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Executive Summary 1
From Dec. 1 to Dec. 31, Semaphore engaged Veridise to review the security of their Groups
v3. The review covered the Zero-Knowledge circuits and on-chain contracts that implement
the protocol logic. Veridise conducted the assessment over 16 person-weeks, with 4 engineers
reviewing code over 4 weeks on commit 27320f1. The auditing strategy involved a tool-assisted
analysis of the source code performed by Veridise engineers as well as extensive manual
auditing.

Summary of issues detected. The audit uncovered 12 issues, 2 of which are assessed to be of
high or critical severity by the Veridise auditors. Specifically V-SEM-VUL-001 gives a group
creator implicit and permanent access to participate in a group and V-SEM-VUL-002 allows an
admin to update a leaf with a value larger than the snark scalar field. The veridise auditors also
identified several moderate-severity issues, including the ability to overwrite a whistleblower
group’s admin (V-SEM-VUL-003), the ability to manipulate the calculated index of an update to
the merkle tree (V-SEM-VUL-005) and an infinite loop if the admin attempts to add too many
members at once (V-SEM-VUL-006).

Code assessment. The Semaphore protocol provides a method of privately proving one’s
membership in a group. It does so by allowing users to create a unique cryptographic identifier,
or identity commitment, that they generate from two secret values. This identity commitment is
added to an incremental merkle tree, which is used to represent the group and its members. Once
added, members can prove their membership in the group by interacting with Semaphore’s
ZK Circuit. The circuit takes as input a user’s two secret values, the proof of membership in
the merkle tree, the group’s external nullifier and the public value the user wishes to share.
It then generates a proof of the user’s membership which can be submitted to Semaphore’s
contracts for validation and verification. Semaphore also provides two sample applications to
demonstrate how Groups v3 can be used by other developers.

Semaphore provided the source code for the protocol, which includes the zk-circuits and smart
contracts. A hardhat-based test-suite accompanied the source-code with tests written by the
developers. Finally, the developers also provided the documentation for the previous version of
the protocol, much of which still applies to v3.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.
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Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
Semaphore Groups v3 27320f1 Solidity Ethereum

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
Dec. 1 - Dec. 31, 2022 Manual & Tools 4 16 person-weeks

Table 2.3: Vulnerability Summary.

Name Number Resolved
Critical-Severity Issues 0 0
High-Severity Issues 2 2
Medium-Severity Issues 3 3
Low-Severity Issues 2 2
Warning-Severity Issues 4 4
Informational-Severity Issues 1 1
TOTAL 12 12

Table 2.4: Category Breakdown.

Name Number
Data Validation 3
Access Control 2
Usability 2
Bad Randomness 1
Logic Error 1
Denial of Service 1
Maintainability 1
Hash Collision 1
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Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of Semaphore’s ZK circuits and
the Groups v3 smart contracts. In our audit, we sought to answer the following questions:

▶ Are the constraints defined by the ZK circuit properly constrained?
▶ Can a user manipulate the public inputs or outputs of the circuit?
▶ Is it possible for a user to prove their membership in the group without being added?
▶ If a user is added to a group, can they be removed?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a combination of
human experts and automated program analysis & testing tools. In particular, we conducted
our audit with the aid of the following techniques:

▶ Static analysis. To identify potential common vulnerabilities, we leveraged our custom
smart contract analysis tool Vanguard, as well as the open-source tool Slither. These
tools are designed to find instances of common smart contract vulnerabilities, such as
reentrancy and uninitialized variables.

▶ Fuzzing/Property-based Testing. We also leverage fuzz testing to determine if the protocol
may deviate from the expected behavior. To do this, we formalize the desired behavior of
the protocol as [V] specifications and then use our fuzzing framework OrCa to determine
if a violation of the specification can be found.

▶ Formal Verification. To prove the correctness of the ZK circuits we used Coda, our formal
verification project based on the Coq interactive theorem prover. To do this, we formalized
the intended behavior of the Circom templates and then proved the correctness of the
implementation with respect to the formalized specifications.

Scope. This audit reviewed the ZK circuits and on-chain behaviors of Semaphore Groups v3.
As such, Veridise auditors first inspected the provided tests and documentation to better
understand the desired behavior of the provided source code at a more granular level. They then
began a multi-week manual audit of the code assisted by both static analyzers and automated
testing. Finally, they formalized the intended behavior of the Semaphore circuit and formally
verified it with the help of Coda.

In terms of the audit, the key components include the following:

▶ The main Semaphore contract
▶ The zk-kit Incremental Merkle Tree implementation
▶ The Semaphore whistleblowing and voting extensions
▶ The Semaphore ZK circuit
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6 3 Audit Goals and Scope

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

In this case, we judge the likelihood of a vulnerability as follows:

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows:

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own
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Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowleged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-SEM-VUL-001 No Zero Value Validation High Fixed
V-SEM-VUL-002 Update Leaf may be Larger than Prime Field High Fixed
V-SEM-VUL-003 Editor’s Entity may be Overwritten Medium Fixed
V-SEM-VUL-004 Identity Commitment not Unique to Group Medium Intended Behavior
V-SEM-VUL-005 Index Calculation can be Manipulated Medium Fixed
V-SEM-VUL-006 Infinite Loop if Input Array is too Large Low Fixed
V-SEM-VUL-007 merkleRootDuration cannot be changed Low Fixed
V-SEM-VUL-008 Removed Member may Prove Group Membership Warning Intended Behavior
V-SEM-VUL-009 nLevels not Constrained in Circuit Warning Fixed
V-SEM-VUL-010 Multiple Different Group Existence Checks Warning Fixed
V-SEM-VUL-011 No Check if Member Exists Warning Intended Behavior
V-SEM-VUL-012 Hash Collision could break merkle tree Info Acknowledged

Veridise Audit Report: Semaphore © 2022 Veridise Inc.



8 4 Vulnerability Report

4.1 Detailed Description of Bugs

4.1.1 V-SEM-VUL-001: No Zero Value Validation

Severity High Commit 27320f1
Type Access Control Status Fixed
Files SemaphoreGroups.sol, semaphore.circom

Functions N/A

In the Semaphore protocol groups are backed by incremental merkle trees. Unlike merkle
trees which are static, incremental merkle trees allow the tree to be modified. This is done by
manipulating the leaves of the tree with a special zeroValue that indicates a leaf is empty (since
incremental merkle trees are complete binary trees). In the Semaphore protocol, the zeroValue

appears to be an implicit member a the group as one can prove they belong to the group if
they know the identityNullifier and identityTrapdoor of the zeroValue. This implicit member,
however, has a few properties that are not shared by others:

1. It cannot be removed from the group as removing a member replaces the leaf’s value
with the zeroValue. This seems to violate an invariant that an added member should be
removable

2. A MemberAdded event is not emitted to indicate its membership in the group

Impact First, this value allows the creator of a group guaranteed access to the group. In certain
circumstances this may be undesired (for example if the admin is not the group creator such
as if the admin is a DAO that votes on who to add/remove or if an admin is changed) as the
original creator has a permanent method of influencing the application that uses the groups.
There are similar methods an admin (who might not be the group creator) can use without the
zeroValue but these (1) are more visible as adding members is a matter of public record and (2)
can be undone by removing the user.

Second, if common values such as 0 are repeatedly used and the identity commitment of this
value is eventually compromised, such a user would be able to gain membership to all groups
that use this value as the zeroValue.

Recommendation Specifically disallow proofs where the leaf corresponds to the zeroValue.
As a result, users should not be able to call addMember or updateMember where the member to
add or member to update is the zeroValue to prevent possible usability issues (i.e. in case the
added/updated member is intended to be a real user).
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4.1 Detailed Description of Bugs 9

4.1.2 V-SEM-VUL-002: New Leaf may be Larger than Prime Field on Update

Severity High Commit 27320f1
Type Data Validation Status Fixed
Files SemaphoreGroups.sol

Functions _updateMember

Semaphore.sol allows admins to update users’ commitments through the external call updateMembers
. However, there is no validation done in the call stack to ensure that the new commitment is
less than the snark field order.

In more detail, updateMember (line 106 in Semaphore.sol) is is a thin wrapper around _updateMember

in SemaphoreGroups.sol (line 58) which in turn calls the update function in zk-kit’s IncrementalBinaryTree
.sol (line 69). There is no validation in any of these calls: unlike insert in IncrementalBinaryTree

.sol, update does not check that newLeaf < SNARK_SCALAR_FIELD.

Impact If a user manages to get their commitment updated to a value larger than the SNARK
field order, then neither that commitment nor its sibling in the tree can be updated or removed.
This is because updating or removing a commitment to a group internally calls the verify

function in zk-kit which checks if the sibling of the commitment getting modified is less than
the SNARK field. However, since the sibling will be larger than the SNARK field, the call will
revert (line 165 IncrementalBinaryTree.sol).

Recommendation We recommend that Semaphore.sol require that commitments are smaller
than the SNARK field in both insert and update.
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10 4 Vulnerability Report

4.1.3 V-SEM-VUL-003: Editor’s Entity may be Overwritten

Severity Medium Commit 27320f1
Type Data Validation Status Fixed
Files SemaphoreWhistleblowing.sol

Functions createEntity

The whistleblowing extension allows entities to be created for whistleblowers that allow them
to leak information anonymously. When a new entity is created, the SemaphoreWhistleblowing

contract creates a group that corresponds to the entity. It then associates the entity’s editor
with the created group via the group id. Currently, however, no validation is performed on the
entities mapping to determine if the editor is already associated with an entityId. As a result,
an editor’s associated entity could be overwritten accidentally or maliciously.

Impact If an entity’s editor is overwritten, that entity would no longer be able to add or remove
whistleblowers in the future. A malicious actor could therefore use createEntity to disrupt the
expected operation of the contract.

Recommendation Either allow an editor to be associated with multiple entities or check if the
editor is already associated with an entity.

© 2022 Veridise Inc. Veridise Audit Report: Semaphore



4.1 Detailed Description of Bugs 11

4.1.4 V-SEM-VUL-004: Identity Commitment not Unique to Group

Severity Medium Commit 27320f1
Type Bad Randomness Status Intended Behavior
Files semaphore.circom

Functions CalculateIdentityCommitment

A Semaphore identity commitment is computed using two secret that an owner must know: an
identity trapdoor and an identity nullifier. Since all of the information used to determine the
identity commitment is controlled by the user, the following is possible:

1. If the same trapdoor and nullifier is used to compute the identity commitment for multiple
groups, the same member will be added, allowing information to be learned by about
this member based on the groups they join.

2. If the identity commitment is compromised for a single group (either due to data theft or
an unlikely hash collision) all groups that the user participates in with these values are
compromised because the identity commitment of a member is a matter of public record.
Thus an attacker can find all groups that have added the given identity commitment and
prove their membership of those two groups.

Impact By using the same information to compute the identity commitment, many semaphore
groups can be easily compromised if a single identity commitment is compromised simply by
inspecting group membership.

Recommendation Include information unique to a group such as the groupId in the computa-
tion of an identity commitment to increase the effort of compromising a group in the event of
theft or luck.

Developer Response The Semaphore authors allow developers to decide if they want to
enforce unique identity commitments or not. Developers who want to ensure that the identity
commitments are unique can include a unique group identifier (such as groupId) in the identity
generation process using the provided JS library.
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12 4 Vulnerability Report

4.1.5 V-SEM-VUL-005: Index Calculation can be Manipulated

Severity Medium Commit 27320f1
Type Logic Error Status Fixed
Files SemaphoreGroups.sol

Functions _updateMember, proofPathIndicesToMemberIndex

When updating the Merkle Tree, the index of the updated member is calculated to validate
that the updated member is within the subtree of added members. Since proofPathIndices

is a uint8, however, it is possible to update a member past numberOfLeaves (or rather the last
index at which a user has been added). To do so, a user can replace all 1s with 2s to cause the
index calculation to report that index 0 was updated. This occurs both in SemaphoreGroup’s
proofPathIndicesToMemberIndex function and zk-kit’s update function.

Impact Using this technique the admin can make it appear as though they updated a particular
index rather than adding a member after numberOfLeaves. This could be used to ensure that an
updated member gets overwritten in the future.

Recommendation Enforce that proofPathIndices must be binary (either by making this an
array of booleans or requiring that an entry be 1 or 0).
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4.1 Detailed Description of Bugs 13

4.1.6 V-SEM-VUL-006: Infinite Loop if Input Array is too Large

Severity Low Commit 27320f1
Type Denial of Service Status Fixed
Files Semaphore.sol

Functions addMembers

The Semaphore contract allows the admin to add group members in a batch by calling addMembers

(presumably for gas efficiency). When this function is called, a for loop iterates over all
identityCommitments upon which _addMember is called. This for loop, however, uses a uint8 as
the iterator and makes the iterator increment unchecked. As a result, if the input array’s size is
larger than 255 (the maximum value of a uint8) then the iterator’s value will overflow causing
the loop to restart at 0 resulting in an infinite loop.

Impact If an admin adds more than 255 members, the infinite loop will consume all of the
transaction’s gas and then revert. This therefore can waste a user’s funds

Recommendation Either ensure that the admin adds less than 256 members or increase the
size of the iterator variable.
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14 4 Vulnerability Report

4.1.7 V-SEM-VUL-007: merkleRootDuration cannot be changed

Severity Low Commit 27320f1
Type Usability Status Fixed
Files Semaphore.sol

Functions N/A

When the merkle root of a group’s incremental merkle tree is updated, the Semaphore contract
allows the old root to still be used to verify proofs as long as it is within merkleRootDuration of
the root’s creation. The merkleRootDuration is set when a new group is created. However, no
validation is performed on merkleRootDuration which could lead to issues such as verifyProof
reverting due to an overflow if the value is too large.

Impact The admin might not know an appropriate value for the merkleRootDuration and may
like to change it in the the initial value is inconvenient. In addition, under certain circumstances
a poorly chosen value could cause verifyProof to fail.

Recommendation Allow the group admin to change the merkleRootDuration if desired.
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4.1 Detailed Description of Bugs 15

4.1.8 V-SEM-VUL-008: merkleRootDuration Could Allow Removed Member to
Prove they are in Group

Severity Warning Commit 27320f1
Type Access Control Status Intended Behavior
Files Semaphore.sol

Functions verifyProof

The semaphore protocol allows multiple Merkle roots to be used when generating membership
proofs. In particular, each group has an associated grace period (merkleRootDuration ) such that
all roots created within merkleRootDuration of the transaction can be used to perform the check.
This is seen in the following snippet from verifyProof in Semaphore.sol:

1 if (block.timestamp > merkleRootCreationDate + merkleRootDuration) {

2 revert Semaphore__MerkleTreeRootIsExpired();

3 }

A consequence of this is that a removed member can submit valid membership proofs.

Impact The impact of this will depend on the application in question. For example, an
anonymous voting protocol built on Semaphore.sol will allow removed members to vote as long
as they vote within an hour of being removed.

Recommendation We recommend that the implementation does not allow roots corresponding
to removals or updates be used or specific grace periods for such cases.

Developer Response This feature was added to address some usability concerns. With the
ability to change the grace period, it should be possible for an admin to decide whether they
want to temporarily adjust the duration if they want to ensure a removed member doesn’t prove
their membership.
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16 4 Vulnerability Report

4.1.9 V-SEM-VUL-009: nLevels not Constrained in Circuit

Severity Warning Commit 27320f1
Type Usability Status Fixed
Files semaphore.circom

Functions Semaphore

Currently a comment exists within semaphore.circom stating that nLevels < 32 and the Semaphore
smart contracts require depth <= 32 and depth >= 16. To ensure users are instantiating the
circuit correctly, if there are constraints on nLevels they should be asserted in the circuit.

Impact A user can instantiate the circuit with a size that will not be accepted by Semaphore.

Recommendation If constraints exist on nLevels add them as an assertion.
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4.1.10 V-SEM-VUL-010: Different Checks used to Determine if Group Exists

Severity Warning Commit 27320f1
Type Maintainability Status Fixed
Files SemaphoreGroups.sol, Semaphore.sol

Functions Multiple

The Semaphore protocol allows users to create, update, and verify membership to groups
via several APIs such as updateMember, createGroup, removeMember, etc. Each function checks
whether the group getting created/modified exists. We observed two different checks used:

1 if (getMerkleTreeRoot(groupId) == 0) {

2 revert Semaphore__GroupDoesNotExist();

3 }

as well as:

1 if (getMerkleTreeDepth(groupId) == 0) {

2 revert Semaphore__GroupDoesNotExist();

3 }

The former is used in verifyProof (Semaphore.sol) as well as _updateMember and _removeMember

in SemaphoreGroups.sol. The latter is used in _createGroup and _addMember in SemaphoreGroups.

sol.

In the overwhelming majority of cases, they should both return 0 iff the group doesn’t exist.
However, getMerkleTreeRoot just returns the root of the MerkleTree which could be 0 after taking
the hashes of all the leaves. As such, it is possible that this check fails when the group actually
exists.

Impact In the unlikely scenario that the group exists and the root hash is 0, legitimate verify,
update , and remove transactions would get rejected until the root hash changes.

Recommendation We recommend that getMerkleTreeDepth be used everywhere as the check
since it is just as efficient and not susceptible to this corner case (however unlikely it may be).
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18 4 Vulnerability Report

4.1.11 V-SEM-VUL-011: No Check if Member Exists

Severity Warning Commit 27320f1
Type Data Validation Status Intended Behavior
Files SemaphoreGroups.sol

Functions _addMember, _updateMember

When a a member is added to a group or a member is updated, no validation is performed to
determine if identity commitment already has membership.

Impact If an individual is added to a group multiple times, it may be difficult to revoke their
membership as each entry in the tree must be revoked individually.

Recommendation Check if the added member is already a member of the group.

Developer Response The developers indicate that they expect the off-chain application to
perform such checks rather than performing them on-chain since the leaves are not stored
on-chain.
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4.1 Detailed Description of Bugs 19

4.1.12 V-SEM-VUL-012: Hash Collision could break merkle tree

Severity Info Commit 27320f1
Type Hash Collision Status Acknowledged
Files zk-kit::IncrementalBinaryTree.sol

Functions update

When performing an update of the incremental binary merkle tree, it is possible for nodes
along the path of the “last subtree” to be modified. This “last subtree” corresponds to the
“rightmost” node of a particular level of the tree that must be modified when additions are made.
To determine if one of these nodes must be updated, the developers check if the computed hash
for the current level corresponds to the hash of the last subtree for that level. If the two hashes
match, then the last subtree hash is overwritten. While the chances of a collision are extremely
low, if one were to occur and, the resulting modification of the last subtree node would break
the incremental merkle tree such that it cannot be updated in the future.

1 function update(

2 IncrementalTreeData storage self,

3 uint256 leaf,

4 uint256 newLeaf,

5 uint256[] calldata proofSiblings,

6 uint8[] calldata proofPathIndices

7 ) public {

8 ...

9

10 for (uint8 i = 0; i < depth; ) {

11 updateIndex |= uint256(proofPathIndices[i] & 1) << uint256(i);

12 if (proofPathIndices[i] == 0) {

13 if (proofSiblings[i] == self.lastSubtrees[i][1]) {

14 self.lastSubtrees[i][0] = hash;

15 }

16

17 hash = PoseidonT3.poseidon([hash, proofSiblings[i]]);

18 } else {

19 if (proofSiblings[i] == self.lastSubtrees[i][0]) {

20 self.lastSubtrees[i][1] = hash;

21 }

22

23 hash = PoseidonT3.poseidon([proofSiblings[i], hash]);

24 }

25

26 unchecked {

27 ++i;

28 }

29 }

30

31 ...

32 }

Snippet 4.1: The snippet of zk-kit’s update function where a hash collision could cause the tree
to become malformed
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20 4 Vulnerability Report

Recommendation The same check could be performed using the updateIndex calculation, but
the chances of a collision occurring are extremely low.
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Formal Verification 5
In this section, we describe the specifications that were used to formally verify the correctness
of the ZK circuits. For each specification, we log its current status (i.e. verified, not verified).
Table 5.1 summarizes the specifications and their verification status:

Table 5.1: Summary of Discovered Vulnerabilities.

ID Description Status
V-SEM-SPEC-001 CalculateSecret Functional Correctness Verified
V-SEM-SPEC-002 CalculateIdentityCommitment Functional Correctness Verified
V-SEM-SPEC-003 CalculateNullifierHash Functional Correctness Verified
V-SEM-SPEC-004 Semaphore Functional Correctness Verified
V-SEM-SPEC-005 MerkleTreeInclusionProof Functional Correctness Verified
V-SEM-SPEC-006 MultiMux1 Functional Correctness Verified
V-SEM-SPEC-007 Poseidon is Deterministic Verified

Veridise Audit Report: Semaphore © 2022 Veridise Inc.



22 5 Formal Verification

5.1 Detailed Description of Formal Verification Results

5.1.1 V-SEM-SPEC-001: CalculateSecret Functional Correctness

Commit 27320f1 Status Verified
Files semaphore.circom

Functions CalculateSecret

Description The output of the circuit is the Poseidon hash of the two input arguments.

Informal Specification

out = poseidon2(identityNullifier, identityTrapdoor)

Formal Definition The following shows the formal definition for the CalculateSecret tem-
plate:

1 Definition cons (identityNullifier identityTrapdoor: F) (out: F) :=

2 exists poseidon: @Poseidon.t 2,

3 poseidon.(Poseidon.inputs)[0] = identityNullifier /\

4 poseidon.(Poseidon.inputs)[1] = identityTrapdoor /\

5 out = poseidon.(Poseidon.out).

Formal Specification The following shows the formal specification for the CalculateSecret
template:

1 Definition spec (c: t) : Prop :=

2 forall x y,

3 c.(identityNullifier) = x ->

4 c.(identityTrapdoor) = y ->

5 c.(out) = poseidon_2 x y.

Proof The following shows the soundness proof for the CalculateSecret template:

1 Theorem soundness:

2 forall (c: t), spec c.

3 Proof.

4 unwrap_C. unfold spec. intros. destruct c. subst. simpl in *.

5 destruct _cons0 as [x _cons]. destruct _cons. destruct H0.

6 subst. pose proof Poseidon.PoseidonHypo.poseidon_2_spec. erewrite H;eauto.

7 Qed.
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5.1.2 V-SEM-SPEC-002: CalculateIdentityCommitment Functional Correctness

Commit 27320f1 Status Verified
Files semaphore.circom

Functions CalculateIdentityCommitment

Description The output of the circuit is the Poseidon hash of the input argument.

Informal Specification
out = poseidon1(secret)

Formal Definition The following shows the formal definition for the CalculateIdentityCommit-
ment template:

1 Definition cons (secret: F) (out: F) :=

2 exists poseidon: @Poseidon.t 1,

3 poseidon.(Poseidon.inputs)[0] = secret /\

4 out = poseidon.(Poseidon.out).

Formal Specification The following shows the formal specification for the CalculateIdentity-
Commitment template:

1 Definition spec (c: t) : Prop :=

2 forall x,

3 c.(secret) = x ->

4 c.(out) = poseidon_1 x.

Proof The following shows the soundness proof for the CalculateIdentityCommitment tem-
plate:

1 Theorem soundness:

2 forall (c: t), spec c.

3 Proof.

4 unwrap_C. unfold spec. intros. destruct c. subst. simpl in *.

5 destruct _cons0 as [x _cons]. destruct _cons.

6 subst. pose proof Poseidon.PoseidonHypo.poseidon_1_spec. erewrite H;eauto.

7 Qed.
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5.1.3 V-SEM-SPEC-003: CalculateNullifierHash Functional Correctness

Commit 27320f1 Status Verified
Files semaphore.circom

Functions CalculateNullifierHash

Description The output of the circuit is the Poseidon hash of the two input arguments.

Informal Specification

out = poseidon2(externalNullifier, identityNullifier)

Formal Definition The following shows the formal definition for the CalculateNullifierHash
template:

1 Definition cons (externalNullifier identityNullifier: F) (out: F) :=

2 exists poseidon: @Poseidon.t 2,

3 poseidon.(Poseidon.inputs)[0] = externalNullifier /\

4 poseidon.(Poseidon.inputs)[1] = identityNullifier /\

5 out = poseidon.(Poseidon.out).

Formal Specification The following shows the formal specification for the CalculateNullifier-
Hash template:

1 Definition spec (c: t) : Prop :=

2 forall x y,

3 c.(externalNullifier) = x ->

4 c.(identityNullifier) = y ->

5 c.(out) = poseidon_2 x y.

Proof The following shows the soundness proof for the CalculateNullifierHash template:

1 Theorem soundness:

2 forall (c: t), spec c.

3 Proof.

4 unwrap_C. unfold spec. intros. destruct c. subst. simpl in *.

5 destruct _cons0 as [x _cons]. destruct _cons. destruct H0.

6 subst. pose proof Poseidon.PoseidonHypo.poseidon_2_spec. erewrite H;eauto.

7 Qed.
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5.1.4 V-SEM-SPEC-004: Semaphore Functional Correctness

Commit 27320f1 Status Verified
Files semaphore.circom

Functions Semaphore

Description The circuit takes as input a user’s secret identity trapdoor and identity nullifier in
addition to the group’s external nullifier and the proof of inclusion in the merkle tree. Given this
information, the circuit will output the root of the merkle tree that contains the given identity
commitment and the nullifier hash, which is the Poseidon hash of the user’s identity nullifier
together with the group’s identity nullifier.

Informal Specification

nullifierHash = poseidon2(externalNullifier, identityNullifier)

identityCommitment = poseidon1(poseidon2(identityNullifier, identityTrapdoor))

poseidon2(hashes(𝑖 − 1), siblings[𝑖]) if pathIndices[𝑖] = 0
hashes(𝑖) = poseidon2(siblings[𝑖], hashes(𝑖 − 1)) if pathIndices[𝑖] = 1

identityCommitment if 𝑖 = 0

root = hashes(nLevels)

Formal Definition The following shows the formal definition for the Semaphore template:

1 Definition cons (identityNullifier: F) (identityTrapdoor: F) (treePathIndices: F^

nLevels)

2 (treeSiblings: F^nLevels) (signalHash: F) (externalNullifier: F)

3 (root: F) (nullifierHash: F) :=

4 exists (calculateSecret: CalculateSecret.t) (calculateIdentityCommitment:

CalculateIdentityCommitment.t) (calculateNullifierHash: CalculateNullifierHash.t)

(inclusionProof: @MerkleTreeInclusionProof.t nLevels),

5 calculateSecret.(CalculateSecret.identityNullifier) = identityNullifier /\

6 calculateSecret.(CalculateSecret.identityTrapdoor) = identityTrapdoor /\

7 calculateIdentityCommitment.(CalculateIdentityCommitment.secret) = calculateSecret

.(CalculateSecret.out) /\

8 calculateNullifierHash.(CalculateNullifierHash.externalNullifier) =

externalNullifier /\

9 calculateNullifierHash.(CalculateNullifierHash.identityNullifier) =

identityNullifier /\

10 inclusionProof.(MerkleTreeInclusionProof.leaf) = calculateIdentityCommitment.(

CalculateIdentityCommitment.out) /\

11 inclusionProof.(MerkleTreeInclusionProof.pathIndices) = treePathIndices /\

12 inclusionProof.(MerkleTreeInclusionProof.siblings) = treeSiblings /\

13 root = inclusionProof.(MerkleTreeInclusionProof.root) /\

14 nullifierHash = calculateNullifierHash.(CalculateNullifierHash.out) /\

15 signalHash * signalHash = signalHash.
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Formal Specification The following shows the formal specification for the Semaphore tem-
plate:

1 Definition spec (c: t) : Prop :=

2 c.(nullifierHash) = poseidon_2 c.(externalNullifier) c.(identityNullifier) /\

3 let identityCommitment := poseidon_1 (poseidon_2 c.(identityNullifier) c.(

identityTrapdoor)) in

4 c.(root) = fold_left (fun (y:F) (x:(F*F)) => if dec (fst x = 0) then (poseidon_2 y

(snd x)) else (poseidon_2 (snd x) y))

5 (combine (’(c.(treePathIndices))) (’(c.(treeSiblings)))) identityCommitment.

Proof The following shows the soundness proof for the Semaphore template:

1 Theorem soundness:

2 forall (c: t), spec c.

3 Proof.

4 unwrap_C.

5 intros c.

6 destruct c as [identityNullifier identityTrapdoor treePathIndices treeSiblings

signalHash externalNullifier root nullifierHash _cons].

7 unfold spec, cons in *. simpl.

8 destruct _cons as [calculateSecret _cons]. destruct _cons as [

calculateIdentityCommitment _cons]. destruct _cons as [calculateNullifierHash
_cons].

9 destruct _cons as [inclusionProof _cons]. destruct _cons as [_cons1 _cons2].

destruct _cons2 as [_cons2 _cons3].

10 destruct _cons3 as [_cons3 _cons4]. destruct _cons4 as [_cons4 _cons5]. destruct
_cons5 as [_cons5 _cons6].

11 destruct _cons6 as [_cons6 _cons7]. destruct _cons7 as [_cons7 _cons8]. destruct
_cons8 as [_cons8 _cons9].

12 destruct _cons9 as [_cons9 _cons10]. destruct _cons10 as [_cons10 _cons11]. subst.

13 pose proof (CalculateSecret.soundness calculateSecret). pose proof (

CalculateIdentityCommitment.soundness calculateIdentityCommitment).

14 pose proof (CalculateNullifierHash.soundness calculateNullifierHash). pose proof (

MerkleTreeInclusionProof.soundness inclusionProof).

15 unfold CalculateSecret.spec, CalculateIdentityCommitment.spec,

CalculateNullifierHash.spec, MerkleTreeInclusionProof.spec in *.

16 split;auto.

17 destruct H2. rewrite H3.

18 rewrite _cons6. erewrite H0;eauto. erewrite <- H;auto.

19 Qed.
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5.1.5 V-SEM-SPEC-005: MerkleTreeInclusionProof Functional Correctness

Commit 27320f1 Status Verified
Files tree.circom

Functions MerkleTreeInclusionProof

Description The output of the circuit is the root of the Merkle Tree given the leaf of the tree
and its proof of inclusion.

Informal Specification

∀
0≤𝑖<nLevels

𝑖. pathIndices[𝑖] = 0 ∨ pathIndices[𝑖] = 1

poseidon2(hashes(𝑖 − 1), siblings[𝑖]) if pathIndices[𝑖] = 0
hashes(𝑖) = poseidon2(siblings[𝑖], hashes(𝑖 − 1)) if pathIndices[𝑖] = 1

leaf if 𝑖 = 0

root = hashes(nLevels)

Formal Definition The following shows the formal definition for the MerkleTreeInclusionProof
template:

1 Definition cons (leaf: F) (pathIndices: F^nLevels) (siblings: F^nLevels) (root: F) :=

2 exists (poseidons: (@Poseidon.t 2)^nLevels) (mux: (@MultiMux.t 2)^nLevels)

3 (hashes: F^(nLevels + 1)),

4 hashes[0] = leaf /\

5 let _C :=

6 (D.iter (fun i _C =>

7 _C /\

8 pathIndices[i] * (1 - pathIndices[i]) = 0 /\

9 (mux[i].(MultiMux.c))[0][0] = hashes[i] /\

10 mux[i].(MultiMux.c)[0][1] = siblings[i] /\

11 mux[i].(MultiMux.c)[1][0] = siblings[i] /\

12 mux[i].(MultiMux.c)[1][1] = hashes[i] /\

13 mux[i].(MultiMux.s) = pathIndices[i] /\

14 poseidons[i].(Poseidon.inputs)[0] = mux[i].(MultiMux.out)[0] /\

15 poseidons[i].(Poseidon.inputs)[1] = mux[i].(MultiMux.out)[1] /\

16 hashes[i + 1] = poseidons[i].(Poseidon.out)

17 ) nLevels True) in _C /\

18 root = hashes[nLevels].

Formal Specification The following shows the formal specification for the MerkleTreeInclu-
sionProof template:

1 Definition spec (c: t) : Prop :=

2 (forall i, 0 <= i < nLevels -> binary (c.(pathIndices)[i])) /\

3 c.(root) = fold_left (fun (y:F) (x:(F*F)) => if dec (fst x = 0) then (poseidon_2 y

(snd x)) else (poseidon_2 (snd x) y))
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4 (combine (’(c.(pathIndices))) (’(c.(siblings)))) c.(leaf).

Proof The following shows the soundness proof for the MerkleTreeInclusionProof template:

1 Lemma fold_left_firstn_S:

2 forall (l: list (F*F))(i: nat)(b: F)f,

3 i < length l ->

4 fold_left f (l [:S i]) b =

5 f (fold_left f (l [:i]) b) (l ! i).

6 Proof.

7 intros.

8 assert(l [:S i] = l [:i] ++ ((l ! i)::nil)).

9 { erewrite firstn_S;try lia. unfold_default. auto. }

10 rewrite H0.

11 apply fold_left_app.

12 Qed.

13

14 Lemma combine_fst_n: forall n j (l1 l2: F^n),

15 j < n ->

16 j < n ->

17 fst (combine (’ l1) (’ l2) ! j) = l1 [j].

18 Proof.

19 intros. pose proof (length_to_list l1). pose proof (length_to_list l2).

20 unfold_default. simpl. rewrite combine_nth;simpl;auto.

21 rewrite nth_Default_nth_default. rewrite <- nth_default_to_list. unfold_default.

auto.

22 rewrite H1, H2;auto.

23 Qed.

24

25 Lemma combine_snd_n: forall n j (l1 l2: F^n),

26 j < n ->

27 j < n ->

28 snd (combine (’ l1) (’ l2) ! j) = l2 [j].

29 Proof.

30 intros. pose proof (length_to_list l1). pose proof (length_to_list l2).

31 unfold_default. simpl. rewrite combine_nth;simpl;auto.

32 rewrite nth_Default_nth_default. rewrite <- nth_default_to_list. unfold_default.

auto.

33 rewrite H1, H2;auto.

34 Qed.

35

36 (* MerkleTreeInclusionProof is sound *)

37 Theorem soundness:

38 forall (c: t), spec c.

39 Proof.

40 unwrap_C.

41 intros c.

42 destruct c as [leaf pathIndices siblings root _cons].

43 unfold spec, cons in *. simpl.

44 destruct _cons as [poseidons _cons]. destruct _cons as [mux _cons]. destruct _cons

as [hashes _cons].

45 destruct _cons as [_cons1 _cons2]. destruct _cons2 as [_cons2 _cons3].

46 rem_iter. subst. rem_iter.
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47 pose (Inv1 := fun (i: nat) (_cons: Prop) => _cons ->

48 (forall j, j < i -> binary ((pathIndices)[j]))).

49 assert (HInv1: Inv1 nLevels (D.iter f nLevels True)).

50 { apply D.iter_inv; unfold Inv1;intros;try lia.

51 subst. destruct H1. destruct (dec (j0 = j));intuit.

52 + subst. unfold binary.

53 destruct (dec (pathIndices [j] = 0));auto.

54 destruct (dec (pathIndices [j] = 1));auto. fqsatz.

55 + apply H11;auto. lia. }

56 apply HInv1 in _cons2 as inv1.

57 split;intros. apply inv1;lia.

58 pose (Inv2 := fun (i: nat) (_cons: Prop) => _cons ->

59 (hashes [i] = (fold_left

60 (fun (y : F) (x : F * F) => if dec (fst x = 0) then poseidon_2 y (snd x) else

poseidon_2 (snd x) y)

61 (firstn i (combine (’ pathIndices) (’ siblings)))

62 (hashes [0])))).

63 assert (HInv2: Inv2 nLevels (D.iter f nLevels True)).

64 { apply D.iter_inv; unfold Inv2;intros;try lia.

65 + simpl. auto.

66 + subst. destruct H1.

67 do 8 destruct H2 as [? H2]. pose proof (MultiMux.soundness (mux [j])). unfold

MultiMux.spec in H11.

68 erewrite (fold_left_firstn_S (combine (’ pathIndices) (’ siblings)));simpl.

69 2:{ pose_lengths. rewrite combine_length. rewrite _Hlen4, _Hlen2. lia. }

70 assert(FST: (fst (combine (’ pathIndices) (’ siblings) ! j) = pathIndices [j]))

.

71 { rewrite combine_fst_n;auto. }

72 assert(SND: (snd (combine (’ pathIndices) (’ siblings) ! j) = siblings [j])).

73 { rewrite combine_snd_n;auto. }

74 rewrite FST, SND in *. destruct H11. pose proof (H H1) as HASHJ.

75 destruct (dec (pathIndices [j] = 0)).

76 ++ rewrite e in *. pose proof (H11 H8).

77 rewrite H13 in H9;try lia. rewrite H13 in H10;try lia.

78 rewrite HASHJ in H4. rewrite H4, H6 in *. replace (S j) with (j+1)%nat by

lia.

79 rewrite H2. apply Poseidon.PoseidonHypo.poseidon_2_spec;auto.

80 ++ pose proof (inv1 j). destruct H13;try lia;try easy. rewrite H13 in *. pose

proof (H12 H8).

81 rewrite H14 in H9;try lia. rewrite H14 in H10;try lia.

82 rewrite HASHJ in H7. rewrite H5, H7 in *. replace (S j) with (j+1)%nat by

lia.

83 rewrite H2. apply Poseidon.PoseidonHypo.poseidon_2_spec;auto. }

84 apply HInv2 in _cons2 as inv2.

85 rewrite inv2. rewrite combine_firstn. pose_lengths.

86 assert((’ siblings [:nLevels]) = (’ siblings)).

87 { rewrite <- _Hlen1 at 1. apply ListUtil.List.firstn_all. }

88 rewrite <- _Hlen0 at 1. rewrite ListUtil.List.firstn_all. rewrite H. auto.

89 Qed.
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5.1.6 V-SEM-SPEC-006: MultiMux1 Functional Correctness

Commit 27320f1 Status Verified
Files mux1.circom

Functions MultiMux1

Description The output of the circuit is equivalent to the first set of inputs if the selector is 0
or the second set of inputs if the selector is 1.

Informal Specification
𝑠 = 0 → ∀

0≤𝑖<𝑛
𝑖. 𝑜𝑢𝑡[𝑖] = 𝑐[𝑖][0]

𝑠 = 1 → ∀
0≤𝑖<𝑛

𝑖. 𝑜𝑢𝑡[𝑖] = 𝑐[𝑖][1]

Formal Definition The following shows the formal definition for the MultiMux1 template:

1 Definition cons (c: (F^2)^n) (s: F) (out: F^n) :=

2 let _C :=

3 (D.iter (fun i _C =>

4 _C /\

5 out[i] = (c[i][1] - c[i][0])*s + c[i][0]

6 ) n True) in _C.

Formal Specification The following shows the formal specification for the MultiMux1 tem-
plate:

1 Definition spec (m: t) : Prop :=

2 (m.(s) = 0 -> forall i, 0 <= i < n -> m.(out)[i] = m.(c)[i][0]) /\

3 (m.(s) = 1 -> forall i, 0 <= i < n -> m.(out)[i] = m.(c)[i][1]).

Proof The following shows the soundness proof for the MultiMux1 template:

1 Theorem soundness:

2 forall (c: t), spec c.

3 Proof.

4 unwrap_C.

5 intros c.

6 destruct c as [c s out _cons1].

7 unfold spec, cons in *. simpl.

8 rem_iter.

9 pose (Inv1 := fun (i: nat) (_cons: Prop) => _cons ->

10 (forall j, j < i -> out [j] = (c [j ][ 1] - c [j ][ 0]) * s + c [j ][ 0])).

11 assert (HInv1: Inv1 n (D.iter f n True)).

12 { apply D.iter_inv; unfold Inv1;intros;try lia.

13 subst. destruct H1. destruct (dec (j0 = j));intuit.

14 + subst. auto.

15 + apply H4;auto. lia. }

16 apply HInv1 in _cons1 as inv.

© 2022 Veridise Inc. Veridise Audit Report: Semaphore



5.1 Detailed Description of Formal Verification Results 31

17 split;intros;intuit.

18 - apply inv in H2. subst. fqsatz.

19 - apply inv in H2. subst. fqsatz.

20 Qed.
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5.1.7 V-SEM-SPEC-007: Poseidon is Deterministic

Commit 27320f1 Status Verified
Files poseidon.circom

Functions Poseidon

Description The output of the poseidon(1) hash and poseidon(2) hash is deterministic. In
other words, given the same inputs, the output of the Poseidon hash must be constant.

Informal Specification

∀ inputs, out1 , out2.(poseidon(inputs) = out1 ∧ poseidon(inputs) = out2) → out1 = out2

Proof This property was proved using Picus, an in house tool used to verify that ZK circuits are
properly constrained. Picus proved Poseidon(1) and Poseidon(2) were properly constrained and
since all properly constrained circuits are deterministic, we can safely conclude that Poseidon(1)
and Poseidon(2) are deterministic.
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