
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

Veridise Inc.
August 19, 2022

▶ Prepared For:

AlloyX
https://www.alloyx.xyz/

▶ Prepared By:

Bryan Tan
Xiangan He
Himanshu
Ben Mariano
Hongbo Wen

▶ Contact Us: contact@veridise.com

▶ Version History:

August 19, 2022 V1
August 5, 2022 Draft

© 2022 Veridise Inc. All Rights Reserved.

https://www.alloyx.xyz/
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 7

4 Vulnerability Report 9
4.1 Detailed Description of Bugs . 9

4.1.1 V-ALL-VUL-001: Business Logic Errors In Tracking stakeholders 10
4.1.2 V-ALL-VUL-002: Treasury Fee Variables Can Only Increase 12
4.1.3 V-ALL-VUL-003: Lack of Access Controls in SortedGoldfinchTranches.sol 13
4.1.4 V-ALL-VUL-004: claimRewards Can Revert If PercentageCRWNEarning

Is Configured Incorrectly . 14
4.1.5 V-ALL-VUL-005: Potential Reentrancy Vulnerability In depositDuraFor-

PoolToken . 16
4.1.6 V-ALL-VUL-006: Potential Stake Reward Inconsistency Caused By Config

Update . 18
4.1.7 V-ALL-VUL-007: Bugs in newly added pausing mechanism 20
4.1.8 V-ALL-VUL-008: Missing Interface Inheritance 21
4.1.9 V-ALL-VUL-009: Potential Upgrade Race Condition 22
4.1.10 V-ALL-VUL-010: Missing Interface Inheritance II 23
4.1.11 V-ALL-VUL-011: removeWhitelistedUser Cannot Remove Address whitelisted

by Goldfinch KYC . 24
4.1.12 V-ALL-VUL-012: copyFromOtherConfig Is Error-Prone 26
4.1.13 V-ALL-VUL-013: High Gas Cost When Computing Goldfinch Token Counts 27
4.1.14 V-ALL-VUL-014: Lack of zero address checks 28
4.1.15 V-ALL-VUL-015: Expensive Gas On Config Copying 30
4.1.16 V-ALL-VUL-016: Invariant Involving stake.since Violated in resetStake-

Timestamp . 31
4.1.17 V-ALL-VUL-017: Access Control Pitfalls when Expanding Whitelist to

Include More 3rd Party Protocols . 33
4.1.18 V-ALL-VUL-018: Invariant involving totalPastRedeemableReward violated

in addPastRedeemableReward and resetStakeTimestamp 34
4.1.19 V-ALL-VUL-019: Multiple Public Functions Can Be Declared As External 35
4.1.20 V-ALL-VUL-020: Explicitly Mark State Visibility With Some Variables . 38
4.1.21 V-ALL-VUL-021: Events Should Be Emitted In AlloyxTreasury 39
4.1.22 V-ALL-VUL-022: Public Variables In AlloyxConfig 40
4.1.23 V-ALL-VUL-023: More Missing Events 41

Veridise Audit Report: AlloyX © 2022 Veridise Inc.

5 Formal Verification Results 43
5.1 Description . 43
5.2 Specification Types . 43

5.2.1 Contract Invariants . 43
5.2.2 Function Preconditions and Postconditions 43

5.3 Results . 44
5.3.1 Contract Invariants . 44
5.3.2 Function Preconditions and Postconditions 44

Executive Summary 1
From July 13 to July 29, AlloyX engaged Veridise to review the security of their AlloyX
Decentralized Autonomous Organization (DAO), a liquid staking protocol running on top of the
Ethereum blockchain. The audit covered the Solidity smart contracts that the protocol consists
of, which included implementations of the DURA and CRWN tokens defined by the protocol,
"desk" contracts for interacting between the AlloyX DAO and third-party protocols (such as the
Goldfinch lending protocol), and a few internal AlloyX DAO contracts for whitelisting users
and tracking staking rewards. Veridise conducted this assessment over 10 person-weeks, with
5 engineers working on code from commit 5f8c250 to 7606eac of the staging branch of the
https://github.com/AlloyXChange/alloyx-smart-contracts-v2 repository. The auditing
strategy involved tool-assisted analysis of the source code performed by Veridise engineers. The
tools used in the audit included a combination of static analysis and formal verification.

Summary of issues detected. The audit uncovered 23 issues. The most severe issues included
two business logic attack vectors involving bugs in the staking logic and treasury logic; as well
as access control issues in an internal contract used to rank Goldfinch tranches. In addition
to these issues, auditors also identified other potential issues regarding the interaction of the
contracts with the protocol – in these cases, improper handling of this interaction could lead
to protocol disruptions. Additionally, our auditors also discovered multiple gas optimizations
and code suggestions which can help improve the efficiency, safety, and maintainability of the
code.

Code assessment. The smart contracts being assessed for this audit implement the functionality
of the AlloyX DAO as described in the AlloyX whitepaper. In general, our auditors feel that the
code quality is above average; the contracts are well-organized into separate modules focusing
on specific pieces of functionality, and the contract methods are documented with comments.
Furthermore, the contracts are not a fork of an existing protocol but appear to have been written
by the developers from scratch. The contracts make good use of the well-known and audited
contracts from OpenZeppelin. The code also includes testing of the contracts using the Hardhat
framework; however, the tests only provide partial coverage of the contract behaviors.

Recommendations. As two high-severity issues and two medium-severity issues are related
to errors in business logic, the AlloyX developers should ensure that all contracts in their
protocol are covered by automated testing, and that they test the functionality of the protocol
with respect to both intended and unintended behaviors. For example, our auditors uncovered
a high-severity issue in the AlloyxStakeInfo.sol contract that would have been caught by
adequate unit test coverage.

Secondly, the AlloyX developers should remain aware of the issues reported during this audit
that have not been fully addressed (e.g., issues that have been marked as "Acknowledged", or
issues marked as "Fixed" with an "Update" or "Developer Response"). While these issues are

Veridise Audit Report: AlloyX © 2022 Veridise Inc.

https://github.com/AlloyXChange/alloyx-smart-contracts-v2

2 1 Executive Summary

sufficiently mitigated or of low priority in the short term, they may cause problems in the future
as the developers continue to update the AlloyX smart contracts.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions, nor that the findings in this report will remain valid
if the system is modified in the future. In no event shall Veridise or any of its employees be liable
for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

© 2022 Veridise Inc. Veridise Audit Report: AlloyX

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
5f8c250 - 7606eac Solidity Ethereum

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
July 13 - July 29, 2022 Manual & Tools 5 10 person-weeks

Table 2.3: Vulnerability Summary.

Name Number Resolved
Critical-Severity Issues 0 0
High-Severity Issues 3 3
Medium-Severity Issues 4 4
Low-Severity Issues 4 4
Warning-Severity Issues 7 7
Informational-Severity Issues 5 4
TOTAL 23 22

Table 2.4: Category Breakdown.

Name Number
Access Control 2
Data Validation 3
Denial of Service 1
Gas Optimization 1
Logic Error 5
Maintainability 7
Missing/Incorrect Events 2
Reentrancy 1
Transaction Ordering 1

Veridise Audit Report: AlloyX © 2022 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of the smart contracts imple-
menting the AlloyX protocol, as well as writing formal specifications that could automatically
be checked by tooling provided by Veridise. In our audit, we sought to answer the following
questions regarding these contracts:

▶ Do the contracts have appropriate access control? In particular, are whitelisted users able
to access the resources they’re authorized to do so? Are calls from unauthorized users
reverted? Does whitelisting on Alloy conflict in any way with or depend on Goldfinch
whitelists as a potential attack vector?

▶ Can users abuse token exchange rates and other tokenomics-related functionality with
flashloans, frontrunning, or other similar attack vectors?

▶ Are there any gas-related, protocol breaking issues in updating the configuration or
running code in loops? In what ways, if any, can configuration updates cause business
logic errors or break user-accessible functions?

▶ Are inputs properly verified/sanitized? That is, can a malicious user cause unwanted
behavior by sending carefully crafted requests?

▶ Are events appropriately emitted to ensure that the protocol can track relevant actions?
Can a malicious user alter the order/timing of events to inappropriately manipulate the
behavior of the protocol?

▶ Are there any current pieces of dead or unused code, and can they potentially serve as
entrypoint vulnerabilities? Is it possible to extend code test coverage in any way, and
where? Were there any pieces of code in follow-up patches that introduced new issues
trying to fix existing ones?

▶ Are the Alloy contracts correctly interacting with the third-party contracts such as the
Goldfinch contracts?

▶ Are the staking reward calculations performed correctly? In particular, are there ways
that malicious users can gain excessive rewards or destroy other users’ rewards?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a combination of
human experts and automated program analysis and testing tools. In particular, we conducted
our audit with the aid of the following techniques:

▶ Static Analysis. We leveraged the open-source tool Slither to find common vulnerabilities
in smart contracts, such as reentrancy and uninitialized variables. In addition to the
default behavior of Slither, we also extended Slither with custom detectors for more
precise and expansive bug detection.

Veridise Audit Report: AlloyX © 2022 Veridise Inc.

6 3 Audit Goals and Scope

▶ Formal Verification. We used an internal version of Veridise’s open source tool Eurus∗

which enables symbolic reasoning about smart contracts. Our engineers wrote a set of
pre/post conditions (i.e. specifications) for each function of interest in the smart contracts
and used Eurus to formally verify that the functions satisfy the specifications.

Scope. To understand the scope of the audit, we first reviewed the documentation shared
by the AlloyX developers, including the online documentation and whitepaper. AlloyX’s
GoldfinchDesk contract interacts heavily with Goldfinch’s contracts, so we also looked at some
of the relevant Goldfinch contracts and the Goldfinch whitepaper. Afterwards, we carefully
reviewed the AlloyX code for bugs and security issues. As AlloyX fixed bugs in response to
our findings, we also reviewed any of the fixes they made to check that they did not introduce
additional issues.

We also ran some of the tests provided by Alloy in the v7.0 branch (as none were found in
the staging branch we were auditing), but the tests only provided partial test coverage. This
environment was insufficient for us to prototype proof-of-concept exploits. Thus, we instead
set up a custom test environment based on the Foundry tool, which we used to successfully
demonstrate several concrete attacks.

Finally, the AlloyX developers asked us to write formal specifications where possible. While
performing the code review, we observed that formal verification would be most effectively
applied to the AlloyxStakeInfo contract; the other contracts either were too simple (low cost-
effectiveness of formal verification) or involved many interactions with external contracts
(requires too many assumptions that make writing correct formal specifications to be difficult).
During review of the AlloyxStakeInfo contract, the Veridise auditors noted down any potential
contract invariants as well as function preconditions and postconditions. These were then
transformed into formal properties, which were then checked by our Eurus formal verification
tool. A description of these properties can be found in Chapter 5.

Concretely, the contracts considered in this audit were the following:

▶ AdminUpgradeable.sol
▶ AlloyxConfig.sol
▶ AlloyxExchange.sol
▶ AlloyxStakeInfo.sol
▶ AlloyxTokenCRWN.sol
▶ AlloyxTokenDURA.sol
▶ AlloyxTreasury.sol
▶ AlloyxWhitelist.sol
▶ ConfigHelper.sol
▶ ConfigOptions.sol
▶ GoldfinchDesk.sol
▶ SortedGoldfinchTranches.sol
▶ StableCoinDesk.sol
▶ StakeDesk.sol
▶ SwapTokens.sol†

∗ https://github.com/Veridise/Eurus
† The developers noted that this contract is to be removed in the future, so our auditors did not look at this contract.

© 2022 Veridise Inc. Veridise Audit Report: AlloyX

https://github.com/Veridise/Eurus

3.3 Classification of Vulnerabilities 7

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

In this case, we judge the likelihood of a vulnerability as follows:

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows:

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

Veridise Audit Report: AlloyX © 2022 Veridise Inc.

Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowleged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-ALL-VUL-001 Business Logic Errors In Tracking Stakeholders High Fixed
V-ALL-VUL-002 Treasury Fee Variables Can Only Increase High Fixed
V-ALL-VUL-003 Lack of Access Controls in SortedGoldfinchTranches High Fixed
V-ALL-VUL-004 claimRewards Can Revert if Config is Wrong Medium Fixed
V-ALL-VUL-005 Potential Reentrancy Vulnerability Medium Fixed
V-ALL-VUL-006 Potential Stake Reward Inconsistency Medium Acknowledged
V-ALL-VUL-007 Bugs in newly added pausing mechanism Medium Fixed
V-ALL-VUL-008 Missing Interface Inheritance I Low Fixed
V-ALL-VUL-009 Potential Upgrade Race Condition Low Fixed
V-ALL-VUL-010 Missing Interface Inheritance II Low Fixed
V-ALL-VUL-011 removeWhitelistedUser Cannot Remove Address Low Fixed
V-ALL-VUL-012 copyFromOtherConfig is Error-Prone Warning Fixed
V-ALL-VUL-013 Lack of Zero Address Checks Warning Fixed
V-ALL-VUL-014 High Gas Cost For Goldfinch Token Counts Warning Acknowledged
V-ALL-VUL-015 Expensive Gas On Config Copying Warning Acknowledged
V-ALL-VUL-016 Invariant Involving stake.since Violated Warning Acknowledged
V-ALL-VUL-017 Access Control Pitfalls When Expanding Whitelist Warning Acknowledged
V-ALL-VUL-018 Invariant Involving totalPastRedeemableReward Warning Acknowledged
V-ALL-VUL-019 Multiple Public Functions Can Be Declared External Info Fixed
V-ALL-VUL-020 Explicitly Mark State Visibility With Some Variables Info Fixed
V-ALL-VUL-021 Events Should Be Emitted in AlloyxTreasury Info Fixed
V-ALL-VUL-022 Public Variables in AlloyxConfig Info Fixed
V-ALL-VUL-023 More Missing Events Info Open

4.1 Detailed Description of Bugs

In this section, we describe each uncovered vulnerability in more detail.

Veridise Audit Report: AlloyX © 2022 Veridise Inc.

10 4 Vulnerability Report

4.1.1 V-ALL-VUL-001: Business Logic Errors In Tracking stakeholders

Severity High Commit 5f8c250
Type Logic Error Status Fixed
Files AlloyxStakeInfo.sol

Functions removeStake, removeStakeholder

Description AlloyxStakeInfo uses two state variables stakeholderMap and stakesMapping to
track information related to stakeholders. However, the logic does not appear to be consistent
with the conceptual idea of who a “stakeholder” is.

For example, the removeStake method will add the staker as a stakeholder. Consequently,
an account can never be marked as “not a stakeholder” in stakeholderMap .

1 function removeStake(address _staker, uint256 _stake) public onlyAdmin {

2 require(stakeOf(_staker).amount >= _stake, "User has insufficient dura coin staked"

);

3 if (stakesMapping[_staker].amount == 0) addStakeholder(_staker); //@audit-issue

stakeholder added on remove

4 addPastRedeemableReward(_staker, stakesMapping[_staker]);

5 stakesMapping[_staker] = StakeInfo(stakesMapping[_staker].amount.sub(_stake), block

.timestamp);

6 updateTotalStakeInfoAndPastRedeemable(0, _stake, 0, 0);

7 }

Snippet 4.1: The definition of removeStake()

As another example, the addStake will add an account as a new stakeholder even if an amount
of zero is staked:

1 function addStake(address _staker, uint256 _stake) public onlyAdmin {

2 if (stakesMapping[_staker].amount == 0) addStakeholder(_staker);

3 addPastRedeemableReward(_staker, stakesMapping[_staker]);

4 stakesMapping[_staker] = StakeInfo(stakesMapping[_staker].amount.add(_stake), block

.timestamp);

5 updateTotalStakeInfoAndPastRedeemable(_stake, 0, 0, 0);

6 }

Snippet 4.2: The definition of addStake()

Furthermore, as observed in both examples, the checks for stakesMapping[_staker].amount == 0

seem to imply that a user is a stakeholder if and only if they have a non-zero amount entry in
stakesMapping ; this seems to suggest that the stakeholderMap variable is redundant.

removeStakeholder itself as a function is also never used, nor are any access modifiers imple-
mented in relation to isStakeholder .

© 2022 Veridise Inc. Veridise Audit Report: AlloyX

4.1 Detailed Description of Bugs 11

Impact The stakeholder tracking logic seems to be incorrect, which can lead to problems
when trying to use the isStakeholder() method. For example, governance is determined by
the stakeholders. As another example, someone could become a stakeholder with zero amount
staked.

Recommendation Clarify the notion of what a “stakeholder” is, and fix the business logic to
be consistent with the notion of “stakeholder”.

Add additional checks to validate the method parameters.

Veridise Audit Report: AlloyX © 2022 Veridise Inc.

12 4 Vulnerability Report

4.1.2 V-ALL-VUL-002: Treasury Fee Variables Can Only Increase

Severity High Commit 5f8c250
Type Logic error Status Fixed
Files AlloyxTreasury.sol

Functions See description

Description The AlloyxTreasury provides four methods addEarningGfiFee , addRepaymentFee
, addRedemptionFee , and addDuraToFiduFee to increase the four “fee” state variables. These fee
variables are used in the transferAllUsdcFees and transferAllGfiFee methods to calculate the
amount of ERC20 tokens that should be transferred by an admin to some beneficiary.

Because the fees are not “reset” in those fee transfer methods, this means that any sub-
sequent transfers must transfer the cumulative fee amounts, which does not seem to be a
desirable behavior. For example, if the current earningGfiFee is 100, and an admin invokes
transferAllGfiFees(...) , then the current earningGfiFee will remain as 100. Even if 200 GFI
tokens are added to the Alloy protocol, the earningGfiFee will be 300 (not 200), although there
are only 200 actual tokens held by Alloy.

Impact Any subsequent calls to the fee transfer methods will either 1) require the admins to
supply a large amount of ERC20 tokens before being able to make the fee transfer (due to the
fees not resetting); or 2) prevent the admins from transferring the fees altogether.

Recommendation Modify the fee transfer methods so that the appropriate fee variables are
reset.

© 2022 Veridise Inc. Veridise Audit Report: AlloyX

4.1 Detailed Description of Bugs 13

4.1.3 V-ALL-VUL-003: Lack of Access Controls in SortedGoldfinchTranches.sol

Severity High Commit 5f8c250
Type Access Control Status Fixed
Files SortedGoldfinchTranches.sol

Functions All

Description Even though SortedGoldfinchTranches.sol inherits from Ownable, it is not initial-
ized with an owner, and none of the functions use access control modifiers such as onlyOwner.
We used a unit test (available upon request) to show that these functions are callable by any
arbitrary address, and that any arbitrary payable address can be added as a tranch.

Impact The attacker is able to add arbitrary addresses as tranches in the tranches mapping
_nextTranches , and modify the score of any tranch via updateScore . This breaks the protocol
by ruining the tranch rating system, and can potentially cause future issues with anything
SortedGoldFinchTranches- related functionality that can be manipulated by an attacker.

Recommendation Implement access controls with require statements or by using the
onlyOwner modifier.

Veridise Audit Report: AlloyX © 2022 Veridise Inc.

14 4 Vulnerability Report

4.1.4 V-ALL-VUL-004: claimRewards Can Revert If PercentageCRWNEarning Is
Configured Incorrectly

Severity Medium Commit 5f8c250
Type Data Validation Status Fixed
Files StakeDesk.sol

Functions getRewardTokenCount

Description The method getRewardTokenCount appears to return a pair of amount to reward
and a fee such that the fee does not exceed the amount of reward. The fee is calculated by taking
a linear multiple of the amount to reward:

1 uint256 fee = amountToReward.mul(config.getPercentageCRWNEarning()).div(100);

2 return (amountToReward, fee);

Snippet 4.3: Fee calculation

If the PercentageCRWNEarning configuration option is not in the bounds [0, 100] , then the fee

will be greater than amountToReward , causing the claimReward function to always revert due to
subtraction integer overflow:

1 function claimReward(uint256 _amount) external returns (bool) {

2 (uint256 amountToReward, uint256 fee) = getRewardTokenCount(_amount);

3 config.getTreasury().transferERC20(config.gfiAddress(), msg.sender, amountToReward.

sub(fee));

4 config.getTreasury().addEarningGfiFee(fee);

5 config.getCRWN().burn(msg.sender, _amount);

6 emit Reward(msg.sender, _amount);

7 return true;

8 }

Snippet 4.4: Function claimReward

Because the value PercentageCRWNEarning is not checked, it is possible for an admin to mistakenly
set an invalid value that is out of bounds. For example, consider a scenario where an admin
mixes up the order of the configuration values, so that an out-of-bounds value is assigned to
PercentageCRWNEarning.

Impact If claimRewards always reverts, then users will be unable to claim their rewards, leading
to financial damage to the users, bad publicity, and a loss of user trust.

Recommendation Validate parameters such as PercentageCRWNEarning in AlloyxConfig.setNumber

or any other appropriate location where parameters are being set.

© 2022 Veridise Inc. Veridise Audit Report: AlloyX

4.1 Detailed Description of Bugs 15

Update The developers added validation when this config value is used in the StakeDesk.

getRewardTokenCount() method in commit f349bf6ec4ed6a6fb78430d5947f0e2178f2e7f6 ; how-
ever, they did not fix the underlying problem (validation needed when setting the config value).
Because the developer’s change mitigates this specific problem sufficiently, we have marked this
issue as fixed. In the future, the developers should be aware that the underlying problem is still
an issue.

Veridise Audit Report: AlloyX © 2022 Veridise Inc.

16 4 Vulnerability Report

4.1.5 V-ALL-VUL-005: Potential Reentrancy Vulnerability In
depositDuraForPoolToken

Severity Medium Commit 5f8c250
Type Reentrancy Status Fixed
Files GoldfinchDesk.sol, AlloyxTreasury.sol

Functions depositDuraForPoolToken(), transferTokenToDepositor()

Description The depositDuraForPoolToken method invokes the transferTokenToDepositor

method (of the AlloyxTreasury contract), which transfers pool tokens (ERC721) to the sender.

1 function depositDuraForPoolToken(uint256 _tokenId) external isWhitelisted(msg.sender)

{

2 uint256 purchaseAmount = getJuniorTokenValue(_tokenId);

3 uint256 withdrawalFee = purchaseAmount.mul(config.getPercentageJuniorRedemption()).

div(100);

4 uint256 duraAmount = config.getExchange().usdcToAlloyxDura(purchaseAmount.add(

withdrawalFee));

5 config.getTreasury().addRedemptionFee(withdrawalFee);

6 transferTokenToDepositor(msg.sender, _tokenId);

7 config.getDURA().burn(msg.sender, duraAmount);

8 emit Burn(msg.sender, duraAmount);

9 emit DepositDURA(msg.sender, duraAmount);

10 emit WithdrawPoolTokens(msg.sender, _tokenId);

11 }

12

Snippet 4.5: Definition of depositDuraForPoolToken in GoldfinchDesk.sol

The transferTokenToDepositormethod checks whether the _depositor (in this case, the sender of
depositDuraForPoolToken) owns the token. The problem is that AlloyxTreasury.transferERC721
will invoke safeTransferFrom method on the Goldfinch PoolTokens contract. Because PoolTo-
kens is derived from OpenZeppelin’s ERC721 implementation, safeTransferFrom will call an
onERC721Received callback on the receiver of the token (the _depositor).

1 function transferTokenToDepositor(address _depositor, uint256 _tokenId) internal {

2 require(tokenDepositorMap[_tokenId] == _depositor, "The token is not deposited by

this user");

3 config.getTreasury().transferERC721(config.poolTokensAddress(), _depositor,
_tokenId);

4 delete tokenDepositorMap[_tokenId];

5 }

6

Snippet 4.6: Definition of transferTokenToDepositor in AlloyxTreasury.sol

Because tokenDepositorMap is not updated until after the transferERC721 call, it is possible for a
malicious sender to use onERC721Received to perform a reentrant call into depositDuraForPoolToken

.

© 2022 Veridise Inc. Veridise Audit Report: AlloyX

4.1 Detailed Description of Bugs 17

Impact Since the sender’s DURA tokens must be burned by the depositDuraForPoolToken

method, and the sender is also required to be whitelisted, it does not seem like a reentrancy-based
exploit would be very likely or useful. Nevertheless, there is a possibility that a determined
attacker could combine this reentrancy flaw with another exploit to create a damaging attack.

Recommendation

▶ In AlloyxTreasury , move the delete tokenDepositorMap[_tokenId] line before the call to
transferERC721 .

▶ In GoldfinchDesk , move the transferTokenToDepositor(...) method call to the end of
the depositDuraForPoolToken method.

▶ Document the fact that it is possible for the beneficiary in AlloyxTreasury.transferERC721

to make further calls.

Veridise Audit Report: AlloyX © 2022 Veridise Inc.

18 4 Vulnerability Report

4.1.6 V-ALL-VUL-006: Potential Stake Reward Inconsistency Caused By Config
Update

Severity Medium Commit 73cbee8
Type Logic Error Status Acknowledged
Files StakeDesk.sol, AlloyxStakeInfo.sol

Functions StakeDesk.claimAllAlloyxCRWN(), StakeDesk.claimAlloyxCRWN()

Description In AlloyxStakeInfo , the total amount of potentially redeemable CRWN token
amounts is calculated by summing

1. the function calculateRewardFromStake(totalStakeInfo) , which computes the amount
of reward that can be claimed since the last update to totalStakeInfo;

2. the totalPastRedeemableReward state variable, which tracks the cumulative past re-
deemable reward before the last update to totalStakeInfo.

The updateTotalStakeInfoAndPastRedeemable() method is used to update the amount and
timestamp recorded in totalActiveStake :

1 function updateTotalStakeInfoAndPastRedeemable(

2 uint256 increaseInStake,

3 uint256 decreaseInStake,

4 uint256 increaseInPastRedeemable,

5 uint256 decreaseInPastRedeemable

6) internal {

7 uint256 additionalPastRedeemableReward = calculateRewardFromStake(totalActiveStake)

;

8 totalPastRedeemableReward = totalPastRedeemableReward.add(

additionalPastRedeemableReward);

9 totalPastRedeemableReward = totalPastRedeemableReward.add(increaseInPastRedeemable)

.sub(

10 decreaseInPastRedeemable

11);

12 totalActiveStake = StakeInfo(

13 totalActiveStake.amount.add(increaseInStake).sub(decreaseInStake),

14 block.timestamp

15);

16 }

Snippet 4.7: Definition of updateTotalStakeInfoAndPastRedeemable(). Note that the
totalActiveStake amount is increased by the amount of unclaimed rewards since

last update.

When this method is used alongside an update to a given staker’s pastRedeemableReward, the
additionalPastRedeemableReward may potentially be inconsistent with the change to the staker’s
pastRedeemableReward.

One specific way to cause such inconsistency is to change the configuration value PercentageRewardPerYear
. As a concrete example, consider the following scenario:

© 2022 Veridise Inc. Veridise Audit Report: AlloyX

4.1 Detailed Description of Bugs 19

▶ At some time 𝑡 = 0 years, user A has 200 DURA staked. Assume the percentage reward
per year is 1% at this point.

▶ At time 𝑡 = 5 years, user B stakes 100 DURA via StakeDesk.stake(). This updates the total
past redeemable reward (TPRR) to 200*0.01*5 .

▶ Suppose the admin changes the percentage reward per year to 2%.
▶ At time 𝑡 = 10 years, the totalClaimableCRWNToken() is inconsistent with the sum of the

claimableCRWNToken() over all users. The former is calculated as 300*0.02*5 + 200*0.01*5

= 40, while the latter is now calculated as 200*0.02*10 + 100*0.02*5 = 50.
▶ This inconsistency is due to the fact that the pastRedeemableReward for user A was not

updated after the reward rate was changed. In this scenario, the correct calculation for
user A should be 200*0.01*5 + 200*0.02*5.

Impact This may mean that the totalPastRedeemableReward is no longer consistent with the
values contained in pastRedeemableReward (i.e., the former may be greater than the sum of
the latter). Consequently, AlloyxStakeInfo.totalClaimableCRWNToken() may be higher or lower
than expected, causing StakeDesk.getRewardTokenCount() (and therefore claimed GFI reward
amounts, as calculated in StakeDesk.claimReward()) to be higher or lower than expected.

Recommendation Ensure that the total additional past redeemable amount is updated in the
appropriate place(s), such as in AlloyxStakeInfo.resetStakeTimestampWithRewardLeft().

The developer should be careful to look for similar problems such as:

▶ Other scenarios in which totalPastRedeemableReward can become inconsistent with the
sum of the pastRedeemableReward values.

▶ Whether the way the pastRedeemableReward is calculated is correct, esp. with respect to
methods or variables that may affect it.

Developer Response The developers observed that changing the PercentageRewardPerYear

will impact all stakers in the same way regardless if they gain proportionally more or less CRWN,
so the developers believe that they will be unlikely to change the PercentageRewardPerYear.
However, this issue is still unfixed, so the developers should continue to remain aware of this
issue.

Veridise Audit Report: AlloyX © 2022 Veridise Inc.

20 4 Vulnerability Report

4.1.7 V-ALL-VUL-007: Bugs in newly added pausing mechanism

Severity Medium Commit 3a52664
Type Logic Error Status Fixed
Files AlloyxTreasury.sol, AlloyxStakeInfo.sol, StakeDesk.sol, etc.

Functions functions in contracts AlloyxTreasury, AlloyxStakeInfo, StakeDesk, etc.

Description To address the config race condition issue that we reported, the developers added
a mechanism that forces the protocol to be “paused” before the config contract can be updated.
However, we observed several issues with the newly added mechanism:

▶ In StakeDesk , updateConfig has modifier notPaused instead of isPaused.
▶ Multiple contracts define a notPaused modifier as require(!config.isPaused(), "the

user operation should be paused first"); The error thrown here seems incorrect: the
condition !config.isPaused() is violated when isPaused returns true (i.e. the user opera-
tions are paused), and to proceed the contract must be unpaused. The message should be
changed to something like user operations should be unpaused first.

▶ The isPausedmodifier is missing in updateConfig()of AlloyxStakeInfo and AlloyxTreasury

.

Impact If the affected interfaces are modified to have more methods, or if the concrete
implementations of those methods have their type signatures changed, then calls to any such
methods may revert.

Recommendation Fix the issues described, and check that there are no additional missing
cases.

© 2022 Veridise Inc. Veridise Audit Report: AlloyX

4.1 Detailed Description of Bugs 21

4.1.8 V-ALL-VUL-008: Missing Interface Inheritance

Severity Low Commit 5f8c250
Type Maintainability Status Fixed
Files AlloyxConfig.sol, SortedGoldfinchTranches.sol

Functions N/A

Although AlloyxConfig implements methods from IAlloyxConfig, it does not actually inherit
IAlloyxConfig. Given the following comment on lines 54-57, it seems like this missing inheritance
is unintended:

1 /*
2 Using custom getters in case we want to change underlying implementation later,

3 or add checks or validations later on.

4 */

Snippet 4.8: Comment on lines 54-57 of IAlloyxConfig.sol

A similar issue affects SortedGoldfinchTranches.

Impact

If the affected interfaces are modified to have more methods, or if the concrete implementations
of those methods have their type signatures changed, then calls to any such methods may
revert.

Recommendation

▶ Inherit IAlloyxConfig in AlloyxConfig.
▶ Inherit ISortedGoldfinchTranches in SortedGoldfinchTranches

Veridise Audit Report: AlloyX © 2022 Veridise Inc.

22 4 Vulnerability Report

4.1.9 V-ALL-VUL-009: Potential Upgrade Race Condition

Severity Low Commit 5f8c250
Type Transaction Ordering Status Fixed
Files AlloyxStakeInfo.sol, AlloyxExchange.sol and four others

Functions updateConfig()

Description If the address of the configuration of all of the DAO contracts is not updated
within the same transaction (i.e., with updateConfig()), then it is possible for some intermediate
transaction to be performed (e.g., as a result of a malicious miner or transaction reordering
attack) when some of the contracts point to the new config and the rest of the contracts point to
the old config.

The four files also affected are:GoldfinchDesk.sol, StakeDesk.sol,AlloyxTreasury.sol and
SortedGoldfinchTranches.sol.

Impact We believe such a scenario is unlikely, but it could be possible for an attacker to take
advantage of this scenario. For example, if two contracts X and Y use a rate parameter, but X is
updated to use a new rate while Y still uses the old rate, an attacker could take out a flash loan
to exploit differences in these rates.

Recommendation Provide a smart contract, or some other functionality, that will update all
of the configurations within the same transaction.

Developer Response The developers acknowledged that they would be careful during config
upgrade deployments, and they mitigated the issue by adding a mechanism that forces all
contracts to be “paused” during config upgrades.

© 2022 Veridise Inc. Veridise Audit Report: AlloyX

4.1 Detailed Description of Bugs 23

4.1.10 V-ALL-VUL-010: Missing Interface Inheritance II

Severity Low Commit 5f8c250
Type Maintainabilty Status Fixed
Files AlloyxStakeInfo.sol

Functions N/A

Description AlloyxStakeInfo implements all the methods of the interface IAlloyxStakeInfo

but does not explicitly inherit it.

Impact If the affected interfaces are modified to have more methods, or if the concrete
implementations of those methods have their type signatures changed, then calls to any such
methods may revert.

Recommendation Inherit IAlloyxStakeInfo in AlloyxStakeInfo .

Veridise Audit Report: AlloyX © 2022 Veridise Inc.

24 4 Vulnerability Report

4.1.11 V-ALL-VUL-011: removeWhitelistedUser Cannot Remove Address
whitelisted by Goldfinch KYC

Severity Low Commit 7606eac
Type Logic error Status Fixed
Files AlloyxWhitelist.sol

Functions removeWhitelistedUser()

Description Various contracts used in the Alloy protocol use the isUserWhitelisted method
to check authorization.

1 function isUserWhitelisted(address _whitelistedAddress) public view override returns

(bool) {

2 return whitelistedAddresses[_whitelistedAddress] || hasWhitelistedUID(
_whitelistedAddress);

3 }

Snippet 4.9: Function isUserWhitelisted

Based on the above code, a user is considered to be whitelisted if they satisfy any of the following
conditions:

▶ The value of the given address in whitelistedAddresses is true (i.e., they are whitelisted
internally by the Alloy protocol).

▶ They are whitelisted by Goldfinch (e.g., by owning at least one NFT issued by Goldfinch’s
UniqueIdentity token contract).

However, the removeWhitelistedUsermethod in AlloyxWhitelistonly sets the whitelistedAddress
entry of the given address to false , which can be confusing or misleading. This leads to a

confusing behavior where calling removeWhitelistedUser on an address whitelisted by Goldfinch
has no effect.

1 function removeWhitelistedUser(address _addressToDeWhitelist)

2 external

3 onlyOwner

4 isWhitelisted(_addressToDeWhitelist)

5 {

6 whitelistedAddresses[_addressToDeWhitelist] = false;

7 }

Snippet 4.10: Function removeWhitelistedUser

Impact In a situation where a user’s whitelist status needs to be revoked, this behavior can
cause confusion if the user is actually whitelisted by Goldfinch. For example, admins might
believe that a user is no longer whitelisted after calling removeWhitelistedUser (which executes
successfully), but the user might still be whitelisted by Goldfinch and will still have authorization
to access Alloy protocol functions.

© 2022 Veridise Inc. Veridise Audit Report: AlloyX

4.1 Detailed Description of Bugs 25

Because the whitelist is used for checking authorization, a flaw in the whitelist has nega-
tive implications for the security of the protocol.

Recommendation

▶ Add a require statement in removeWhitelistedUser to explicitly check that the user is
contained in whitelistedAddresses.

▶ Consider renaming removeWhitelistedUser to clearly indicate that this only affects the
Alloywhitelist.

Developer Response

The developers renamed removeWhitelistedUser to removeAlloyxWhitelistedUser.

Veridise Audit Report: AlloyX © 2022 Veridise Inc.

26 4 Vulnerability Report

4.1.12 V-ALL-VUL-012: copyFromOtherConfig Is Error-Prone

Severity Warning Commit 5f8c250
Type Data Validation Status Fixed
Files AlloyxConfig.sol

Functions copyFromOtherConfig

Description The copyFromOtherConfig requires an admin to specify the numbersLength and
the addressesLength variables, corresponding to the number of entries in ConfigOptions.sol .
However, this since it is possible to add entries to the ConfigOptions.Numbers and ConfigOptions

.Addresses enums, an admin may be able to enter incorrect values of numbersLength and
addressesLength during an upgrade or deployment.

1 function copyFromOtherConfig(

2 address _initialConfig,

3 uint256 numbersLength,

4 uint256 addressesLength

5) public onlyAdmin

Snippet 4.11: Function copyFromOtherConfig

Recommendation

▶ The developers should carefully think about the scenarios in which they will be using
this function and document them in a comment. Furthermore, they should ensure that
this method is tested for each of those scenarios.

▶ The range of values of the enums in ConfigOptions can stored by adding a dummy Last

entry to each enum. The AlloyxConfig contract can then provide methods to query the
Last entries (returning it as the length), so that a newer config is able to automatically
determine the correct number of entries to copy from an older config.

© 2022 Veridise Inc. Veridise Audit Report: AlloyX

4.1 Detailed Description of Bugs 27

4.1.13 V-ALL-VUL-013: High Gas Cost When Computing Goldfinch Token Counts

Severity Warning Commit 5f8c250
Type Denial of Service Status Acknowledged
Files GoldfinchDesk.sol

Functions getGoldFinchPoolTokenBalanceInUsdc() and two other functions

Description The GoldfinchDesk contract provides various methods to compute token balances
based on the number of ERC721 tokens that the treasury contract has in the Goldfinch PoolTokens

contract. However, such total balances are computed by looping over the total number of ERC721
tokens in the following methods:

▶ getFoldFinchPoolTokenBalanceInUsdc()
▶ getTokensAvailableForWithdrawal()
▶ getTokensAvailableCountForWithdrawal()

1 function getGoldFinchPoolTokenBalanceInUsdc() public view override returns (uint256)

{

2 uint256 total = 0;

3 uint256 balance = config.getPoolTokens().balanceOf(config.treasuryAddress());

4 for (uint256 i = 0; i < balance; i++) {

5 total = total.add(

6 getJuniorTokenValue(config.getPoolTokens().tokenOfOwnerByIndex(config.

treasuryAddress(), i))

7);

8 }

9 return total;

10 }

Snippet 4.12: Example of a loop that may consume a large amount of gas

Since contract calls are being made within the loop body, this is liable to cost large amounts of
gas, especially as the treasury acquires more ERC721 tokens.

Additionally, since there are no limitations on which tokens are whitelisted for deposit, a
malicious user could gift a large number of pool tokens to the treasury contract, causing the
array to grow ever larger.

Impact The gas costs may grow to the point where every transaction starts to revert, resulting
in a denial-of-service issue.

Veridise Audit Report: AlloyX © 2022 Veridise Inc.

28 4 Vulnerability Report

4.1.14 V-ALL-VUL-014: Lack of zero address checks

Severity Warning Commit 5f8c250
Type Data Validation Status Fixed
Files AlloyxConfig.sol, AlloyxWhitelist.sol, GoldfinchDesk.sol

Functions See description

Some functions (listed below) that change address type state variables do not validate their
parameters with statements like require(myAddressParameter != address(0)).

1 function purchasePoolToken(

2 uint256 _amount,

3 address _poolAddress,

4 uint256 _tranche

5) public onlyAdmin {

6 ITranchedPool juniorPool = ITranchedPool(_poolAddress);

7 // ...

8 }

9

10 function withdrawFromJuniorToken(

11 uint256 _tokenID,

12 uint256 _amount,

13 address _poolAddress

14) external onlyAdmin {

15 ITranchedPool juniorPool = ITranchedPool(_poolAddress);

16 // ...

17 }

18

19 function getTokensAvailableForWithdrawal(address _depositor)

20 external

21 view

22 returns (uint256[] memory)

23 {

24 // ...

25 }

26

27 function getTokensAvailableCountForWithdrawal(address _depositor) public view returns

(uint256) { //@audit-issue is each user supposed to only have 1 NFT per pool?

28 // ...

29 }

Snippet 4.13: Affected methods in GoldfinchDesk.sol

1 setAddress(uint256 addressIndex, address newAddress) public override onlyAdmin {

2 emit AddressUpdated(msg.sender, addressIndex, addresses[addressIndex], newAddress);

3 addresses[addressIndex] = newAddress;

4 }

Snippet 4.14: Affected methods in AlloyxConfig.sol

© 2022 Veridise Inc. Veridise Audit Report: AlloyX

4.1 Detailed Description of Bugs 29

1 function changeUIDAddress(address _uidAddress) external onlyOwner {

2 uidToken = IERC1155(_uidAddress);

3 emit ChangeAddress("uidToken", _uidAddress);

4 }

5

6 function addWhitelistedUser(address _addressToWhitelist)

7 external

8 onlyOwner

9 notWhitelisted(_addressToWhitelist)

10 {

11 whitelistedAddresses[_addressToWhitelist] = true;

12 }

Snippet 4.15: Affected methods in AlloyxWhitelist.sol

Impact Adding zero address checks can help minimize mistakes/errors made during contract
deployment.

Recommendation Add require statements in the places noted above.

Veridise Audit Report: AlloyX © 2022 Veridise Inc.

30 4 Vulnerability Report

4.1.15 V-ALL-VUL-015: Expensive Gas On Config Copying

Severity Warning Commit 5f8c250
Type Gas Optimization Status Acknowledged
Files AlloyxConfig.sol

Functions copyFromOtherConfig()

Description The function copyFromOtherConfig uses for loops bounded by numbersLength and
addressesLength that each corresponds to lengths of the enums Numbers and Addresses given in
the contract library ConfigOptions.

1 function copyFromOtherConfig(

2 address _initialConfig,

3 uint256 numbersLength,

4 uint256 addressesLength

5) public onlyAdmin {

6 IAlloyxConfig initialConfig = IAlloyxConfig(_initialConfig);

7 for (uint256 i = 0; i < numbersLength; i++) {

8 setNumber(i, initialConfig.getNumber(i));

9 }

10 for (uint256 i = 0; i < addressesLength; i++) {

11 if (getAddress(i) == address(0)) {

12 setAddress(i, initialConfig.getAddress(i));

13 }

14 }

15 }

Snippet 4.16: Function copyFromOtherConfig

Due to the fact that these enums may grow significantly in the future, the gas costs may grow
significantly.

1 enum Addresses {

2 Treasury, Exchange, Config, GoldfinchDesk, StableCoinDesk,

3 StakeDesk, Whitelist, AlloyxStakeInfo, PoolTokens, SeniorPool,

4 SortedGoldfinchTranches, FIDU, GFI, USDC, DURA, CRWN, BackerRewards

5 }

Snippet 4.17: Addresses enum from ConfigOptions

Impact Increased gas cost when migrating configuration.

© 2022 Veridise Inc. Veridise Audit Report: AlloyX

4.1 Detailed Description of Bugs 31

4.1.16 V-ALL-VUL-016: Invariant Involving stake.since Violated in
resetStakeTimestamp

Severity Warning Commit 6356a9b
Type Maintainability Status Acknowledged
Files AlloyxStakeInfo.sol

Functions resetStakeTimestamp()

Description In the addStake and removeStake functions, the timestamp of totalActiveStake
is updated by a call to updateTotalStakeInfoAndPastRedeemable, maintaining a property that
the maximum value of all of the stakesMapping[*].since times should all be no later than the
totalActiveStake.since. Specifically:

max(stakesMapping[∗].since) ≤ totalActiveStake.since

However, the function resetStakeTimestamp updates the time stamp of stake holder’s StakeInfo
, but does not do so for totalActiveStake , meaning that the above property may no longer hold
after a call to resetStakeTimestamp .

1 function resetStakeTimestamp(address _stakeholder) internal {

2 addPastRedeemableReward(_stakeholder, stakesMapping[_stakeholder]);

3 stakesMapping[_stakeholder] = StakeInfo(stakesMapping[_stakeholder].amount, block

.timestamp);

4 }

Snippet 4.18: Implementation of resetStakeTimestamp

Impact It may be possible for the developers to forget to update the totalActiveStake.since

after calling resetStakeTimestamp , especially if they use resetStakeTimestamp in more public
methods.

Currently, this is not a problem; resetStakeTimestamp() is an internal method that is only used
in by the external method resetStakeTimestampWithRewardLeft(), and the latter will update the
totalActiveStake.since with a call to adjustTotalStakeWithRewardLeft().

1 function resetStakeTimestampWithRewardLeft(address _staker, uint256 _reward)

2 external

3 override

4 onlyAdmin

5 {

6 resetStakeTimestamp(_staker);

7 adjustTotalStakeWithRewardLeft(_staker, _reward);

8 pastRedeemableReward[_staker] = _reward;

9 }

Snippet 4.19: Definition of resetStakeTimestampWithRewardLeft(). According to our formal
verification tool Eurus, the invariant is temporarily violated in between the calls

to resetStakeTimestamp and adjustTotalStakeWithRewardLeft.

Veridise Audit Report: AlloyX © 2022 Veridise Inc.

32 4 Vulnerability Report

Recommendation Refactor the functions so that both stakesMapping[*].since and totalActiveStake

.since are updated in the same function, making it more difficult to violate this invariant.

Developer Response While the developers acknowledged that this could be a possible
maintainability issue, they also pointed out that this invariant is not that important to them
as long as the contract still maintains the other invariant sum(stakesMapping[*].amount) ==

totalActiveStake.amount.

© 2022 Veridise Inc. Veridise Audit Report: AlloyX

4.1 Detailed Description of Bugs 33

4.1.17 V-ALL-VUL-017: Access Control Pitfalls when Expanding Whitelist to Include
More 3rd Party Protocols

Severity Warning Commit 73cbee8
Type Access Control Status Acknowledged
Files AlloyxWhitelist.sol, GoldfinchDesk.sol, etc.

Functions See description

Description The whitelisting logic in AlloyxWhitelist considers a user to be “whitelisted”
whenever one of the following is true:

▶ Goldfinch whitelists the user through their KYC mechanism (e.g., via ownership of a
Goldfinch UniqueIdentity NFT).

▶ The user is explicitly whitelisted by Alloy in the AlloyxWhitelist contract.

The AlloyxWhitelist contract provides a isWhitelisted() method that can be used to check
when a user is whitelisted according to the definition above. In the current code, this is sufficient
because Goldfinch is the only third-party protocol supported by the Alloy contracts.

However, the developers indicated that they would also like to support other third-party
protocols, in which case the above definition would be too coarse-grained.

For example, if the developers want to support a new third-party “Example Protocol” that also
has some whitelist/KYC mechanism, then the developers may want to refine their access control
model to deal with requirements like “only users whitelisted by Alloy or users whitelisted
by Example Protocol may access Example Protocol functionalities” and “users whitelisted by
Example Protocol but not by Goldfinch may not access Goldfinch functionalities”.

Veridise Audit Report: AlloyX © 2022 Veridise Inc.

34 4 Vulnerability Report

4.1.18 V-ALL-VUL-018: Invariant involving totalPastRedeemableReward violated in
addPastRedeemableReward and resetStakeTimestamp

Severity Warning Commit 6356a9b
Type Maintainability Status Acknowledged
Files AlloyxStakeInfo.sol

Functions addPastRedeemableReward(), resetStakeTimestamp()

Description The invariant

sum(pastRedeemableReward[∗]) ≤ totalPastRedeemableReward

is temporarily violated in addPastRedeemableReward() and resetStakeTimestamp(). This is be-
cause in each of these two functions, an entry in pastRedeemableReward is updated without also
updating totalPastRedeemableReward.

Impact Currently, this is not a problem; both methods are only used in external methods that
also update totalPastRedeemableRreward.

However, it may be possible for the developers to forget to update the totalPastRedeemableReward
if they use the methods mentioned in this issue in more external methods in the future.

Recommendation To avoid introducing bugs in the future, consider placing the updates to
pastRedeemableReward and totalPastRedeemableReward in the same function so that the invariant
is harder to violate.

© 2022 Veridise Inc. Veridise Audit Report: AlloyX

4.1 Detailed Description of Bugs 35

4.1.19 V-ALL-VUL-019: Multiple Public Functions Can Be Declared As External

Severity Informational Commit 5f8c250
Type Maintainability Status Fixed
Files See description

Functions See description

Description Some methods in various contract functions (which are currently public) can
be listed as external. This can result in possible gas savings. Solidity immediately copies array
arguments to memory, while external functions can read directly from calldata. Memory
allocation is expensive, whereas reading from calldata is cheap.

Below are methods, listed by contract, that may be marked as external:

1 function addAdmin(address account) public virtual onlyAdmin { ... }

2 function renounceAdmin() public virtual { ... }

Snippet 4.20: Functions which may be listed as external in AdminUpgradable.sol

1 function initialize() public initializer { ... }

2 function copyFromOtherConfig(

3 address _initialConfig,

4 uint256 numbersLength,

5 uint256 addressesLength

6) public onlyAdmin { ... }

7 function getNumber(uint256 index) public view returns (uint256) { ... }

Snippet 4.21: Functions which may be listed as external in AlloyxConfig.sol

1 function initialize(address _configAddress) public initializer { ... }

2 function alloyxDuraToUsdc(uint256 _amount) public view override returns (uint256) {

... }

3 function usdcToAlloyxDura(uint256 _amount) public view override returns (uint256) {

... }

Snippet 4.22: Functions which may be listed as external in AlloyxExchange.sol

1 function initialize(address _configAddress) public initializer { ... }

2 function isStakeholder(address _address) public view returns (bool) { ... }

3 function addStake(address _staker, uint256 _stake) public onlyAdmin { ... }

4 function removeStake(address _staker, uint256 _stake) public onlyAdmin { ... }

5 function resetStakeTimestampWithRewardLeft(address _staker, uint256 _reward) public

onlyAdmin { ... }

6 function claimableCRWNToken(address _receiver) public view returns (uint256) { ... }

7 function totalClaimableCRWNToken() public view returns (uint256) { ... }

Snippet 4.23: Functions which may be listed as external in AlloyxStakeInfo.sol

Veridise Audit Report: AlloyX © 2022 Veridise Inc.

36 4 Vulnerability Report

1 function initialize() public initializer { ... }

Snippet 4.24: Function which may be listed as external in AlloyxTokenCRWN.sol

1 function initialize() public initializer { ... }

Snippet 4.25: Function which may be listed as external in AlloyxTokenDURA.sol

1 function initialize(address _configAddress) public initializer { ... }

2 function getAllGfiFees() public view override returns (uint256) { ... }

Snippet 4.26: Functions which may be listed as external in AlloyxTreasury.sol

1 function addWhitelistedUser(address _addressToWhitelist)

2 public

3 onlyOwner

4 notWhitelisted(_addressToWhitelist)

5 { ... }

6 function removeWhitelistedUser(address _addressToDeWhitelist)

7 public

8 onlyOwner

9 isWhitelisted(_addressToDeWhitelist)

10 { ... }

Snippet 4.27: Functions which may be listed as external in AlloyxWhitelist.sol

1 function initialize(address _configAddress) public initializer { ... }

2 function getGoldFinchPoolTokenBalanceInUsdc() public view override returns (uint256)

{ ... }

Snippet 4.28: Functions which may be listed as external in GoldfinchDesk.sol

1 function increaseScore(address tranch, uint256 score) public { ... }

2 function reduceScore(address tranch, uint256 score) public { ... }

3 function getTop(uint256 k) public view returns (address[] memory) { ... }

Snippet 4.29: Functions which may be listed as external in SortedGoldfinchTranches.sol

1 function initialize(address _configAddress) public initializer { ... }

Snippet 4.30: Function which may be listed as external in StableCoinDesk.sol

1 function initialize(address _configAddress) public initializer { ... }

Snippet 4.31: Function which may be listed as external in StakeDesk.sol

© 2022 Veridise Inc. Veridise Audit Report: AlloyX

4.1 Detailed Description of Bugs 37

Recommendation To save gas, change the visibility of these functions from public to external

.

Veridise Audit Report: AlloyX © 2022 Veridise Inc.

38 4 Vulnerability Report

4.1.20 V-ALL-VUL-020: Explicitly Mark State Visibility With Some Variables

Severity Informational Commit 5f8c250
Type Maintainability Status Fixed
Files AlloyxStakeInfo.sol

Functions See description

Description Some variables in various contracts do not have state mutability marked.
for example:

1 address vaultAddress;

2 StakeInfo totalActiveStake;

Snippet 4.32: State variables in AlloyxStakeInfo.sol with unmarked visibility

Impact Marking state visibility can increase code clarity and potentially improve maintain-
ability.

Recommendation Mark code visibility.

© 2022 Veridise Inc. Veridise Audit Report: AlloyX

4.1 Detailed Description of Bugs 39

4.1.21 V-ALL-VUL-021: Events Should Be Emitted In AlloyxTreasury

Severity Informational Commit 5f8c250
Type Missing/Incorrect Events Status Fixed
Files AlloyxTreasury.sol

Functions In contract AlloyxTreasury

Description To provide better monitoring of critical parameters, the following state-modifying
functions should emit events.

1 function addEarningGfiFee(uint256 _amount) external override onlyAdmin {

2 earningGfiFee += _amount;

3 }

4 function addRepaymentFee(uint256 _amount) external override onlyAdmin {

5 repaymentFee += _amount;

6 }

7 function addRedemptionFee(uint256 _amount) external override onlyAdmin {

8 redemptionFee += _amount;

9 }

10 function addDuraToFiduFee(uint256 _amount) external override onlyAdmin {

11 duraToFiduFee += _amount;

12 }

Snippet 4.33: Functions that should emit events

Impact Events can be used to trace who is changing the parameters and by what. For example,
this is important for security monitoring post-deployment.

Recommendation Emit events logging the changes to these parameters.

Veridise Audit Report: AlloyX © 2022 Veridise Inc.

40 4 Vulnerability Report

4.1.22 V-ALL-VUL-022: Public Variables In AlloyxConfig

Severity Informational Commit 5f8c250
Type Maintainability Status Fixed
Files AlloyxConfig.sol

Functions

Description In the contract AlloyxConfig, the variables addresses and numbers have been
declared public while the getter functions getAddress and getNumber have also been imple-
mented.

Recommendation Declare addresses and numbers as private.

© 2022 Veridise Inc. Veridise Audit Report: AlloyX

4.1 Detailed Description of Bugs 41

4.1.23 V-ALL-VUL-023: More Missing Events

Severity Informational Commit 73cbee8
Type Missing/Incorrect Events Status Open
Files AlloyxStakeInfo.sol, AlloyxWhitelist.sol

Functions AlloyxStakeInfo.addStake, AlloyxStakeInfo.removeStake and three others

Description Below is a list of functions that should emit events, but currently don’t.

AlloyxStakeInfo has multiple staking-related functions that are external but do not have events,
namely:

1 function addStake(address _staker, uint256 _stake) external override onlyAdmin {

2 addPastRedeemableReward(_staker, stakesMapping[_staker]);

3 stakesMapping[_staker] = StakeInfo(stakesMapping[_staker].amount.add(_stake), block

.timestamp);

4 updateTotalStakeInfoAndPastRedeemable(_stake, 0, 0, 0);

5 }

6

7 /**
8 * @notice Remove stake for a staker

9 * @param _staker The person intending to remove stake

10 * @param _stake The size of the stake to be removed.

11 */

12 function removeStake(address _staker, uint256 _stake) external override onlyAdmin {

13 require(stakeOf(_staker).amount >= _stake, "User has insufficient dura coin staked"

);

14 addPastRedeemableReward(_staker, stakesMapping[_staker]);

15 stakesMapping[_staker] = StakeInfo(stakesMapping[_staker].amount.sub(_stake), block

.timestamp);

16 updateTotalStakeInfoAndPastRedeemable(0, _stake, 0, 0);

17 }

18

19 function resetStakeTimestampWithRewardLeft(address _staker, uint256 _reward)

20 external

21 override

22 onlyAdmin

23 {

24 resetStakeTimestamp(_staker);

25 adjustTotalStakeWithRewardLeft(_staker, _reward);

26 pastRedeemableReward[_staker] = _reward;

27 }

Snippet 4.34: Methods in AlloyxStakeInfo that should emit events

AlloyxWhitelist should have events emitted for the following:

Veridise Audit Report: AlloyX © 2022 Veridise Inc.

42 4 Vulnerability Report

1 function addWhitelistedUser(address _addressToWhitelist)

2 external

3 onlyOwner

4 notWhitelisted(_addressToWhitelist)

5 {

6 whitelistedAddresses[_addressToWhitelist] = true;

7 }

8

9 function removeWhitelistedUser(address _addressToDeWhitelist)

10 external

11 onlyOwner

12 isWhitelisted(_addressToDeWhitelist)

13 {

14 whitelistedAddresses[_addressToDeWhitelist] = false;

15 }

Snippet 4.35: Methods in AlloyxWhitelist that should emit events.

Impact This would allow for more code clarity, and prepare contracts for communicating with
a frontend.

Recommendation Add emit(...) and event(...) as needed for the listed functions.

© 2022 Veridise Inc. Veridise Audit Report: AlloyX

Formal Verification Results 5
5.1 Description

In this section, we detail all of the specifications we formally checked with our formal verification
tool Eurus. For each specification, we give its formal representation as well as a textual description
of the behavior it is intended to capture. A

√
indicates the specification was verified, while a ×

indicates the specification was falsified. We have considered two kinds of formal specifications,

1. Contract Invariants
2. Function Preconditions and Postconditions

Each of these types of formal specifications are described in the next section. As described in
Section 3.2, the scope of the formal verification is limited to the AlloyxStakeInfo contract, as we
found it to be the contract where formal verification has been most cost effective.

5.2 Specification Types

5.2.1 Contract Invariants

A contract invariant is a property of a smart contract’s state variables which holds between all
invocations of the public methods of the smart contract. This means such a property must hold
at program locations that include (but are not limited to): exit from the constructor, entry to a
public function of the contract, exit from a public function of the contract, method invocations
of other smart contracts that could make a reentrant call back to the original contract, etc.

5.2.2 Function Preconditions and Postconditions

We express a function precondition and postcondition using the following syntax.

{𝑃} 𝑓 (�̄�) {𝑄}

where 𝑃 is a logical formula representing the precondition, 𝑓 (�̄�) is the function being verified
(where �̄� are the names of the arguments of 𝑓), and 𝑄 is the postcondition. Informally, one can
think of this spec as saying “if 𝑃 holds before 𝑓 executes, then after 𝑓 executes, 𝑄 must hold”.

In our context, 𝑓 (�̄�) is a function in a smart contract (let’s call the contract 𝐶) and 𝑃 and 𝑄 are
first-order logical formulas over the state variables of 𝐶, arguments �̄� of 𝑓 , and pure function
calls from 𝐶. As an example, consider the following specification for a mint function in a simple
token:

Veridise Audit Report: AlloyX © 2022 Veridise Inc.

44 5 Formal Verification Results

{𝑚𝑠𝑔.𝑠𝑒𝑛𝑑𝑒𝑟 = 𝑜𝑤𝑛𝑒𝑟}

mint(address 𝑎, uint256 𝑎𝑚𝑡)

{balanceOf(𝑎) = old(balanceOf(𝑎)) + 𝑎𝑚𝑡}

This specification states that a call to mint with target address 𝑎 and amount 𝑎𝑚𝑡 will add
the desired amount 𝑎𝑚𝑡 to the balance of address 𝑎, presuming the function is called by the
owner of the token, denoted 𝑜𝑤𝑛𝑒𝑟. Note that the expression old(balanceOf(𝑎)) uses the 𝑜𝑙𝑑(𝑒)
expression, which indicates the value of 𝑒 before the execution of the transaction.

5.3 Results

In what follows, we give formal specifications related to the smart contract AlloyxStakeInfo.
For each specification, we provide a textual description of the specification and the result of
that (

√
if it is verified and × if it is falsified) checking the specification with Eurus.

5.3.1 Contract Invariants

√
Specification 1 The total active stake is consistent:

{ sum(stakesMapping[★].amount) == totalActiveStake.amount }

× Specification 2 The total past redeemable reward bounds the individual amounts.

{ sum(pastRedeemableReward[★]) ≤ totalPastRedeemableReward }

As demonstrated by the counterexample described in Subsection 4.1.6, it is possible for a change
to the reward rate to cause the left-hand side of this inequality to be greater than the right-hand
side. The invariant otherwise holds in the case of a constant reward rate.
√

Specification 3 The total active stake timestamp is always up-to-date.

{ max(stakesMapping[★].since) ≤ totalActiveStake.since }

While this invariant holds for public methods, we have observed that the invariant may not
hold if internal methods are considered (see Subsection 4.1.16).

5.3.2 Function Preconditions and Postconditions

√
Specification 4 Three properties for resetStakeTimestamp: (1) the staked amount remains

unchanged; (2) the last reward update time of the stake is updated; (3) the reward may be
distributed to the user. The property can be expressed formally as the following:

© 2022 Veridise Inc. Veridise Audit Report: AlloyX

5.3 Results 45

{ }

resetStakeTimestamp(_stakeholder)

{ stakesMapping[_stakeholder].amount == old(stakesMapping[_stakeholder].amount) ∧
stakesMapping[_stakeholder].since ≥ old(stakesMapping[_stakeholder].since ∧

pastRedeemableReward[_stakeholder] ≥ old(pastRedeemableReward[_stakeholder]) }

√
Specification 5 addStake correctly increases the stake amount.

{ isAdmin(msg.sender) }

addStake(_staker, _stake)

{ stakesMapping[_stakeholder].amount == old(stakesMapping[_stakeholder].amount) +
_stake }

√
Specification 6 If a user has not staked before, and then they stake, then they should have no

rewards.

{ isAdmin(msg.sender) ∧ stakesMapping[_staker].since == 0 }

addStake(_staker, _stake)

{ pastRedeemableReward[_staker] == 0 }

√
Specification 7 removeStake correctly decreases the stake amount, assuming the user has

enough staked.

{ isAdmin(msg.sender) ∧ stakeOf(_staker).amount ≥ _stake }

removeStake(_staker, _stake)

{ stakesMapping[_stakeholder].amount == old(stakesMapping[_stakeholder].amount) -
_stake }

√
Specification 8 Reward of a staker does not decrease when they call addPastRedeemableReward

.

{}

addPastRedeemableReward(_staker, _stake)

{ pastRedeemableReward[_staker] ≥ old(pastRedeemableReward[_staker]) }

√
Specification 9 Resetting a user’s reward update timestamp should never revert if the caller

is an admin.

Veridise Audit Report: AlloyX © 2022 Veridise Inc.

46 5 Formal Verification Results

{ isAdmin(msg.sender) }

resetStakeTimestampWithRewardLeft(_staker, _reward)

{ }

© 2022 Veridise Inc. Veridise Audit Report: AlloyX

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Bugs

	Detailed Description of Bugs
	V-ALL-VUL-001: Business Logic Errors In Tracking stakeholders
	V-ALL-VUL-002: Treasury Fee Variables Can Only Increase
	V-ALL-VUL-003: Lack of Access Controls in SortedGoldfinchTranches.sol
	V-ALL-VUL-004: claimRewards Can Revert If PercentageCRWNEarning Is Configured Incorrectly
	V-ALL-VUL-005: Potential Reentrancy Vulnerability In depositDuraForPoolToken
	V-ALL-VUL-006: Potential Stake Reward Inconsistency Caused By Config Update
	V-ALL-VUL-007: Bugs in newly added pausing mechanism
	V-ALL-VUL-008: Missing Interface Inheritance
	V-ALL-VUL-009: Potential Upgrade Race Condition
	V-ALL-VUL-010: Missing Interface Inheritance II
	V-ALL-VUL-011: removeWhitelistedUser Cannot Remove Address whitelisted by Goldfinch KYC
	V-ALL-VUL-012: copyFromOtherConfig Is Error-Prone
	V-ALL-VUL-013: High Gas Cost When Computing Goldfinch Token Counts
	V-ALL-VUL-014: Lack of zero address checks
	V-ALL-VUL-015: Expensive Gas On Config Copying
	V-ALL-VUL-016: Invariant Involving stake.since Violated in resetStakeTimestamp
	V-ALL-VUL-017: Access Control Pitfalls when Expanding Whitelist to Include More 3rd Party Protocols
	V-ALL-VUL-018: Invariant involving totalPastRedeemableReward violated in addPastRedeemableReward and resetStakeTimestamp
	V-ALL-VUL-019: Multiple Public Functions Can Be Declared As External
	V-ALL-VUL-020: Explicitly Mark State Visibility With Some Variables
	V-ALL-VUL-021: Events Should Be Emitted In AlloyxTreasury
	V-ALL-VUL-022: Public Variables In AlloyxConfig
	V-ALL-VUL-023: More Missing Events
	Formal Verification Results
	Description

	Description
	Specification Types

	Specification Types
	Contract Invariants
	Function Preconditions and Postconditions
	Results

	Results
	Contract Invariants
	Function Preconditions and Postconditions

