Strict or append proper constraints to the output
signals.
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To ensure additional edge cases are covered properly, we also performed manual inspection
on circuits from circom-bigint . For each issue found, we log the type of the issue, its severity,
location in the code base, and its current status (i.e., acknowledged, fixed, etc.). Table 5.1
summarizes the issues found by our security engineers.

Table 5.1: Summary of Picus verification results.

ID Description Severity Status

V-BIGINT-VUL-001 Unnecessary computation and constraints in BigSubModP Warning Open
V-BIGINT-VUL-002 BigModInv can use BigMultModP instead of BigMult Warning Open
V-BIGINT-VUL-003 Comment assumptions on input signals Warning Open

5.1 Background

In this section, we briefly summarize the circom-bigint library and several assumptions of the
library, as follows:

▶ circom-bigint provides several useful arithmetic operations on Big Integers.
▶ In circom and in general cryptography, all operations are defined over the field 𝔽𝑝 where

𝑝 is a prime.
▶ All numbers are integers in [0, 𝑝), called signals in circom.
▶ We need the capability to work with bigger numbers, hence bigint library.
▶ A “bigint” number is represented as an array of 𝑘 signals, each of which has 𝑛 bits.
▶ Basically, a 𝑘 digit number is in base 2𝑛 .

5.2 Detailed Description of Bugs

In this section, we provide a detailed description of each vulnerability.
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5.2.1 V-BIGINT-VUL-001: Unnecessary computation and constraints in BigSubModP

Severity Warning Commit 7505e5c
Type Optimization Status Open
Files circuits/bigint.circom

Functions template BigSubModP(n, k)

Background BigSubModP(n,k) takes three inputs a[k] , b[k] and p[k] representing big
integers, and produces an output out[k] , which is constrained to (a-b)%p .

Description Internally BigSubModP calls BigAdd to compute (a-b)+p :

1 ...

2 component add = BigAdd(n,k);

3 ...

BigAdd also returns a carry register but it isn’t used for computation nor for constraints
downstream.

Recommendation Create a new template BigAddNoCarry and call it instead to have a optimized
version of generated circuits.
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5.2.2 V-BIGINT-VUL-002: BigModInv can use BigMulModP instead of BigMult

Severity Warning Commit 7505e5c
Type Optimization Status Open
Files circuits/bigint.circom

Functions template BigModInv(n, k)

Background BigModInv(n,k) takes two inputs in[k] , p[k] representing big integers and
produces an output out[k] , which is constrained to (out*in)%p=1 .

Description BigModInv calculates multiplicative inverse of a big integer a modular big
integer p . For constraint checking, it first multiplies the inverse with a through BigMult , then
computes its remainder modular p . This can all be done through BigMultModP template, which
improves readability.

Recommendation Use BigMultModP instead to computer the remainder to improve readabil-
ity.
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5.2.3 V-BIGINT-VUL-003: Comment assumptions on input signals

Severity Warning Commit 7505e5c
Type Optimization Status Open
Files circuits/bigint.circom, circuits/bigint_4x64_mult.circom

Functions *

Description Several templates assume the inputs to be of size n-bits. However, this is not
explicitly stated to warn the developers.

Recommendation Create specification of templates documenting input assumptions and add
comments for corresponding circom templates.
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