
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

Veridise Inc.
February 4, 2023

▶ Prepared For:

Maciek Kamiński | Maker Foundation
makerdao.com

▶ Prepared By:

Jacob Van Geffen
Shankara Pailoor
Jon Stephens

▶ Contact Us: contact@veridise.com

▶ Version History:

January 18, 2023 Draft

© 2022 Veridise Inc. All Rights Reserved.

makerdao.com
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Detailed Description of Bugs 5
3.0.1 V-VAT-VUL-001: Incorrect uint256 math 6

4 Verified Properties 9
4.1 Detailed Description of Formal Verification Results 10

4.1.1 V-MCD-PROP-001: Constructor correctly initializes state 10
4.1.2 V-MCD-PROP-002: rely correctly sets ward 11
4.1.3 V-MCD-PROP-003: rely reverts iff conditions are met 12
4.1.4 V-MCD-PROP-004: deny correctly sets ward 13
4.1.5 V-MCD-PROP-005: deny reverts iff conditions are met 14
4.1.6 V-MCD-PROP-006: init correctly sets rate value of ilks 15
4.1.7 V-MCD-PROP-007: init reverts iff conditions are met 16
4.1.8 V-MCD-PROP-008: file correctly sets Line 17
4.1.9 V-MCD-PROP-009: file reverts iff conditions are met 18
4.1.10 V-MCD-PROP-010: file_ilk correctly updates state 19
4.1.11 V-MCD-PROP-011: file_ilk reverts iff conditions are met 20
4.1.12 V-MCD-PROP-012: cage correctly sets live 21
4.1.13 V-MCD-PROP-013: cage reverts iff conditions are met 22
4.1.14 V-MCD-PROP-014: hope correctly sets can 23
4.1.15 V-MCD-PROP-015: hope reverts iff conditions are met 24
4.1.16 V-MCD-PROP-016: nope correctly sets can 25
4.1.17 V-MCD-PROP-017: nope reverts iff conditions are met 26
4.1.18 V-MCD-PROP-018: slip correctly updates gem 27
4.1.19 V-MCD-PROP-019: slip reverts iff conditions are met 28
4.1.20 V-MCD-PROP-020: flux correctly updates gem for src and dst 29
4.1.21 V-MCD-PROP-021: flux reverts iff conditions are met 30
4.1.22 V-MCD-PROP-022: move correctly updates dai for src and dst 31
4.1.23 V-MCD-PROP-023: move reverts iff conditions are met 32
4.1.24 V-MCD-PROP-024: frob correctly updates various parts of state 33
4.1.25 V-MCD-PROP-025: frob reverts iff conditions are met 35
4.1.26 V-MCD-PROP-026: fork correctly updates urns 38
4.1.27 V-MCD-PROP-027: fork reverts iff conditions are met 39
4.1.28 V-MCD-PROP-028: grab correctly updates various parts of state 41
4.1.29 V-MCD-PROP-029: grab reverts iff conditions are met 42
4.1.30 V-MCD-PROP-030: heal correctly updates various parts of state 44
4.1.31 V-MCD-PROP-031: heal reverts iff conditions are met 45
4.1.32 V-MCD-PROP-032: suck correctly updates various parts of state 46
4.1.33 V-MCD-PROP-033: suck reverts iff conditions are met 47

Veridise Audit Report: MakerDAO © 2022 Veridise Inc.

4.1.34 V-MCD-PROP-034: fold correctly updates various parts of state 48
4.1.35 V-MCD-PROP-035: fold reverts iff conditions are met 49

Executive Summary 1
From July 25th 2022 to February 1st 2023, MakerDAO engaged Veridise to review the security of
their Multi Collateral Dai Protocol for StarkNet. The review focused on verifying the functional
correctness of various operations within the Cairo version of the VAT contract of the DAI
Stablecoin, and included commits starting from commit 3a6bf6c and ending with commit
9914ac5. Veridise conducted this assessment over 14 person-months, with two senior research
scientists and one research engineer. The auditing strategy involved tool-assisted analysis of the
source code performed by Veridise engineers. Specifically, Medjai was used to formally verify
the implementation of the protocol based on functional specifications. Some enhancements to
Medjai were developed specifically to enable this verification.

Summary of issues detected. Through the process of verifying the VAT contract, Veridise
engineers found a bug that affected functions using the safe_math library, such as the fold

function. The bug was caused by a mismatch of assumptions made by the safe_math libraries
and assumptions presumed by the caller of such functions. The bug was fixed in commit
8713f85.

Code assessment. The code provided by MakerDAO for the VAT contract defines an essential
part of MakerDAO’s DAI stablecoin. It includes operations that alter user balances, set permis-
sions, and update metadata used by other computations. An important distinction between
the Cairo VAT contract and the original Solidity version is that Cairo uint256 values have a
wider range of possible errors. Specifically, since Cairo represents values as field elements with
a prime less than 2256, uint256 values are represented by two such field elements. However, the
prime is also much larger than 2128, meaning that there are a large range of field element pairs
that correspond to invalid representations of a uint256. Additionally, there is no automatic
protection against these invalid representations. For this reason, part of proving the correctness
of the protocol includes proving that all uses of a uint256 are safe. Many of the properties in
chapter 4 reference the validity of uint256 values for this reason.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

Veridise Audit Report: MakerDAO © 2022 Veridise Inc.

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
DAI Stablecoin VAT 3a6bf6c - 9914ac5 Cairo StarkNet

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
May 3 - June 3, 2022 Medjai 2 14 person-months

Table 2.3: Vulnerability Summary.

Name Number Resolved
Critical-Severity Issues 1 0
High-Severity Issues 0 0
Moderate-Severity Issues 0 0
Low-Severity Issues 0 0
Informational-Severity Issues 0 0
Undetermined-Severity Issues 0 0
TOTAL 1 1

Table 2.4: Category Breakdown.

Name Number
Logic Error 1

Table 2.5: Verification Summary.

Type Number
Behavior Validation 18
Revert Necessary and Sufficient Conditions 17

Veridise Audit Report: MakerDAO © 2022 Veridise Inc.

Detailed Description of Bugs 3
During the course of our audit, Medjai identified a bug while verifying V-MCD-PROP-034.
The bug was caused by a mismatch of assumptions between the caller and callee of arithmetic
operations in safe_math.cairo, and affected operations that used safe math arithmetic such
as fold. This section describes the bug in detail, describes the suggested (and implemented)
fix. It also outlines Veridise’s recommendations for continued verification of the protocol as a
whole.

Table 3.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-VAT-VUL-001 Incorrect uint256 math Critical Fixed

Veridise Audit Report: MakerDAO © 2022 Veridise Inc.

6 3 Detailed Description of Bugs

3.0.1 V-VAT-VUL-001: Incorrect uint256 math

Severity Critical Commit c751ae5
Type Logic Error Status Fixed
Files vat.cairo

Functions fold

The MakerDAO safe math library contains a variety of arithmetic operations over uint256
values, all with varying assumptions on those parameters. For example, two of the arithmetic
operations add and _add are shown here:

1 // unsigned wad + unsigned wad -> unsigned wad

2 func add{range_check_ptr, bitwise_ptr: BitwiseBuiltin*}(lhs: Uint256, rhs: Uint256)

-> (

3 res: Uint256

4) {

5 ...

6 }

7

8 // unsigned wad + signed wad -> unsigned wad

9 // function _add(uint256 x, int256 y) internal pure returns (uint256 z) {

10 // z = y >= 0 ? x + uint256(y) : x - uint256(-y);

11 // }

12 func _add{range_check_ptr, bitwise_ptr: BitwiseBuiltin*}(x: Uint256, y: Int256) -> (

res: Uint256) {

13 ...

14 }

© 2022 Veridise Inc. Veridise Audit Report: MakerDAO

7

As the comments illustrate, add operates over unsigned uint256 values while _add takes a
signed value as its second argument. Since uint256 values are also used to represent signed
integers, its easy for developers to mismatch caller and callee assumptions. Such an error was
found in the fold function shown here:

1 // // --- Rates ---

2 // function fold(bytes32 i, address u, int256 rate_) external auth {

3 @external

4 func fold{

5 syscall_ptr: felt*, pedersen_ptr: HashBuiltin*, range_check_ptr, bitwise_ptr:

BitwiseBuiltin*
6 }(i: felt, u: felt, rate: Int256) {

7 ...

8

9 // int256 rad = _int256(ilk.Art) * rate_;

10 let (rad) = _mul(ilk.Art, rate);

11

12 let (dai) = _dai.read(u);

13 let (dai) = add(dai, rad);

14 _dai.write(u, dai);

15

16 let (debt) = _debt.read();

17 let (debt) = add(debt, rad);

18 _debt.write(debt);

19

20 ...

21 }

Importantly, rad is assumed to be an signed value, since rate may be negative. However, the
add operation used assumes that the second operation (rad in these cases) is an unsigned value.
As a result, when rad is negative, fold may actually add a large amount to dai(u) and debt

instead of subtracting.

Bug fix The fix to this bug came in two parts. First, the fold function was updated to use
the correct addition operation (i.e. changing add to _add). Second, the safe math library was
updated with the auxiliary type Int256 to make more clear the callee assumptions on arithmetic
operations.

Recommendations As the MakerDAO code base evolves and changes over time, we recommend
rerunning this automatic verification process in order to ensure any new changes do not affect
the correctness of the protocol. Since the properties specify functional correctness of protocol
operations, we do not expect any necessary changes to the specifications when verifying changes
to the protocol. Should new operations be added, we recommend specifying the correctness of
those operations using the [V] language in a similar way to the specified properties in chapter 4.
Doing so will allow Medjai to verify the correctness of these new operations as well.

Veridise Audit Report: MakerDAO © 2022 Veridise Inc.

Verified Properties 4
In this section, we describe the properties verified by our tools. For each property, we log the
relevant functions and the type of property. Table 4.1 summarizes the verified properties:

Table 4.1: Summary of Verified Properties.

ID Description Status
V-MCD-PROP-001 Constructor correctly initializes state Verified
V-MCD-PROP-002 rely correctly sets ward Verified
V-MCD-PROP-003 rely reverts iff conditions are met Verified
V-MCD-PROP-004 deny correctly sets ward Verified
V-MCD-PROP-005 deny reverts iff conditions are met Verified
V-MCD-PROP-006 init correctly sets rate value of ilks Verified
V-MCD-PROP-007 init reverts iff conditions are met Verified
V-MCD-PROP-008 file correctly sets Line Verified
V-MCD-PROP-009 file reverts iff conditions are met Verified
V-MCD-PROP-010 file_ilk correctly updates state Verified
V-MCD-PROP-011 file_ilk reverts iff conditions are met Verified
V-MCD-PROP-012 cage correctly sets live Verified
V-MCD-PROP-013 cage reverts iff conditions are met Verified
V-MCD-PROP-014 hope correctly sets can Verified
V-MCD-PROP-015 hope reverts iff conditions are met Verified
V-MCD-PROP-016 nope correctly sets can Verified
V-MCD-PROP-017 nope reverts iff conditions are met Verified
V-MCD-PROP-018 slip correctly updates gem Verified
V-MCD-PROP-019 slip reverts iff conditions are met Verified
V-MCD-PROP-020 flux correctly updates gem for src and dst Verified
V-MCD-PROP-021 flux reverts iff conditions are met Verified
V-MCD-PROP-022 move correctly updates dai for src and dst Verified
V-MCD-PROP-023 move reverts iff conditions are met Verified
V-MCD-PROP-024 frob correctly updates various parts of state Verified
V-MCD-PROP-025 frob reverts iff conditions are met In Progress
V-MCD-PROP-026 fork correctly updates urns Verified
V-MCD-PROP-027 fork reverts iff conditions are met Verified
V-MCD-PROP-028 grab correctly updates various parts of state Verified
V-MCD-PROP-029 grab reverts iff conditions are met Verified
V-MCD-PROP-030 heal correctly updates various parts of state Verified
V-MCD-PROP-031 heal reverts iff conditions are met Verified
V-MCD-PROP-032 suck correctly updates various parts of state Verified
V-MCD-PROP-033 suck reverts iff conditions are met Verified
V-MCD-PROP-034 fold correctly updates various parts of state Verified
V-MCD-PROP-035 fold reverts iff conditions are met Verified

Veridise Audit Report: MakerDAO © 2022 Veridise Inc.

10 4 Verified Properties

4.1 Detailed Description of Formal Verification Results

In this section, we describe how each property was verified, including both an English description
of the property as well as the formal property verified. The specifications for these properties
are mostly based on the specifications for the Solidity versions of the functions, with some
alterations. For example, additional checks on the validity of uint256 values are required due
to the structural differences between uint256 in Cairo versus Solidity. While most properties
were able to be verified by Medjai in a fully automatic way, some more complex properties
required additional manual effort. These efforts are described for each property below.

4.1.1 V-MCD-PROP-001: Constructor correctly initializes state

Commit 9914ac5 Status Verified
Files vat.cairo

Functions constructor

Description This is a correctness property for the constructor of the vat contract. Specifically,
the property specifies that the live value is set to 1, ward value for the parameterized address is
set to 1, and the ward value for any other addresses does not change.

Formal Specification The following shows the formal specification for the V-MCD-PROP-001
property:

1 vars: contract c, address otherUsr

2 spec: finished(c.constructor(ward),

3 otherUsr != ward

4 |=>

5 wards(ward) = 1 &&

6 wards(otherUsr) = old(wards(otherUsr)) &&

7 live() = 1)

Verification Methodology This property was verified by Medjai fully automatically.

© 2022 Veridise Inc. Veridise Audit Report: MakerDAO

4.1 Detailed Description of Formal Verification Results 11

4.1.2 V-MCD-PROP-002: rely correctly sets ward

Commit 9914ac5 Status Verified
Files vat.cairo

Functions rely

Description This is a correctness property for the function rely in the case that the function
finishes (i.e. does not revert). Specifically, the property specifies that the ward value for the
parameterized address is set to 1, while the ward value for any other addresses does not
change.

Formal Specification The following shows the formal specification for the property:

1 vars: contract c, address otherUsr

2 spec: finished(c.rely(usr), otherUsr != usr |=>

3 wards(usr) = 1 && wards(otherUsr) = old(wards(otherUsr)))

Verification Methodology This property was verified by Medjai fully automatically.

Veridise Audit Report: MakerDAO © 2022 Veridise Inc.

12 4 Verified Properties

4.1.3 V-MCD-PROP-003: rely reverts iff conditions are met

Commit 9914ac5 Status Verified
Files vat.cairo

Functions rely

Description There are two conditions under which rely reverts:

1. The ward value of the message sender is not 1
2. The live value is not 1

This property specifies that the rely function should revert if and only if at least one of these
conditions is met.

Formal Specification The following shows the formal specification for the property:

1 vars: contract c

2 spec: reverted(c.rely(usr), ward(get_caller_address()) != 1 || live() != 1)

Verification Methodology This property was verified by Medjai fully automatically.

© 2022 Veridise Inc. Veridise Audit Report: MakerDAO

4.1 Detailed Description of Formal Verification Results 13

4.1.4 V-MCD-PROP-004: deny correctly sets ward

Commit 9914ac5 Status Verified
Files vat.cairo

Functions deny

Description This is a correctness property for the function deny in the case that the function
finishes (i.e. does not revert). Specifically, the property specifies that the ward value for the
parameterized address is set to 0, while the ward value for any other addresses does not
change.

Formal Specification The following shows the formal specification for the property:

1 vars: contract c, address otherUsr

2 spec: finished(c.deny(usr), otherUsr != usr |=>

3 wards(usr) = 0 && wards(otherUsr) = old(wards(otherUsr)))

Verification Methodology This property was verified by Medjai fully automatically.

Veridise Audit Report: MakerDAO © 2022 Veridise Inc.

14 4 Verified Properties

4.1.5 V-MCD-PROP-005: deny reverts iff conditions are met

Commit 9914ac5 Status Verified
Files vat.cairo

Functions deny

Description There are two conditions under which deny reverts:

1. The ward value of the message sender is not 1
2. The live value is not 1

This property specifies that the deny function should revert if and only if at least one of these
conditions is met.

Formal Specification The following shows the formal specification for the property:

1 vars: contract c

2 spec: reverted(c.deny(usr), ward(get_caller_address()) != 1 || live() != 1)

Verification Methodology This property was verified by Medjai fully automatically.

© 2022 Veridise Inc. Veridise Audit Report: MakerDAO

4.1 Detailed Description of Formal Verification Results 15

4.1.6 V-MCD-PROP-006: init correctly sets rate value of ilks

Commit 9914ac5 Status Verified
Files vat.cairo

Functions init

Description This is a correctness property for the function init in the case that the function
finishes (i.e. does not revert). Specifically, the property specifies that the value of ilks at index
ilk is updated such that the rate is set to 1027, and all other values are unchanged.

Formal Specification The following shows the formal specification for the property:

1 vars: contract c

2 spec: let ray() := Uint256(low=10 ** 27, high=0);

3 finished(c.init(ilk),

4 ilks(ilk).rate = ray()

5 && ilks(ilk).Art = old(ilks(ilk).Art)

6 && ilks(ilk).spot = old(ilks(ilk).spot)

7 && ilks(ilk).line = old(ilks(ilk).line)

8 && ilks(ilk).dust = old(ilks(ilk).dust))

Verification Methodology This property was verified by Medjai fully automatically.

Veridise Audit Report: MakerDAO © 2022 Veridise Inc.

16 4 Verified Properties

4.1.7 V-MCD-PROP-007: init reverts iff conditions are met

Commit 9914ac5 Status Verified
Files vat.cairo

Functions init

Description There are two conditions under which init reverts:

1. The ward value of the message sender is not 1
2. The initial value of rate for the ilk parameter is not 0

This property specifies that the init function should revert if and only if at least one of these
conditions is met.

Formal Specification The following shows the formal specification for the property:

1 vars: contract c

2 spec: reverted(c.init(ilk), ward(get_caller_address()) != 1 || ilks(ilk).rate != 0)

Verification Methodology This property was verified by Medjai fully automatically.

© 2022 Veridise Inc. Veridise Audit Report: MakerDAO

4.1 Detailed Description of Formal Verification Results 17

4.1.8 V-MCD-PROP-008: file correctly sets Line

Commit 9914ac5 Status Verified
Files vat.cairo

Functions file

Description This is a correctness property for the function file in the case that the function
finishes (i.e. does not revert). Specifically, the property specifies that file correctly sets the
value of Line to the parameter data of the function.

Formal Specification The following shows the formal specification for the property:

1 vars: contract c

2 spec: finished(c.file(what, data), c.Line() = data)

Verification Methodology This property was verified by Medjai fully automatically.

Veridise Audit Report: MakerDAO © 2022 Veridise Inc.

18 4 Verified Properties

4.1.9 V-MCD-PROP-009: file reverts iff conditions are met

Commit 9914ac5 Status Verified
Files vat.cairo

Functions file

Description There are three conditions under which file reverts:

1. The ward value of the message sender is not 1
2. The live value is not 1
3. The what value passed to the function is not "Line"

This property specifies that the file function should revert if and only if at least one of these
conditions is met.

Formal Specification The following shows the formal specification for the property:

1 vars: contract c

2 spec: reverted(c.file(what, data),

3 ward(get_caller_address()) != 1 ||

4 live() != 1 ||

5 what != 0

x4c696e6500)

Verification Methodology This property was verified by Medjai fully automatically.

© 2022 Veridise Inc. Veridise Audit Report: MakerDAO

4.1 Detailed Description of Formal Verification Results 19

4.1.10 V-MCD-PROP-010: file_ilk correctly updates state

Commit 9914ac5 Status Verified
Files vat.cairo

Functions file_ilk

Description This is a correctness property for the function file_ilk in the case that the
function finishes (i.e. does not revert). Specifically, the property specifies that file_ilk updates
the spot, line, and dust values of ilks(ilk) correctly based on the parameterized what

value.

Formal Specification The following shows the formal specification for the property:

1 vars: contract c

2 spec: let w1() := 0x73706f7400;

3 let w2() := 0x6c696e6500;

4 let w3() := 0x6475737400;

5 finished(c.file_ilk(ilk, what, data),

6 what = w1() -> ilks(ilk).spot = data

7 && what != w1() -> ilks(ilk).spot = old(ilks(ilk).spot)

8 && what = w2() -> ilks(ilk).line = data

9 && what != w2() -> ilks(ilk).line = old(ilks(ilk).line)

10 && what = w3() -> ilks(ilk).dust = data

11 && what != w3() -> ilks(ilk).dust = old(ilks(ilk).dust)

12 && ilks(ilk).Art = old(ilks(ilk).Art)

13 && ilks(ilk).rate = old(ilks(ilk).rate))

Verification Methodology This property was verified by Medjai fully automatically.

Veridise Audit Report: MakerDAO © 2022 Veridise Inc.

20 4 Verified Properties

4.1.11 V-MCD-PROP-011: file_ilk reverts iff conditions are met

Commit 9914ac5 Status Verified
Files vat.cairo

Functions file_ilk

Description There are three conditions under which file_ilk reverts:

1. The ward value of the message sender is not 1
2. The live value is not 1
3. The what value passed to the function is not "Line"

This property specifies that the file_ilk function should revert if and only if at least one of
these conditions is met.

Formal Specification The following shows the formal specification for the property:

1 vars: contract c

2 spec: reverted(c.file_ilk(ilk, what, data),

3 ward(get_caller_address()) != 1 ||

4 live() != 1 ||

5 (what != 0

x73706f7400 &&

6 what != 0

x6c696e6500 &&

7 what != 0

x6475737400))

Verification Methodology This property was verified by Medjai fully automatically.

© 2022 Veridise Inc. Veridise Audit Report: MakerDAO

4.1 Detailed Description of Formal Verification Results 21

4.1.12 V-MCD-PROP-012: cage correctly sets live

Commit 9914ac5 Status Verified
Files vat.cairo

Functions cage

Description This is a correctness property for the function cage in the case that the function
finishes. Specifically, the property specifies that the value of live is set to 0 after cage is called.

Formal Specification The following shows the formal specification for the property:

1 vars: contract c

2 spec: finished(c.cage(), c.live() = 0)

Verification Methodology This property was verified by Medjai fully automatically.

Veridise Audit Report: MakerDAO © 2022 Veridise Inc.

22 4 Verified Properties

4.1.13 V-MCD-PROP-013: cage reverts iff conditions are met

Commit 9914ac5 Status Verified
Files vat.cairo

Functions cage

Description This property specifies that the cage function should revert if and only if the ward
value of the message sender is not 1.

Formal Specification The following shows the formal specification for the property:

1 vars: contract c

2 spec: reverted(c.cage(), ward(get_caller_address()) != 1)

Verification Methodology This property was verified by Medjai fully automatically.

© 2022 Veridise Inc. Veridise Audit Report: MakerDAO

4.1 Detailed Description of Formal Verification Results 23

4.1.14 V-MCD-PROP-014: hope correctly sets can

Commit 9914ac5 Status Verified
Files vat.cairo

Functions hope

Description This is a correctness property for the function hope in the case that the function
finishes. Specifically, the property specifies that the value of can corresponding to both the
caller address and usr parameter address is set to 1. All other values of can should remain
unchanged.

Formal Specification The following shows the formal specification for the property:

1 vars: contract c, address otherFrom, address otherTo

2 spec: finished(c.hope(usr),

3 otherFrom != get_caller_address() || otherTo != usr

4 |=> can(get_caller_address(), usr) = 1

5 && can(otherFrom, otherTo) = old(can(otherFrom, otherTo)))

Verification Methodology This property was verified by Medjai fully automatically.

Veridise Audit Report: MakerDAO © 2022 Veridise Inc.

24 4 Verified Properties

4.1.15 V-MCD-PROP-015: hope reverts iff conditions are met

Commit 9914ac5 Status Verified
Files vat.cairo

Functions hope

Description This property specifies that the hope function should not revert.

Formal Specification The following shows the formal specification for the property:

1 vars: contract c

2 spec: reverted(c.hope(usr), false)

Verification Methodology This property was verified by Medjai fully automatically.

© 2022 Veridise Inc. Veridise Audit Report: MakerDAO

4.1 Detailed Description of Formal Verification Results 25

4.1.16 V-MCD-PROP-016: nope correctly sets can

Commit 9914ac5 Status Verified
Files vat.cairo

Functions nope

Description This is a correctness property for the function nope in the case that the function
finishes. Specifically, the property specifies that the value of can corresponding to both the
caller address and usr parameter address is set to 0. All other values of can should remain
unchanged.

Formal Specification The following shows the formal specification for the property:

1 vars: contract c, address otherFrom, address otherTo

2 spec: finished(c.nope(usr),

3 otherFrom != get_caller_address() || otherTo != usr

4 |=> can(get_caller_address(), usr) = 0

5 && can(otherFrom, otherTo) = old(can(otherFrom, otherTo)))

Verification Methodology This property was verified by Medjai fully automatically.

Veridise Audit Report: MakerDAO © 2022 Veridise Inc.

26 4 Verified Properties

4.1.17 V-MCD-PROP-017: nope reverts iff conditions are met

Commit 9914ac5 Status Verified
Files vat.cairo

Functions nope

Description This property specifies that the nope function should not revert.

Formal Specification The following shows the formal specification for the property:

1 vars: contract c

2 spec: reverted(c.nope(usr), false)

Verification Methodology This property was verified by Medjai fully automatically.

© 2022 Veridise Inc. Veridise Audit Report: MakerDAO

4.1 Detailed Description of Formal Verification Results 27

4.1.18 V-MCD-PROP-018: slip correctly updates gem

Commit 9914ac5 Status Verified
Files vat.cairo

Functions slip

Description This is a correctness property for the function slip in the case that the function
finishes. Specifically, the property specifies that the value of can corresponding to both the
caller address and usr parameter address is set to 0. All other values of can should remain
unchanged.

Formal Specification The following shows the formal specification for the property:

1 vars: contract c, felt otherIlk, address otherUsr

2 spec: finished(c.slip(ilk, usr, wad),

3 otherIlk != ilk || otherUsr != usr

4 |=> mathint(gem(ilk, usr)) = old(mathint(gem(ilk, usr))) + mathint(wad

)

5 gem(otherIlk, otherUsr) = old(gem(otherIlk, otherUsr)))

Verification Methodology This property was verified by Medjai fully automatically.

Veridise Audit Report: MakerDAO © 2022 Veridise Inc.

28 4 Verified Properties

4.1.19 V-MCD-PROP-019: slip reverts iff conditions are met

Commit 9914ac5 Status Verified
Files vat.cairo

Functions slip

Description There are three conditions under which slip reverts:

1. The ward value of the message sender is not 1
2. The new gem value is outside of the range of valid uint256 values
3. The wad parameter represents an invalid uint256

This property specifies that the slip function should revert if and only if at least one of these
conditions is met.

Formal Specification The following shows the formal specification for the property:

1 vars: contract c

2 spec: let max_uint256() :=

115792089237316195423570985008687907853269984665640564039457584007913129639935;

3 let sum(l, r) := mathint(uint256(l)) + mathint(int256(r));

4 reverted(c.slip(ilk, usr, wad),

5 !valid_uint256(wad) ||

6 ward(get_caller_address()) != 1 ||

7 sum(gem(ilk, usr), wad) < 0 ||

8 sum(gem(ilk, usr), wad) > max_uint256())

Verification Methodology This property was verified by Medjai fully automatically.

© 2022 Veridise Inc. Veridise Audit Report: MakerDAO

4.1 Detailed Description of Formal Verification Results 29

4.1.20 V-MCD-PROP-020: flux correctly updates gem for src and dst

Commit 9914ac5 Status Verified
Files vat.cairo

Functions flux

Description This is a correctness property is broken up into two specifications based on the
starting state.

1. If src and dst are equivalent, then the value of gem for the address remains the same.
2. If src and dst are different, then gem(ilk, src) decreases and gem(ilk, dst) increases

by the correct amount. Specifically, the computed uint256 value represents the correct
mathematical integer.

In both cases, the gem value for other addresses should not change.

Formal Specification The following shows the formal specification for the property:

1 vars: contract c, felt otherIlk, address otherUsr

2 spec: finished(c.flux(ilk, src, dst, wad),

3 src != dst && (otherIlk != ilk || (otherUsr != src && otherUsr != dst))

4 |=>

5 mathint(gem(ilk, src)) = old(mathint(gem(ilk, src))) - mathint(wad) &&

6 mathint(gem(ilk, dst)) = old(mathint(gem(ilk, dst))) + mathint(wad) &&

7 gem(otherIlk, otherUsr) = old(gem(otherIlk, otherUsr)))

1 vars: contract c, felt anyIlk, address anyUsr

2 spec: finished(c.flux(ilk, src, dst, wad),

3 src = dst |=> gem(anyIlk, anyUsr) = old(gem(anyIlk, anyUsr)))

Verification Methodology This property was verified by Medjai fully automatically.

Veridise Audit Report: MakerDAO © 2022 Veridise Inc.

30 4 Verified Properties

4.1.21 V-MCD-PROP-021: flux reverts iff conditions are met

Commit 9914ac5 Status Verified
Files vat.cairo

Functions flux

Description There are four conditions under which flux reverts:

1. The wish value for src is false (i.e. src is not the message sender and the value of can for
src and the message sender is not 1)

2. The original value for gem at src is less than the wad parameter
3. The resulting gem value for dst would overflow
4. The wad parameter represents an invalid uint256

This property specifies that the flux function should revert if and only if at least one of these
conditions is met.

Formal Specification The following shows the formal specification for the property:

1 vars: contract c

2 spec: let max_uint256() :=

115792089237316195423570985008687907853269984665640564039457584007913129639935;

3 let sum(l, r) := mathint(uint256(l)) + mathint(int256(r));

4 reverted(c.flux(ilk, src, dst, wad),

5 !valid_uint256(wad) ||

6 wish(src, get_caller_address()) != 1 ||

7 gem(ilk, src) < wad ||

8 (src != dst && sum(gem(ilk, dst), wad) > max_uint256()))

Verification Methodology This property was verified by Medjai fully automatically.

© 2022 Veridise Inc. Veridise Audit Report: MakerDAO

4.1 Detailed Description of Formal Verification Results 31

4.1.22 V-MCD-PROP-022: move correctly updates dai for src and dst

Commit 9914ac5 Status Verified
Files vat.cairo

Functions move

Description This is a correctness property is broken up into two specifications based on the
starting state.

1. If src and dst are equivalent, then the value of dai for the address remains the same.
2. If src and dst are different, then dai(src)decreases and gem(dst) increases by the correct

amount. Specifically, the computed uint256 value represents the correct mathematical
integer.

In both cases, the dai value for other addresses should not change.

Formal Specification The following shows the formal specification for the property:

1 vars: contract c, address otherUsr

2 spec: finished(c.move(src, dst, rad),

3 src != dst && otherUsr != src && otherUsr != dst

4 |=>

5 mathint(dai(src)) = old(mathint(dai(src))) - mathint(rad) &&

6 mathint(dai(dst)) = old(mathint(dai(dst))) + mathint(rad) &&

7 dai(otherUsr) = old(dai(otherUsr)))

1 vars: contract c, address anyUsr

2 spec: finished(c.move(src, dst, rad),

3 src = dst |=> dai(anyUsr) = old(dai(anyUsr)))

Verification Methodology This property was verified by Medjai fully automatically.

Veridise Audit Report: MakerDAO © 2022 Veridise Inc.

32 4 Verified Properties

4.1.23 V-MCD-PROP-023: move reverts iff conditions are met

Commit 9914ac5 Status Verified
Files vat.cairo

Functions move

Description There are four conditions under which move reverts:

1. The wish value for src is false (i.e. src is not the message sender and the value of can for
src and the message sender is not 1)

2. The original value for dai at src is less than the rad parameter
3. The resulting dai value for dst would overflow
4. The rad parameter represents an invalid uint256

This property specifies that the move function should revert if and only if at least one of these
conditions is met.

Formal Specification The following shows the formal specification for the property:

1 vars: contract c

2 spec: let max_uint256() :=

115792089237316195423570985008687907853269984665640564039457584007913129639935;

3 let sum(l, r) := mathint(uint256(l)) + mathint(int256(r));

4 reverted(c.move(src, dst, rad),

5 !valid_uint256(rad) ||

6 wish(src, get_caller_address()) != 1 ||

7 dai(src) < rad ||

8 (src != dst && sum(dai(dst), rad) > max_uint256()))

Verification Methodology This property was verified by Medjai fully automatically.

© 2022 Veridise Inc. Veridise Audit Report: MakerDAO

4.1 Detailed Description of Formal Verification Results 33

4.1.24 V-MCD-PROP-024: frob correctly updates various parts of state

Commit 9914ac5 Status Verified
Files vat.cairo

Functions frob

Description This is a correctness property specifies that the frob function modifies various
parts of the contract state, while keeping others constant:

1. The ink and art values of urns(i, u) increase, while urns for unspecified addresses
remains constant.

2. The Art value of ilks(i) increases, while all other values of ilks(i) remain constant.
3. The debt value increases by the correct amount.
4. gem(i, v) increases, but remains constant for other addresses.
5. dai(w) increases, but remains constant for other addresses.

Formal Specification The following shows the formal specification for the property:

1 vars: contract c, felt otherIlk, address otherU, address otherV, address otherW

2 spec: let diff(l, r) := mathint(uint256(l)) - mathint(int256(r));

3 finished(c.frob(i, u, v, w, dink, dart)

4 (otherIlk != ilk || otherU != u) &&

5 (otherIlk != ilk || otherV != v) &&

6 otherW != W

7 |=>

8 mathint(urns(i, u).ink) = old(mathint(urns(i, u).ink)) + mathint(dink) &&

9 mathint(urns(i, u).art) = old(mathint(urns(i, u).art)) + mathint(dart) &&

10 mathint(ilks(i).Art) = old(mathint(ilks(i).Art)) + mathint(dart) &&

11 mathint(debt()) = old(mathint(debt())) + old(mathint(ilks(i).rate)) * mathint(

dart) &&

12 mathint(gem(i, v)) = diff(old(gem(i, v)), dink) &&

13 mathint(dai(w)) = old(mathint(dai(w))) + old(mathint(ilks(i).rate)) * mathint(

dart) &&

14 urns(otherIlk, otherU) = old(urns(otherIlk, otherU)) &&

15 ilks(i).rate = old(ilks(i).rate) &&

16 ilks(i).spot = old(ilks(i).spot) &&

17 ilks(i).line = old(ilks(i).line) &&

18 ilks(i).dust = old(ilks(i).dust) &&

19 gem(otherIlk, otherV) = old(gem(otherIlk, otherV)) &&

20 dai(otherW) = old(dai(otherW)))

Veridise Audit Report: MakerDAO © 2022 Veridise Inc.

34 4 Verified Properties

Verification Methodology This query required some manual effort from Veridise engineers to
fully verify. The main reason for this is the arithmetic used in frob: multiplication for uint256
implemented with finite field arithmetic proves difficult to reason about quickly. To enable
verification of this property with Medjai, engineers at Veridise manually decomposed the
verification task into multiple independent pieces.

The first way that Veridise engineers performed this decomposition was modeling the multi-
plication functions within safe_math.cairo. In doing so, Medjai was able to use this simpler
model to prove the property above, then prove that the model correctly simulates the actual
implementation of multiplication.

The second step in decomposing the problem was to verify the property separately for different
assumptions made on the inputs to frob. Medjai was able to prove the property for frob for
each input case separately, and then together prove that those cases covered all possible inputs.
As a result, Medjai was able to provide a piece-wise proof that the correctness property for frob
holds.

© 2022 Veridise Inc. Veridise Audit Report: MakerDAO

4.1 Detailed Description of Formal Verification Results 35

4.1.25 V-MCD-PROP-025: frob reverts iff conditions are met

Commit 9914ac5 Status Verified
Files vat.cairo

Functions frob

Description There are twenty conditions under which frob reverts:

1. live is not 1
2. The rate value of ilks(i) is 0
3. The resulting ink value of urns(i, u) would overflow
4. The resulting art value of urns(i, u) would overflow
5. The resulting Art of ilks(i) value would overflow
6. The rate value of ilks(i) is above the max uint256 value
7. rate * dart over- or underflows
8. rate times the new urns(i, u).art value overflows
9. debt + rate * dart would overflow

10. rate times the new ilks(i).Art value overflows
11. The parameter dart > 0, and rate * ilks(i).Art is greater than ilks(i).line or the

new debt value is greater than Line

12. The new value for ink * spot overflows
13. Both rate times the new art is greater than spot times the new ink and either dart > 0

or dink < 0

14. Both wish(u) is false and either dart > 0 or dink < 0

15. Both wish(v) is false and dink > 0

16. Both wish(w) is false and dart < 0

17. The new art value is greater than 0, and rate times the new art value is less than dust

18. The updated gem value overflows
19. The updated dai value overflows
20. The dink or dart parameter represents an invalid uint256

This property specifies that the frob function should revert if and only if at least one of these
conditions is met.

Veridise Audit Report: MakerDAO © 2022 Veridise Inc.

36 4 Verified Properties

Formal Specification The following shows the formal specification for the property:

1 vars: contract c

2 spec: let diff(l, r) := mathint(uint256(l)) - mathint(int256(r));

3 let sum(l, r) := mathint(uint256(l)) + mathint(int256(r));

4 let mul(l, r) := mathint(uint256(l)) * mathint(int256(r));

5 let max_Uint256() :=

115792089237316195423570985008687907853269984665640564039457584007913129639935;

6 let max_Int256() :=

57896044618658097711785492504343953926634992332820282019728792003956564819967;

7 let min_Int256() :=

-57896044618658097711785492504343953926634992332820282019728792003956564819968;

8 let ink(usr) := urns(i, usr).ink;

9 let art(usr) := urns(i, usr).art;

10 let Art() := ilks(i).Art;

11 let rate() := ilks(i).rate;

12 let spot() := ilks(i).spot;

13 let dust() := ilks(i).dust;

14 let line() := ilks(i).line;

15 let caller() := c.get_caller_address();

16 reverted(c.frob(i, u, v, w, dink, dart),

17 !valid_uint256(dink) ||

18 !valid_uint256(dart) ||

19 live() != 1 ||

20 rate() = 0 ||

21 sum(ink(i), dink) < 0 ||

22 sum(ink(i), dink) > max_Uint256() ||

23 sum(art(i), dart) < 0 ||

24 sum(art(i), dart) > max_Uint256() ||

25 sum(Art(), dart) < 0 ||

26 sum(Art(), dart) > max_Uint256() ||

27 mathint(rate()) > max_Int256() ||

28 mul(rate(), dart) > max_Int256() ||

29 mul(rate(), dart) < min_Int256() ||

30 mul(rate(), sum(art(i), dart)) > max_Uint256() ||

31 sum(debt(), mul(rate(), dart)) < 0 ||

32 sum(debt(), mul(rate(), dart)) > max_Uint256() ||

33 mul(rate(), sum(Art(), dart)) > max_Uint256() ||

34 (dart > 0 && (mul(rate(), sum(Art(), dart)) > line() ||

35 sum(debt(), mul(rate(), dart)) > Line())) ||

36 mul(sum(ink(i), ink), spot()) > max_Uint256() ||

37 ((dart > 0 || dink < 0) && (mul(rate(), sum(Art(), dart)) > mul(sum(

ink(i), dink), spot()))) ||

38 ((dart > 0 || dink < 0) && wish(u, caller()) != 1) ||

39 (dink < 0 && wish(v, caller()) != 1) ||

40 (dart > 0 && wish(w, caller()) != 1) ||

41 (sum(Art(), dart) > 0 && mul(rate(), sum(Art(), dart) < dust())) ||

42 diff(gem(i, v), dink) < 0 ||

43 diff(gem(i, v), dink) > max_Uint256() ||

44 sum(dai(w), mul(rate(), dart)) < 0 ||

45 sum(dai(w), mul(rate(), dart)) > max_Uint256())

© 2022 Veridise Inc. Veridise Audit Report: MakerDAO

4.1 Detailed Description of Formal Verification Results 37

Verification Methodology Veridise engineers were able to verify this property of frob using
similar techniques as those described for V-MCD-PROP-024. Specifically, we model arithmetic
operations as described previously, and only include necessary assumptions. In general, Medjai
proves if and only if properties in two cases: showing that frob reverting implies that one
condition is true, and separately that the disjunction of the conditions implies that frob reverts.
For this property in particular, Medjai proved that each revert condition listed was sufficient
independent of others. This allowed Medjai to perform smaller (and easier) verification tasks.
By doing so, Medjai was able to verify that this property holds.

Veridise Audit Report: MakerDAO © 2022 Veridise Inc.

38 4 Verified Properties

4.1.26 V-MCD-PROP-026: fork correctly updates urns

Commit 9914ac5 Status Verified
Files vat.cairo

Functions fork

Description This is a correctness property is broken up into two specifications based on the
starting state.

1. If src and dst are equivalent, then the value of urns for the address remains the same.
2. If src and dst are different, then both the ink and art values of urns(ilk, src) decrease

and values of urns(ilk, dst) increase by the correct amount. Specifically, all computed
uint256 values represent the correct mathematical integer.

In both cases, the urns value for other addresses should not change.

Formal Specification The following shows the formal specification for the property:

1 vars: contract c, felt otherIlk, address otherUsr

2 spec: finished(c.fork(ilk, src, dst, dink, dart),

3 src != dst && (otherIlk != ilk || (otherUsr != src && otherUsr != dst))

4 |=>

5 mathint(urns(ilk, src).ink) = old(mathint(urns(ilk, src).ink)) - mathint(dink)

6 && mathint(urns(ilk, src).art)

7 = old(mathint(urns(ilk, src).art)) - mathint(dart)

8 && mathint(urns(ilk, dst).ink)

9 = old(mathint(urns(ilk, dst).ink)) + mathint(dink)

10 && mathint(urns(ilk, dst).art)

11 = old(mathint(urns(ilk, dst).art)) + mathint(dart)

12 && mathint(gem(ilk, dst)) = old(mathint(gem(ilk, dst))) + mathint(wad)

13 && urns(otherIlk, otherUsr).ink = old(urns(otherIlk, otherUsr).ink)

14 && urns(otherIlk, otherUsr).art = old(urns(otherIlk, otherUsr).art))

1 vars: contract c, felt anyIlk, address anyUsr

2 spec: finished(c.fork(ilk, src, dst, dink, dart),

3 src = dst

4 |=> urns(anyIlk, anyUsr).ink = old(urns(anyIlk, anyUsr).ink)

5 && urns(anyIlk, anyUsr).art = old(urns(anyIlk, anyUsr).art))

Verification Methodology Like frob, fork contains arithmetic involving multiplication in
a finite field. In order to enable verification through Medjai, Veridise engineers again used
a model for uint256 multiplication and separately verified the correctness of this model. By
doing so, Medjai was able to fully verify this property.

© 2022 Veridise Inc. Veridise Audit Report: MakerDAO

4.1 Detailed Description of Formal Verification Results 39

4.1.27 V-MCD-PROP-027: fork reverts iff conditions are met

Commit 9914ac5 Status Verified
Files vat.cairo

Functions fork

Description There are fourteen conditions under which fork reverts:

1. The resulting ink value of urns(ilk, src) would overflow
2. The resulting art value of urns(ilk, src) would overflow
3. The resulting ink value of urns(ilk, dst) would overflow
4. The resulting art value of urns(ilk, dst) would overflow
5. rate times the new urns(ilk, src).art value overflows
6. rate times the new urns(ilk, dst).art value overflows
7. Either wish(src) or wish(dst) is false
8. spot times the new urns(ilk, src).ink value overflows
9. rate times the new urns(ilk, src).art is too large

10. spot times the new urns(ilk, dst).ink value overflows
11. rate times the new urns(ilk, dst).art is too large
12. Both the updated urns(ilk, src).art is non-zero, and urns(ilk, src).art * rate

< dust

13. Both the updated urns(ilk, dst).art is non-zero, and urns(ilk, dst).art * rate

< dust

14. The dink or dart parameter represents an invalid uint256

This property specifies that the fork function should revert if and only if at least one of these
conditions is met.

Veridise Audit Report: MakerDAO © 2022 Veridise Inc.

40 4 Verified Properties

Formal Specification The following shows the formal specification for the property:

1 vars: contract c

2 spec: let diff(l, r) := mathint(uint256(l)) - mathint(int256(r));

3 let sum(l, r) := mathint(uint256(l)) + mathint(int256(r));

4 let mul(l, r) := mathint(uint256(l)) * mathint(int256(r));

5 let max_uint256() :=

115792089237316195423570985008687907853269984665640564039457584007913129639935;

6 let ink(u) := urns(ilk, u).ink;

7 let art(u) := urns(ilk, u).art;

8 let rate() := ilks(ilk).rate;

9 let spot() := ilks(ilk).spot;

10 let dust() := ilks(ilk).dust;

11 let caller() := c.get_caller_address();

12 reverted(c.fork(ilk, src, dst, dink, dart),

13 !valid_uint256(dink) ||

14 !valid_uint256(dart) ||

15 diff(ink(src), dink) < 0 ||

16 diff(ink(src), dink) > max_uint256() ||

17 diff(art(src), dart) < 0 ||

18 diff(art(src), dart) > max_uint256() ||

19 (src != dst && sum(ink(dst), dink) < 0) ||

20 (src != dst && sum(ink(dst), dink) > max_uint256()) ||

21 (src != dst && sum(art(dst), dart) < 0) ||

22 (src != dst && sum(art(dst), dart) > max_uint256()) ||

23 mul(art(src), rate()) > max_uint256() ||

24 mul(art(dst), rate()) > max_uint256() ||

25 c.wish(src, caller()) != 1 ||

26 c.wish(dst, caller()) != 1 ||

27 mul(ink(src), spot()) > max_uint256() ||

28 mul(art(src), rate()) > mul(ink(src), spot()) ||

29 mul(ink(dst), spot()) > max_uint256() ||

30 mul(art(src), rate()) > dust() && art(src) != 0 ||

31 mul(art(dst), rate()) > dust() && art(dst) != 0)

Verification Methodology Veridise engineers verified this property using methodology similar
to that described for property V-MCD-PROP-025. The two techniques used here specifically
include modeling arithmetic and individually proving revert conditions are sufficient to force
fork to revert.

© 2022 Veridise Inc. Veridise Audit Report: MakerDAO

4.1 Detailed Description of Formal Verification Results 41

4.1.28 V-MCD-PROP-028: grab correctly updates various parts of state

Commit 9914ac5 Status Verified
Files vat.cairo

Functions grab

Description This is a correctness property specifies that the grab function modifies various
parts of the contract state, while keeping others constant:

1. The ink and art values of urns(i, u) increase, while urns for unspecified addresses
remains constant.

2. The Art value of ilks(i) increases, while all other values of ilks(i) remain constant.
3. gem(i, v) decreases, but remains constant for other addresses.
4. sin(w) decreases, but remains constant for other addresses.
5. vice decreases

Formal Specification The following shows the formal specification for the property:

1 vars: contract c, felt otherIlk, address otherU, address otherV, address otherW

2 spec: finished(c.grab(i, u, v, w, dink, dart)

3 (otherIlk != ilk || otherU != u) &&

4 (otherIlk != ilk || otherV != v) &&

5 otherW != W

6 |=>

7 mathint(urns(i, u).ink) = old(mathint(urns(i, u).ink)) + mathint(dink)

8 && mathint(urns(i, u).art) = old(mathint(urns(i, u).art)) + mathint(dart)

9 && mathint(ilks(i).Art) = old(mathint(ilks(i).Art)) + mathint(dart)

10 && mathint(gem(i, v)) = old(mathint(gem(i, v))) - mathint(dink)

11 && mathint(sin(w))

12 = old(mathint(sin(w))) - old(mathint(ilks(i).rate)) * mathint(dart)

13 && mathint(vice())

14 = old(mathint(vice())) - old(mathint(ilks(i).rate)) * mathint(dart)

15 && urns(otherIlk, otherU) = old(urns(otherIlk, otherU))

16 && ilks(i).rate = old(ilks(i).rate)

17 && ilks(i).spot = old(ilks(i).spot)

18 && ilks(i).line = old(ilks(i).line)

19 && ilks(i).dust = old(ilks(i).dust)

20 && gem(otherIlk, otherV) = old(gem(otherIlk, otherV))

21 && sin(otherW) = old(sin(otherW)))

Verification Methodology Like frob and fork, grab contains arithmetic involving multiplica-
tion in a finite field. In order to enable verification through Medjai, Veridise engineers again
used a model for uint256 multiplication and separately verified the correctness of this model.
By doing so, Medjai was able to fully verify this property.

Veridise Audit Report: MakerDAO © 2022 Veridise Inc.

42 4 Verified Properties

4.1.29 V-MCD-PROP-029: grab reverts iff conditions are met

Commit 9914ac5 Status Verified
Files vat.cairo

Functions grab

Description There are ten conditions under which grab reverts:

1. ward is not 1
2. The resulting ink value of urns(i, u) would overflow
3. The resulting art value of urns(i, u) would overflow
4. The resulting Art of ilks(i) value would overflow
5. The rate value of ilks(i) is above the max uint256 value
6. rate * dart over- or underflows
7. The updated gem value overflows
8. The updated sin value overflows
9. The updated vice value overflows

10. The dink or dart parameter represents an invalid uint256

This property specifies that the grab function should revert if and only if at least one of these
conditions is met.

© 2022 Veridise Inc. Veridise Audit Report: MakerDAO

4.1 Detailed Description of Formal Verification Results 43

Formal Specification The following shows the formal specification for the property:

1 vars: contract c

2 spec: let diff(l, r) := mathint(uint256(l)) - mathint(int256(r));

3 let sum(l, r) := mathint(uint256(l)) + mathint(int256(r));

4 let mul(l, r) := mathint(uint256(l)) * mathint(int256(r));

5 let max_Uint256() :=

115792089237316195423570985008687907853269984665640564039457584007913129639935;

6 let max_Int256() :=

57896044618658097711785492504343953926634992332820282019728792003956564819967;

7 let min_Int256() :=

-57896044618658097711785492504343953926634992332820282019728792003956564819968;

8 let ink(usr) := urns(i, usr).ink;

9 let art(usr) := urns(i, usr).art;

10 let Art() := ilks(i).Art;

11 let rate() := ilks(i).rate;

12 let spot() := ilks(i).spot;

13 let dust() := ilks(i).dust;

14 let caller() := c.get_caller_address();

15 reverted(c.grab(i, u, v, w, dink, dart),

16 !valid_uint256(dink) ||

17 !valid_uint256(dart) ||

18 wards(caller()) != 1 ||

19 sum(ink(i), dink) < 0 ||

20 sum(ink(i), dink) > max_Uint256() ||

21 sum(art(i), dart) < 0 ||

22 sum(art(i), dart) > max_Uint256() ||

23 sum(Art(), dart) < 0 ||

24 sum(Art(), dart) > max_Uint256() ||

25 mathint(rate()) > max_Int256() ||

26 mul(rate(), dart) > max_Int256() ||

27 mul(rate(), dart) < min_Int256() ||

28 diff(gem(i, v), dink) < 0 ||

29 diff(gem(i, v), dink) > max_Uint256 ||

30 diff(sin(w), mul(rate(), dart)) > max_Uint256() ||

31 diff(sin(w), mul(rate(), dart)) < 0 ||

32 diff(vice(), mul(rate(), dart)) > max_Uint256() ||

33 diff(vice(), mul(rate(), dart)) < 0)

Verification Methodology Veridise engineers verified this property using methodology similar
to that described for property V-MCD-PROP-025. The two techniques used here specifically
include modeling arithmetic and individually proving revert conditions are sufficient to force
grab to revert.

Veridise Audit Report: MakerDAO © 2022 Veridise Inc.

44 4 Verified Properties

4.1.30 V-MCD-PROP-030: heal correctly updates various parts of state

Commit 9914ac5 Status Verified
Files vat.cairo

Functions heal

Description This is a correctness property specifies that the heal function modifies various
parts of the contract state, while keeping others constant:

1. The dai of the message sender decreases
2. The sin of the message sender decreases
3. vice decreases
4. debt decreases
5. dai for other addresses remains constant
6. sin for other addresses remains constant

Formal Specification The following shows the formal specification for the property:

1 vars: contract c, address otherUsr

2 spec: let addr() = get_caller_address();

3 finished(c.heal(rad),

4 otherUsr != addr()

5 |=> mathint(dai(addr())) = old(mathint(dai(addr()))) - mathint(rad)

6 && mathint(sin(addr())) = old(mathint(sin(addr()))) - mathint(rad)

7 && mathint(vice()) = old(mathint(vice())) - mathint(rad)

8 && mathint(debt()) = old(mathint(debt())) - mathint(rad)

9 && dai(otherUsr) = old(dai(otherUsr))

10 && sin(otherUsr) = old(sin(otherUsr)))

Verification Methodology This property was verified by Medjai fully automatically.

© 2022 Veridise Inc. Veridise Audit Report: MakerDAO

4.1 Detailed Description of Formal Verification Results 45

4.1.31 V-MCD-PROP-031: heal reverts iff conditions are met

Commit 9914ac5 Status Verified
Files vat.cairo

Functions heal

Description There are five conditions under which heal reverts:

1. The original value of dai for the message sender is less than the input rad
2. The original value of sin for the message sender is less than the input rad
3. The original value of vice is less than the input rad
4. The original value of debt is less than the input rad
5. The rad parameter represents an invalid uint256

This property specifies that the heal function should revert if and only if at least one of these
conditions is met.

Formal Specification The following shows the formal specification for the property:

1 vars: contract c

2 spec: let caller() := c.get_caller_address();

3 reverted(c.heal(rad),

4 !valid_uint256(rad) ||

5 dai(caller()) < rad ||

6 sin(caller()) < rad ||

7 vice() < rad ||

8 debt() < rad)

Verification Methodology This property was verified by Medjai fully automatically.

Veridise Audit Report: MakerDAO © 2022 Veridise Inc.

46 4 Verified Properties

4.1.32 V-MCD-PROP-032: suck correctly updates various parts of state

Commit 9914ac5 Status Verified
Files vat.cairo

Functions suck

Description This is a correctness property specifies that the suck function modifies various
parts of the contract state, while keeping others constant:

1. The dai(v) increases
2. The sin(u) increases
3. vice increases
4. debt increases
5. dai for other addresses remains constant
6. sin for other addresses remains constant

Formal Specification The following shows the formal specification for the property:

1 vars: contract c, address otherUsr

2 spec: let addr() = get_caller_address();

3 finished(c.suck(rad),

4 otherUsr != addr()

5 |=> mathint(dai(addr())) = old(mathint(dai(addr()))) + mathint(rad)

6 && mathint(sin(addr())) = old(mathint(sin(addr()))) + mathint(rad)

7 && mathint(vice()) = old(mathint(vice())) + mathint(rad)

8 && mathint(debt()) = old(mathint(debt())) + mathint(rad)

9 && dai(otherUsr) = old(dai(otherUsr))

10 && sin(otherUsr) = old(sin(otherUsr)))

Verification Methodology This property was verified by Medjai fully automatically.

© 2022 Veridise Inc. Veridise Audit Report: MakerDAO

4.1 Detailed Description of Formal Verification Results 47

4.1.33 V-MCD-PROP-033: suck reverts iff conditions are met

Commit 9914ac5 Status Verified
Files vat.cairo

Functions suck

Description There are six conditions under which suck reverts:

1. ward is not 1
2. The new value of sin(u) overflows
3. The new value of dai(v) overflows
4. The new value of vice overflows
5. The new value of debt overflows
6. The rad parameter represents an invalid uint256

This property specifies that the suck function should revert if and only if at least one of these
conditions is met.

Formal Specification The following shows the formal specification for the property:

1 vars: contract c

2 spec: let max_uint256() :=

115792089237316195423570985008687907853269984665640564039457584007913129639935;

3 let sum(l, r) := mathint(uint256(l)) + mathint(int256(r));

4 let caller() := c.get_caller_address();

5 reverted(c.suck(rad),

6 !valid_uint256(rad) ||

7 wards(caller()) != 1 ||

8 sum(dai(caller()), rad) > max_uint256() ||

9 sum(sin(caller()), rad) > max_uint256() ||

10 sum(vice(), rad) > max_uint256() ||

11 sum(debt(), rad) > max_uint256())

Verification Methodology This property was verified by Medjai fully automatically.

Veridise Audit Report: MakerDAO © 2022 Veridise Inc.

48 4 Verified Properties

4.1.34 V-MCD-PROP-034: fold correctly updates various parts of state

Commit 9914ac5 Status Verified
Files vat.cairo

Functions fold

Description This is a correctness property specifies that the fold function modifies various
parts of the contract state, while keeping others constant:

1. ilks(i).rate increases
2. dai(u) increases
3. debt increases
4. Other parameters of ilks(i) remain constant

Formal Specification The following shows the formal specification for the property:

1 vars: contract c, address otherUsr

2 spec: finished(c.fold(i, u, rate),

3 otherUsr != u

4 |=>

5 mathint(ilks(i).rate) = old(mathint(ilks(i).rate)) + mathint(rate)

6 && mathint(dai(u))

7 = old(mathint(dai(u))) + old(mathint(ilks(i).Art)) * mathint(rate)

8 && mathint(debt())

9 = old(mathint(debt())) + old(mathint(ilks(i).Art)) * mathint(rate)

10 && ilks(i).Art = old(ilks(i).Art)

11 && ilks(i).spot = old(ilks(i).spot)

12 && ilks(i).line = old(ilks(i).line)

13 && ilks(i).dust = old(ilks(i).dust)

14 && dai(otherUsr) = old(dai(otherUsr))

Verification Methodology This property was verified by Medjai fully automatically.

Uncovered vulnerability During the process of verifying this property, Medjai originally
uncovered a bug whose root cause was due to a mismatch of assumptions when using the
safe_math library functions. After fixing the bug, the property was verified by Medjai.

© 2022 Veridise Inc. Veridise Audit Report: MakerDAO

4.1 Detailed Description of Formal Verification Results 49

4.1.35 V-MCD-PROP-035: fold reverts iff conditions are met

Commit 9914ac5 Status Verified
Files vat.cairo

Functions fold

Description There are eight conditions under which fold reverts:

1. ward is not 1
2. live is not 1
3. The new value of rate overflows
4. The original value of ilks(i).Art overflows
5. The new value of ilks(i).Art overflows
6. The original value of dai(u) overflows
7. The original value of debt overflows
8. The rate parameter represents an invalid uint256

This property specifies that the fold function should revert if and only if at least one of these
conditions is met.

Formal Specification The following shows the formal specification for the property:

1 vars: contract c

2 spec: let max_Uint256() :=

115792089237316195423570985008687907853269984665640564039457584007913129639935;

3 let max_Int256() :=

57896044618658097711785492504343953926634992332820282019728792003956564819967;

4 let min_Int256() :=

-57896044618658097711785492504343953926634992332820282019728792003956564819968;

5 let sum(l, r) := mathint(uint256(l)) + mathint(int256(r));

6 let mul(l, r) := mathint(uint256(l)) * mathint(int256(r));

7 let caller() := c.get_caller_address();

8 reverted(c.fold(i, u, rate),

9 !valid_uint256(rate) ||

10 wards(caller()) != 1 ||

11 live() != 1 ||

12 sum(ilks(i).rate, rate) > max_Uint256() ||

13 sum(ilks(i).rate, rate) < 0 ||

14 ilks(i).Art > max_Int256() ||

15 mul(ilks(i).Art, rate) > max_Int256() ||

16 mul(ilks(i).Art, rate) < min_Int256() ||

17 sum(dai(u), mul(ilks(i).Art, rate)) > max_Uint256() ||

18 sum(dai(u), mul(ilks(i).Art, rate)) < 0 ||

19 sum(debt(), mul(ilks(i).Art, rate)) > max_Uint256() ||

20 sum(debt(), mul(ilks(i).Art, rate)) < 0)

Verification Methodology This property was verified by Medjai fully automatically.

Veridise Audit Report: MakerDAO © 2022 Veridise Inc.

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Detailed Description of Bugs
	V-VAT-VUL-001: Incorrect uint256 math
	Verified Properties
	Detailed Description of Formal Verification Results

	Detailed Description of Formal Verification Results
	V-MCD-PROP-001: Constructor correctly initializes state
	V-MCD-PROP-002: rely correctly sets ward
	V-MCD-PROP-003: rely reverts iff conditions are met
	V-MCD-PROP-004: deny correctly sets ward
	V-MCD-PROP-005: deny reverts iff conditions are met
	V-MCD-PROP-006: init correctly sets rate value of ilks
	V-MCD-PROP-007: init reverts iff conditions are met
	V-MCD-PROP-008: file correctly sets Line
	V-MCD-PROP-009: file reverts iff conditions are met
	V-MCD-PROP-010: file_ilk correctly updates state
	V-MCD-PROP-011: file_ilk reverts iff conditions are met
	V-MCD-PROP-012: cage correctly sets live
	V-MCD-PROP-013: cage reverts iff conditions are met
	V-MCD-PROP-014: hope correctly sets can
	V-MCD-PROP-015: hope reverts iff conditions are met
	V-MCD-PROP-016: nope correctly sets can
	V-MCD-PROP-017: nope reverts iff conditions are met
	V-MCD-PROP-018: slip correctly updates gem
	V-MCD-PROP-019: slip reverts iff conditions are met
	V-MCD-PROP-020: flux correctly updates gem for src and dst
	V-MCD-PROP-021: flux reverts iff conditions are met
	V-MCD-PROP-022: move correctly updates dai for src and dst
	V-MCD-PROP-023: move reverts iff conditions are met
	V-MCD-PROP-024: frob correctly updates various parts of state
	V-MCD-PROP-025: frob reverts iff conditions are met
	V-MCD-PROP-026: fork correctly updates urns
	V-MCD-PROP-027: fork reverts iff conditions are met
	V-MCD-PROP-028: grab correctly updates various parts of state
	V-MCD-PROP-029: grab reverts iff conditions are met
	V-MCD-PROP-030: heal correctly updates various parts of state
	V-MCD-PROP-031: heal reverts iff conditions are met
	V-MCD-PROP-032: suck correctly updates various parts of state
	V-MCD-PROP-033: suck reverts iff conditions are met
	V-MCD-PROP-034: fold correctly updates various parts of state
	V-MCD-PROP-035: fold reverts iff conditions are met

