
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

Veridise Inc.
June 7, 2022

▶ Prepared For:

Yubo Ruan | Parallel Foundation
parallel.fi

▶ Prepared By:

Ben Mariano
Jon Stephens
Kostas Ferles
Andreea Buterchi
Chaofan Shou

▶ Contact Us: contact@veridise.com

▶ Version History:

June 7, 2022 V1
May 5, 2022 Draft

© 2022 Veridise Inc. All Rights Reserved.

parallel.fi
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 6

4 Vulnerability Report 7
4.1 Detailed Description of Bugs . 7

4.1.1 V-PAR-VUL-001: No Type Validation . 8
4.1.2 V-PAR-VUL-002: Dropped Collateral . 9
4.1.3 V-PAR-VUL-003: Active Reserve Dropped 11
4.1.4 V-PAR-VUL-004: Illegal Collateral Withdrawal 12
4.1.5 V-PAR-VUL-005: Incorrect Collateral Balance 13
4.1.6 V-PAR-VUL-006: Function Signature Mismatch 14
4.1.7 V-PAR-VUL-007: DoS in liquidationERC721 15
4.1.8 V-PAR-VUL-008: Liquidation Transfer DoS 16
4.1.9 V-PAR-VUL-009: Collateral Not Reset . 17
4.1.10 V-PAR-VUL-010: Illegal Token Burn . 19
4.1.11 V-PAR-VUL-011: Illegal Withdrawal . 20
4.1.12 V-PAR-VUL-012: Flashclaim Price Manipulation 21
4.1.13 V-PAR-VUL-013: NFT Price Volatility . 22
4.1.14 V-PAR-VUL-014: Governance . 23
4.1.15 V-PAR-VUL-015: Inefficient State Update 24
4.1.16 V-PAR-VUL-016: Trusted NFTs . 25
4.1.17 V-PAR-VUL-017: Illegal ERC721 Borrow 26
4.1.18 V-PAR-VUL-018: Liquidation Double Fee 27
4.1.19 V-PAR-VUL-019: Address Provider DoS 28
4.1.20 V-PAR-VUL-020: ERC721 Supply after Cap 29
4.1.21 V-PAR-VUL-021: Incorrect Liquidation Logic Event 30
4.1.22 V-PAR-VUL-022: No Type Validation . 31
4.1.23 V-PAR-VUL-023: Wrong Interface . 32
4.1.24 V-PAR-VUL-024: Restrictive Flashclaim Require 33
4.1.25 V-PAR-VUL-025: Potential for flashClaim of ERC20 34
4.1.26 V-PAR-VUL-026: ERC721 Liquidation Bonus 35
4.1.27 V-PAR-VUL-027: Underflow on Borrow 36
4.1.28 V-PAR-VUL-028: Forcing Collateral Reserve 37

5 Other Recommendations 39
5.1 Results . 39

5.1.1 V-PAR-INFO-001: Inconsistent Naming Convention 40

Veridise Audit Report: Parallel © 2022 Veridise Inc.

5.1.2 V-PAR-INFO-002: Unconventional Casting 41
5.1.3 V-PAR-INFO-003: Unnecessary Require in Loop 42
5.1.4 V-PAR-INFO-004: Custom Errors . 43
5.1.5 V-PAR-INFO-005: Unused Variable/Computation 44
5.1.6 V-PAR-INFO-006: Redundant check . 45

Executive Summary 1
From May 3 to June 3, Parallel engaged Veridise to review the security of their OMNI Money
Market Protocol. The review covered tokenization (focusing on the new NToken and MintableIn-
centivizedERC721), core protocol logic (such as borrowing/supplying mechanisms, liquidation
logic, and pool/reserve behavior), as well as helpers and configuration files. Veridise conducted
this assessment over 3 person-months, with three engineers working on code from commit
19d718c to e753591 of the parallel-finance/omni-mm repository. The auditing strategy in-
volved tool-assisted analysis of the source code performed by Veridise engineers. The tools
that were used in the audit included a combination of static analysis, bounded model checking,
and formal verification. Some of these tools were developed specifically for the purpose of
performing a thorough audit of the OMNI-MM contracts.

Summary of issues detected. The audit uncovered 34 issues, 14 of which are assessed to be of
high or critical severity by Veridise auditors. Bugs discovered by Veridise can lead to a variety
of undesired behaviors of the Parallel protocol, including dropping collateral (V-PAR-VUL-002),
illegal withdrawing of collateral (V-PAR-VUL-004, V-PAR-VUL-006), illegal withdraw from
an inactive pool (V-PAR-VUL-011), and liquidation denial of service (V-PAR-VUL-007, V-PAR-
VUL-008, V-PAR-VUL-010). In addition to the high-severity bugs found, Veridise auditors also
discovered a number of moderate severity issues, such as the possibility of charging users twice
for liquidating an NFT (V-PAR-VUL-018) as well as a number of of code optimizations and
suggestions for better code maintainability.

Code assessment. The OMNI Money Market Protocol (Omni-MM) is a fork of the AAVE V3
protocol and shares much of the same infrastructure from that project. Like AAVE, Omni-MM is
a pool-based lending protocol that enables lenders to provide liquidity to pools and borrowers
to borrow funds from the pools by using collateral. The key difference between Omni-MM
and AAVE is that Omni-MM extends the protocol so that users can borrow against NFTs
put up as collateral. This extension required new reasoning about the supplying, borrowing,
and liquidation logic as well as the introduction of a new coin, the NToken, which users
receive upon depositing NFTs into a reserve. Similar to ATokens in the AAVE protocol,
NTokens are minted upon deposit of an NFT and they can be used as collateral until they are
burned/redeemed/liquidated.

The Omni-MM implementation includes a test set which achieves decent coverage of the
codebase as a whole. However, many of the tests are inherited from the AAVE protocol and
thus only test the behavior of the AAVE-portion of the protocol (as opposed to the NFT logic
added by Omni-mm). While the protocol is complicated, the Omni-MM additions follow
the same style and conventions as the original AAVE code, making AAVE’s documentation
useful in understanding the desired behavior. Additionally, the Parallel engineering team
shared additional preliminary documentation with us on their additions what are helpful for
understanding the code.

Veridise Audit Report: Parallel © 2022 Veridise Inc.

parallel-finance/omni-mm

2 1 Executive Summary

Code Stability. Over the period of the audit, new code was pushed to the repository 99
times, with the most recent commit occurring on June 3. Many of these commits changed some
behaviors of or added new features to the protocol. The Veridise auditors therefore had less
time to review some of the modifications that were made to the protocol.

Recommendations. In accordance with the contract between Parallel and Veridise, our audit
focused on the portions of the code that were updated/added by the Parallel engineers thus
far. However, there are a number of decisions that are outside the scope of this audit that have
serious implications on the security of the protocol (V-PAR-VUL-013 and V-PAR-VUL-014). We
suggest the decisions be made with a careful understanding of the risks involved as laid out in
this report.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

© 2022 Veridise Inc. Veridise Audit Report: Parallel

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
Omni Money Market 19d718c - e753591 Solidity Ethereum

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
May 3 - June 3, 2022 Manual & Tools 3 3 person-months

Table 2.3: Vulnerability Summary.

Name Number Fixed
Critical-Severity Issues 7 7
High-Severity Issues 7 7
Moderate-Severity Issues 6 6
Low-Severity Issues 8 8
Informational-Severity Issues 6 6
Undetermined-Severity Issues 0 0
TOTAL 34 34

Table 2.4: Category Breakdown.

Name Number
Logic Error 12
Validation Error 5
Protocol Issue 5
Gas Optimizations 4
Uninitialized Variable 3
Code Consistency 3
Unused Function 2

Veridise Audit Report: Parallel © 2022 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of the Omni-MM lending protocol,
particularly as it applies to NFTs. In our audit, we sought to answer the following questions:

▶ Can a user always recover an underlying asset presuming they have the appropriate
balance, their health factor is large enough, and the reserve is active?

▶ Can a user ever borrow an amount without the appropriate collateral?
▶ Can a user inappropriately withdraw a collateralized asset which is being borrowed

against?
▶ If a user repays some amount that they have borrowed, is their debt appropriately reduced?
▶ Can a reserve ever be locked permanently when it still contains funds?
▶ Can a user ever illegally interact with an inactive pool (i.e., supply to or borrow from an

inactive pool)?
▶ Are liquidators able to start a liquidation when a user’s health factor drops below the set

threshold?
▶ Can a user’s collateral ever be inappropriately liquidated (i.e., their health factor is above

the threshold)?
▶ Can a user who falls below the health factor threshold inappropriately prevent liquidation

of their collateral?
▶ Upon an NFT liquidation, are both the liquidator and the user being liquidated appropri-

ately compensated?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a combination of
human experts and automated program analysis & testing tools. In particular, we conducted
our audit with the aid of the following techniques:

▶ Static analysis. To identify potential common vulnerabilities, we leveraged our custom
smart contract analysis tool Vanguard, as well as the open-source tool Slither. These
tools are designed to find instances of common smart contract vulnerabilities, such as
reentrancy and uninitialized variables.

▶ Fuzzing/Property-based Testing. We also leverage fuzz testing to evaluate how the code
behaves given unexpected inputs. To do this, we leveraged the Foundry and hardhat testing
frameworks. We also extended the existing Hardhat unit tests using the property-based
testing capabilities of the Foundry framework. This approach enabled us to generalize
individual unit tests so that more general properties that could be checked via random
sampling by the Foundry tool.

Veridise Audit Report: Parallel © 2022 Veridise Inc.

6 3 Audit Goals and Scope

Scope. To understand the scope of the audit, we first reviewed the AAVE documentation and
focused our efforts on understanding the difference between the AAVE protocol and the
extensions proposed in Omni-MM. In this phase, our main goal was to understand how the
protocol is intended to behave in the presence of ERC721. As much of the code is copied directly
from the AAVE protocol (which has been audited multiple times) we focused our efforts on the
portions of the code added by the Parallel developers.

In terms of the scope of the audit, the key components we considered include the following:

▶ Supply/Withdraw Mechanisms
▶ Pool/Reserve Logic
▶ Liquidation Logic
▶ FlashClaim Logic
▶ Validation Logic
▶ User Configuration
▶ Reserve Configuration
▶ Tokenization (NToken, MinitableIncentivizedERC721)

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Moderate

Likely Warning Low Moderate High
Very Likely Low Moderate High Critical

In this case, we judge the likelihood of a vulnerability as follows:

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows:

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2022 Veridise Inc. Veridise Audit Report: Parallel

Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowleged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-PAR-VUL-001 No Type Validation Critical Fixed
V-PAR-VUL-002 Dropped Collateral Critical Fixed
V-PAR-VUL-003 Uninitialized Variable Critical Fixed
V-PAR-VUL-004 Unused Function Critical Fixed
V-PAR-VUL-005 Incorrect Collateral Balance Critical Fixed
V-PAR-VUL-006 Signature Mismatch Critical Fixed
V-PAR-VUL-007 DoS in liquidationERC721 Critical Fixed
V-PAR-VUL-008 Liquidation Transfer DoS High Fixed
V-PAR-VUL-009 Collateral not Reset High Intended Behavior
V-PAR-VUL-010 Illegal Token Burn High Fixed
V-PAR-VUL-011 Illegal Withdrawal High Fixed
V-PAR-VUL-012 FlashClaim Price Manipulation High Fixed
V-PAR-VUL-013 NFT Volatility High Acknowledged
V-PAR-VUL-014 Governance Vulnerability High Acknowledged
V-PAR-VUL-015 Inefficient State Update Moderate Intended Behavior
V-PAR-VUL-016 Trusted NFTs Moderate Acknowledged
V-PAR-VUL-017 Illegal Borrow Moderate Fixed
V-PAR-VUL-018 Liquidation Double Fee Moderate Fixed
V-PAR-VUL-019 Address Provider DoS Moderate Fixed
V-PAR-VUL-020 ERC721 Supply after Cap Moderate Fixed
V-PAR-VUL-021 Uninitialized Variable Low Fixed
V-PAR-VUL-022 No Type Validation Low Fixed
V-PAR-VUL-023 Wrong Interface Low Fixed
V-PAR-VUL-024 Restrictive Require Low Fixed
V-PAR-VUL-025 No Type Validation Low Fixed
V-PAR-VUL-026 ERC721 Liquidation Bonus Low Intended Behavior
V-PAR-VUL-027 Underflow on Borrow Low Intended Behavior
V-PAR-VUL-028 Forcing Collateral Reserve Low Acknowledged

4.1 Detailed Description of Bugs

In this section, we describe each uncovered vulnerability in more detail.

Veridise Audit Report: Parallel © 2022 Veridise Inc.

8 4 Vulnerability Report

4.1.1 V-PAR-VUL-001: No Type Validation

Severity Critical Commit 709297a
Type Validation Error Status Fixed
Files contracts/protocol/libraries/logic/LiquidationLogic.sol

Functions executeLiquidationCall

Description Since the asset type is not checked in executeLiquidationCall and all of the
functions invoked on the xToken are shared by both NToken and PToken, it is possible to use
this function to liquidate an ERC721 rather than executeERC721LiquidationCall. Should this
occur, it is possible for more collateral to liquidated than should be allowed.

Recommendations Add checks to executeLiquidationCall and executeERC721LiquidationCall
that check the asset type.

© 2022 Veridise Inc. Veridise Audit Report: Parallel

4.1 Detailed Description of Bugs 9

4.1.2 V-PAR-VUL-002: Dropped Collateral

Severity Critical Commit 381f174
Type Logical Error Status Fixed
Files contracts/protocol/libraries/logic/LiquidationLogic.sol

Functions executeERC721LiquidationCall

Description When an ERC721 is purchased during a liquidation, it’s possible for the ERC721’s
price to be greater than the amount of debt covered. In this case, the difference between the
purchase price and the debt covered is supplied back to the ERC721’s original owner as PTokens
if they have more debt than what was liquidated. Since these tokens are the remaining balance
of the purchased NFT, they are collateral since they were transitively used as collateral. However,
if the owner already has supplied this token and has marked the reserve of these tokens as not
collateral then the supplied tokens will also not be collateral. Thus, it is possible for someone to
regain possession of part of their collateral while still having outstanding debt.

1 function executeERC721LiquidationCall(

2 mapping(address => DataTypes.ReserveData) storage reservesData,

3 mapping(uint256 => address) storage reservesList,

4 mapping(address => DataTypes.UserConfigurationMap) storage usersConfig,

5 DataTypes.ExecuteERC721LiquidationCallParams memory params

6) external {

7 ...

8 if (vars.collateralDiscountedPrice > toPrtocolAmount) {

9 if (vars.userGlobalTotalDebt > vars.actualDebtToLiquidate) {

10 SupplyLogic.executeSupply(

11 reservesData,

12 reservesList,

13 userConfig,

14 DataTypes.ExecuteSupplyParams({

15 asset: params.liquidationAsset,

16 amount: vars.collateralDiscountedPrice -

17 vars.actualDebtToLiquidate -

18 vars.liquidationProtocolFeeAmount,

19 onBehalfOf: params.user,

20 referralCode: 0

21 })

22);

23 } else {

24 IERC20(params.liquidationAsset).safeTransferFrom(

25 msg.sender,

26 params.user,

27 vars.collateralDiscountedPrice - toPrtocolAmount

28);

29 }

30 }

31 ...

32 }

Snippet 4.1: Location where funds are supplied back to the user

Veridise Audit Report: Parallel © 2022 Veridise Inc.

10 4 Vulnerability Report

1 function executeSupply(

2 mapping(address => DataTypes.ReserveData) storage reservesData,

3 mapping(uint256 => address) storage reservesList,

4 DataTypes.UserConfigurationMap storage userConfig,

5 DataTypes.ExecuteSupplyParams memory params

6) external {

7 ...

8

9 if (isFirstSupply) {

10 userConfig.setUsingAsCollateral(reserve.id, true);

11 emit ReserveUsedAsCollateralEnabled(

12 params.asset,

13 params.onBehalfOf

14);

15 }

16

17 ...

18 }

Snippet 4.2: Location where a reserve is marked as collateral only if isFirstSupply

Recommendations Mark the newly supplied funds as collateral. Note, this can be done by
always marking the reserve as collateral but this approach can mark more than just the new
funds as collateral.

© 2022 Veridise Inc. Veridise Audit Report: Parallel

4.1 Detailed Description of Bugs 11

4.1.3 V-PAR-VUL-003: Active Reserve Dropped

Severity Critical Commit 19d718c
Type Uninitialized Variable Status Fixed
Files contracts/protocol/libraries/tokenization/NToken.sol

.../libraries/tokenization/base/MintableIncentivizedERC721.sol
contracts/protocol/libraries/logic/PoolLogic.sol

Functions mint, burn, _mintMultiple, _burnMultipe, executeDropReserve

Description Total supply is never incremented on mints or decremented on burns. Therefore,
a reserve containing tokens can be dropped by calling executeDropReserve. This could lead to a
situation where a user could lose access to funds they have in the reserve.

1 function validateDropReserve(

2 mapping(uint256 => address) storage reservesList,

3 DataTypes.ReserveData storage reserve,

4 address asset

5) internal view {

6 ...

7

8 require(

9 IERC20(reserve.xTokenAddress).totalSupply() == 0,

10 Errors.ATOKEN_SUPPLY_NOT_ZERO

11);

12 }

Snippet 4.3: Location where totalSupply is used to determine if a reserve can be dropped

Recommendations Update totalSupply when tokens are minted and burned.

Veridise Audit Report: Parallel © 2022 Veridise Inc.

12 4 Vulnerability Report

4.1.4 V-PAR-VUL-004: Illegal Collateral Withdrawal

Severity Critical Commit 273253f
Type Unused Function Status Fixed
Files contracts/protocol/libraries/tokenization/NToken.sol

Functions _transfer

Description NToken defines _transfer(address, address, uint256, bool) similar to PToken.
Unlike PToken, this _transfer is never called because _transfer is only ever called with 3
arguments. As a result, the pool never finalizes the transfer which in turn means a user’s the
health factor is never validated. This allows a user with a bad health factor to transfer their
NToken to another user with a good health factor who can then withdraw the token from the
pool. Since the original user retains ownership of their borrowed assets, this can be exploited to
drain the pool of funds.

1 function _transfer(

2 address from,

3 address to,

4 uint256 tokenId,

5 bool validate

6) internal {

7 address underlyingAsset = _underlyingAsset;

8

9 uint256 fromBalanceBefore = balanceOf(from);

10 uint256 toBalanceBefore = balanceOf(to);

11

12 bool isUsedAsCollateral = _isUsedAsCollateral[tokenId];

13 _transferCollaterizable(from, to, tokenId, isUsedAsCollateral);

14

15 if (validate) {

16 POOL.finalizeTransfer(

17 underlyingAsset,

18 from,

19 to,

20 isUsedAsCollateral,

21 tokenId,

22 fromBalanceBefore,

23 toBalanceBefore

24);

25 }

26

27 // emit BalanceTransfer(from, to, tokenId, index); TODO emit a transfer event

28 }

Snippet 4.4: Location where unused function _transfer calls _finalizeTransfer

Recommendations Ensure the correct version of _transfer is being called in cases where a
health-factor validation is necessary.

© 2022 Veridise Inc. Veridise Audit Report: Parallel

4.1 Detailed Description of Bugs 13

4.1.5 V-PAR-VUL-005: Incorrect Collateral Balance

Severity Critical Commit a7af59d
Type Logical Error Status Fixed
Files contracts/protocol/tokenization/base/MintableIncentivizedERC721.sol

Functions _transferCollaterizable

Description Transferring collateral using NToken’s _transfer will decrease the address from’s
collateral balance by two instead of one. This is because even though MintableIncentivized-
ERC721._transfer adjusts the collateral balance, a flag passed to _transferCollaterizable will
cause the collateral to be reduced again. This bug can impact many parts of the protocol since it
is common to fetch an NToken’s collateral balance. One concrete side-effect though is that this
can prevent an NToken from being transferred between users.

1 function _transferCollaterizable(

2 address from,

3 address to,

4 uint256 tokenId,

5 bool isUsedAsCollateral

6) internal virtual {

7 MintableIncentivizedERC721._transfer(from, to, tokenId);

8

9 if (isUsedAsCollateral) {

10 _userState[from].collaterizedBalance -= 1;

11 _userState[to].collaterizedBalance += 1;

12 }

13 }

Snippet 4.5: Location where collateral is adjusted in _transferCollaterizable

1 function _transfer(

2 address from,

3 address to,

4 uint256 tokenId

5) internal virtual {

6 ...

7

8 if (_isUsedAsCollateral[tokenId]) {

9 delete _isUsedAsCollateral[tokenId];

10 _userState[from].collaterizedBalance -= 1;

11 }

12

13 ...

14 }

Snippet 4.6: Location where collateral is adjusted in _transfer

Recommendations Update the collateral balance only in one function.

Veridise Audit Report: Parallel © 2022 Veridise Inc.

14 4 Vulnerability Report

4.1.6 V-PAR-VUL-006: Function Signature Mismatch

Severity Critical Commit a7af59d
Type Unused Function Status Fixed
Files contracts/protocol/tokenization/NToken.sol

Functions Ntoken._transfer

Description The function _transfer(address, address, uint128) in NToken is intended to
override _transfer(address, address, uint256) in MintableIncentivizedERC721, however the
signatures do not match and therefore the function is not overridden. Since this function is
intended to call NToken’s _transfer(address, address, uint256, bool), similar to V-PAR-VUL-004
this can cause funds to be drained by the pool since the owner’s health factor will not be
checked.

1 function _transfer(

2 address from,

3 address to,

4 uint128 amount

5) internal {

6 _transfer(from, to, amount, true);

7 }

Snippet 4.7: Location where _transfer is declared with an incorrect signature

Recommendations Change the signature of NToken._transfer to match MintableIncentivized-
ERC721._transfer and add the override keyword to the function’s header. Note, the third
argument should also be named tokenId rather than amount since this is an ERC721.

© 2022 Veridise Inc. Veridise Audit Report: Parallel

4.1 Detailed Description of Bugs 15

4.1.7 V-PAR-VUL-007: DoS in liquidationERC721

Severity Critical Commit e747ba6
Type Logical Error Status Fixed
Files contracts/protocol/libraries/logic/LiquidationLogic.sol

Functions _calculateERC721LiquidationParameters

Description If an ERC721 is liquidated using an asset that the liquidated user is not currently
borrowing from, then the transaction will revert. This is because vars.actualDebtToLiquidate is
zero in this situation, causing vars.debtToCoverInBaseCurrency and vars.actualLiquidationBonus
to also be zero. Since vars.actualLiquidationBonus eventually used as the denominator in a
division, the transaction will revert due to a division by zero error.

1 function _calculateERC721LiquidationParameters(

2 DataTypes.ReserveData storage collateralReserve,

3 DataTypes.ReserveCache memory debtReserveCache,

4 address collateralAsset,

5 address debtAsset,

6 uint256 userGlobalTotalDebt,

7 uint256 debtToCover,

8 uint256 userCollateralBalance,

9 uint256 liquidationBonus,

10 IPriceOracleGetter oracle

11)

12 internal view returns (uint256, uint256, uint256, uint256, uint256)

13 {

14 ...

15 vars.actualLiquidationBonus = _calculateLiquidationBonus(

16 liquidationBonus,

17 vars.debtToCoverInBaseCurrency,

18 userGlobalTotalDebt

19);

20

21 vars.collateralDiscountedPrice = vars

22 .collateralPriceInDebtAsset

23 .percentDiv(vars.actualLiquidationBonus);

24 ...

25 }

Snippet 4.8: Location where the DoS occurrs due to vars.actualLiquidationBonus being 0

Recommendations Either set vars.collateralDiscountedPrice to vars.collateralPriceInDebtAsset
in this case or adjust _calculateLiquidationBonus to return a minimum bonus when the covered
debt is zero.

Veridise Audit Report: Parallel © 2022 Veridise Inc.

16 4 Vulnerability Report

4.1.8 V-PAR-VUL-008: Liquidation Transfer DoS

Severity High Commit a7af59d
Type Logical Error Status Fixed
Files contracts/protocol/tokenization/NToken.sol

Functions Ntoken._transferOnLiquidation

Description Upon a liquidation, a user can choose to receive the xToken of the purchased asset.
However, (assuming V-PAR-VUL-007 and V-PAR-VUL-006 are fixed) this process will always
revert for an ERC721 because NToken’s transfer will check the user’s health factor. Since the
user is being liquidated, it will be too low and therefore the pool will revert the transaction.

1 function transferOnLiquidation(

2 address from,

3 address to,

4 uint256 val

5) external override onlyPool {

6 // Being a normal transfer, the Transfer() and BalanceTransfer() are emitted

7 // so no need to emit a specific event here

8 _transfer(from, to, val);

9 }

Snippet 4.9: Location where transferOnLiquidation calls the _transfer that validates a user’s HF

Recommendations Change the body of transferOnLiquidation to _transfer(from, to, value,
false).

© 2022 Veridise Inc. Veridise Audit Report: Parallel

4.1 Detailed Description of Bugs 17

4.1.9 V-PAR-VUL-009: Collateral Not Reset

Severity High Commit 273253f
Type Logical Error Status Intended Behavior
Files contracts/protocol/libraries/logic/SupplyLogic.sol

Functions executeUseReserveAsCollateral

Description If a user marks a reserve as not being collateral with this function, it will only
mark the reserve as not collateral but will not update the reserve’s NTokens. The NToken can
therefore have a collateral balance even though the reserve is not collateral. The user therefore
has to use executeUseERC721AsCollateral to make adjustments to to each NToken to bring the
collateral balance into line with the reserve’s status.

1 function executeUseReserveAsCollateral(

2 mapping(address => DataTypes.ReserveData) storage reservesData,

3 mapping(uint256 => address) storage reservesList,

4 DataTypes.UserConfigurationMap storage userConfig,

5 address asset,

6 bool useAsCollateral,

7 uint256 reservesCount,

8 address priceOracle

9) external {

10 ...

11

12 if (useAsCollateral) {

13 userConfig.setUsingAsCollateral(reserve.id, true);

14 emit ReserveUsedAsCollateralEnabled(asset, msg.sender);

15 } else {

16 userConfig.setUsingAsCollateral(reserve.id, false);

17 ValidationLogic.validateHFAndLtv(

18 reservesData,

19 reservesList,

20 userConfig,

21 asset,

22 msg.sender,

23 reservesCount,

24 priceOracle

25);

26

27 emit ReserveUsedAsCollateralDisabled(asset, msg.sender);

28 }

29 }

Snippet 4.10: Location where a reserve is marked as collateral

Recommendations Modify each NToken for the user when the reserve’s status is changed to
adjust the collateral balance.

Veridise Audit Report: Parallel © 2022 Veridise Inc.

18 4 Vulnerability Report

Developer Response This is intended behavior for this function. It is intended to be a gas-
efficient way of marking all ERC721s in a reserve as not being collateral. An ERC721 is only
considered collateral if the reserve is marked as collateral and the NToken is as well. This
function can therefore be used to mark all NTokens in a reserve as not collateral without
iterating over them. In addition, the user should enable the NTokens as collateral explicitly
using executeUseERC721AsCollateral.

© 2022 Veridise Inc. Veridise Audit Report: Parallel

4.1 Detailed Description of Bugs 19

4.1.10 V-PAR-VUL-010: Illegal Token Burn

Severity High Commit 709297a
Type Uninitailized Variable Status Fixed
Files contracts/protocol/libraries/logic/LiquidationLogic.sol

Functions _burnCollateralNTokens

Description The function _burnCollateralNTokens will burn the NToken with the tokenID
vars.actualCollateralToLiquidate. However, this variable is not set in the call executeERC721LiquidationCall,
and will therefore always be equal to 0. Thus, the only token that can ever be burnt in this
manner is a token with token id 0. In most cases, this will revert if the user being liquidated
does not own the token with id 0.

1 function _burnCollateralNTokens(

2 DataTypes.ReserveData storage collateralReserve,

3 DataTypes.ExecuteERC721LiquidationCallParams memory params,

4 LiquidationCallLocalVars memory vars

5) internal {

6 // Burn the equivalent amount of xToken, sending the underlying to the

liquidator

7 uint256[] memory tokenIds = new uint256[](1);

8 tokenIds[0] = vars.actualCollateralToLiquidate;

9 INToken(vars.collateralXToken).burn(

10 params.user,

11 msg.sender,

12 tokenIds,

13 0

14);

15 }

Snippet 4.11: Location where burn is called with the uninitialized variable
vars.actualCollateralToLiquidate

Recommendations Instead of using vars.actualCollateralToLiquidate, use params.collateralTokenId.

Veridise Audit Report: Parallel © 2022 Veridise Inc.

20 4 Vulnerability Report

4.1.11 V-PAR-VUL-011: Illegal Withdrawal

Severity High Commit 19d718c
Type Logical Error Status Fixed
Files contracts/protocol/libraries/logic/SupplyLogic.sol

Functions executeWithdrawERC721

Description The function executeWithdrawERC721 does not check the reserve’s status in the
same way executeWithdraw does. Therefore, if a pool with ERC721 tokens is paused, a user will
still be able to withdraw their funds which is inconsistent with the PToken behavior.

1 function executeWithdrawERC721(

2 mapping(address => DataTypes.ReserveData) storage reservesData,

3 mapping(uint256 => address) storage reservesList,

4 DataTypes.UserConfigurationMap storage userConfig,

5 DataTypes.ExecuteWithdrawERC721Params memory params

6) external returns (uint256) {

7 DataTypes.ReserveData storage reserve = reservesData[params.asset];

8 DataTypes.ReserveCache memory reserveCache = reserve.cache();

9

10 reserve.updateState(reserveCache);

11 uint256 amountToWithdraw = params.tokenIds.length;

12

13 bool withdrwingAllCollateral = INToken(reserveCache.xTokenAddress).burn(

14 msg.sender,

15 params.to,

16 params.tokenIds,

17 reserveCache.nextLiquidityIndex

18);

19

20 if (userConfig.isUsingAsCollateral(reserve.id)) {

21 if (userConfig.isBorrowingAny()) {

22 ValidationLogic.validateHFAndLtv(

23 reservesData, reservesList, userConfig, params.asset, msg.sender,

24 params.reservesCount, params.oracle

25);

26 }

27

28 if (withdrwingAllCollateral) {

29 userConfig.setUsingAsCollateral(reserve.id, false);

30 emit ReserveUsedAsCollateralDisabled(params.asset, msg.sender);

31 }

32 }

33

34 emit WithdrawERC721(...);

35

36 return amountToWithdraw;

37 }

Snippet 4.12: Location of the executeWithdrawERC721 function

Recommendations Add a check into executeWithdrawERC721 that the reserve is active.

© 2022 Veridise Inc. Veridise Audit Report: Parallel

4.1 Detailed Description of Bugs 21

4.1.12 V-PAR-VUL-012: Flashclaim Price Manipulation

Severity High Commit 273253f
Type Protocol Issue Status Fixed
Files contracts/protocol/tokenization/NToken.sol

Functions flashClaim

Description This function allows the owner of an ERC721 to temporarily regain ownership of
their tokens for the space of a transaction. However, due to the diversity and volatility of ERC721
tokens, the user could perform an action that may affect the price of the asset and therefore
should lead to a liquidation. However, the interface provided to perform a flashclaim is not
unified with the rest of the protocol. The AAVE protocol requires the user to interact with the
pool itself, rather than an individual xToken, partially to make it easy to find possible addresses
that can be liquidated. In this case, it might escape the notice of liquidators that an address is
insolvent and should be liquidated.

Recommendations Similar to withdraw/supply provide the functionality at the pool level
and emit the FlashClaim event from the pool so that liquidators can easily find and check the
health of an address.

Veridise Audit Report: Parallel © 2022 Veridise Inc.

22 4 Vulnerability Report

4.1.13 V-PAR-VUL-013: NFT Price Volatility

Severity High Commit NA
Type Protocol Issue Status Acknowledged
Files NA

Functions NA

Description The protocol allows users to borrow against ERC721 tokens. These tokens
commonly have fluid, difficult to predict and easily manipulated prices that make many of
them high risk collateral assets. This could be used by a borrower to obtain a favorable loan
with an asset that soon becomes worthless, providing no incentive for the borrower to pay back
the loan. In addition, if the collateral asset’s value is now greatly diminished it is likely that the
funds could not be recovered through liquidation and therefore it may be impossible for the
pool to return funds to all those who deposited the borrowed asset.

Alleviation The developers acknowledged this issue and stated that they were planning on
mitigating the risks by:

▶ Only listing BlueChip NFTs (at least initially)
▶ Preferring oracles that use multiple sources of information such as those provided by

Chainlink

© 2022 Veridise Inc. Veridise Audit Report: Parallel

4.1 Detailed Description of Bugs 23

4.1.14 V-PAR-VUL-014: Governance

Severity High Commit NA
Type Protocol Issue Status Acknowledged
Files NA

Functions NA

Description While the governance structure is out-of-scope for the current audit, we do notice
that the structure of the governance could significantly impact the safety of the protocol. For
instance, if a voting is proportional to a user’s supply, the protocol could be vulnerable to a
flashloan attack. If a malicious user were allowed to take control of the protocol, they could
perform a number of harmful actions such as adding malicious tokens.

Recommendations Carefully construct the governance structure such that it is resilient to a
small number of bad actors with a large amount of funds.

Alleviation The developers acknowledged this issue and stated that they would consider
strategies that are robust against these types of attacks such as by implementing a quadratic
voting based governance.

Veridise Audit Report: Parallel © 2022 Veridise Inc.

24 4 Vulnerability Report

4.1.15 V-PAR-VUL-015: Inefficient State Update

Severity Moderate Commit 273253f
Type Logical Error Status Intended Behavior
Files contracts/protocol/libraries/logic/SupplyLogic.sol

Functions executeUseReserveAsCollateral

Description This function requires that a user’s collateralBalance be positive to set the reserve
as collateral. It therefore cannot be used to set all of the NTokens in a reserve as collateral,
instead they have to set them one at a time using executeUseERC721AsCollateral.

1 function executeUseReserveAsCollateral(

2 mapping(address => DataTypes.ReserveData) storage reservesData,

3 mapping(uint256 => address) storage reservesList,

4 DataTypes.UserConfigurationMap storage userConfig,

5 address asset,

6 bool useAsCollateral,

7 uint256 reservesCount,

8 address priceOracle

9) external {

10 ...

11

12 if (reserveCache.assetType == DataTypes.AssetType.ERC20) {

13 userBalance = IERC20(reserveCache.xTokenAddress).balanceOf(

14 msg.sender

15);

16 } else {

17 userBalance = ICollaterizableERC721(reserveCache.xTokenAddress)

18 .collaterizedBalanceOf(msg.sender);

19 }

20

21 ValidationLogic.validateSetUseReserveAsCollateral(

22 reserveCache,

23 userBalance

24);

25

26 ...

27 }

Snippet 4.13: Location where collateralizedBalanceOf is used

Recommendations If parameter useAsCollateral is set to true, then use the non-colletarized
balance (total - colletarized).

Developer Response This is intended behavior for this function. It is intended to be a gas-
efficient way of marking all ERC721s in a reserve as not being collateral. An ERC721 is only
considered collateral if the reserve is marked as collateral and the NToken is as well. This
function can therefore be used to mark all NTokens in a reserve as not collateral without
iterating over them. In addition, the user should enable the NTokens as collateral explicitly
using executeUseERC721AsCollateral.

© 2022 Veridise Inc. Veridise Audit Report: Parallel

4.1 Detailed Description of Bugs 25

4.1.16 V-PAR-VUL-016: Trusted NFTs

Severity Moderate Commit bfc2d4b
Type Protocol Issue Status Acknowledged
Files contracts/protocol/libraries/logic/FlashClaimLogic.sol

contracts/protocol/libraries/logic/SupplyLogic.sol
Functions executeFlashClaim, executeSupplyERC721

Description If the protocol allows a malicious ERC721 token to be used as collateral, it is
possible an attacker can borrow assets for free by building a backdoor into the token. Additionally,
if a token is not intended to be malicious but has a bug, it can be exploited to a similar end. For
example, it is currently assumed that a transfer will reset a token’s approval (as stated by the
ERC721 spec). If, however, this single line of code is missing from the token’s transfer, this could
be used to steal collateral tokens back.

Recommendations As part of the token approval process, ensure that the token’s code is
evaluated and is safe.

Alleviation The developers acknowledged this issue and stated that they were planning on
mitigating the risks by listing mature BlueChip NFTs that have been shown to be robust against
attacks.

Veridise Audit Report: Parallel © 2022 Veridise Inc.

26 4 Vulnerability Report

4.1.17 V-PAR-VUL-017: Illegal ERC721 Borrow

Severity Moderate Commit 381f174
Type Validation Error Status Fixed
Files contracts/protocol/libraries/logic/BorrowLogic.sol

Functions executeBorrow

Description If someone accidentally enables borrowing from an ERC721’s reserve, execute-
Borrow will allow someone to borrow ERC721 tokens. Since ERC721s have a different model
than ERC20s, if this happens it could allow someone to borrow another individual’s collateral.
They therefore couldn’t be liquidated until the loan was repaid.

Recommendations Add in an asset type check which disallows this function to be called with
ERC721 tokens.

© 2022 Veridise Inc. Veridise Audit Report: Parallel

4.1 Detailed Description of Bugs 27

4.1.18 V-PAR-VUL-018: Liquidation Double Fee

Severity Moderate Commit e510840
Type Logic Error Status Fixed
Files contracts/protocol/libraries/logic/LiquidationLogic.sol

Functions executeERC721LiquidationCall

Description Since a call to executeERC721LiquidationCall can succeed with a reserve id that
params.user is not borrowing from, a borrow position with an NFT as collateral is subject to
twice the amount of protocol fees and is essentially subjected to a price reduction twice (one as
NTokens and one as PToken).

1 function _calculateERC721LiquidationParameters(

2 DataTypes.ReserveData storage collateralReserve,

3 DataTypes.ReserveCache memory debtReserveCache,

4 address collateralAsset,

5 address debtAsset,

6 uint256 userGlobalTotalDebt,

7 uint256 debtToCover,

8 uint256 userCollateralBalance,

9 uint256 liquidationBonus,

10 IPriceOracleGetter oracle

11) internal view returns (uint256, uint256, uint256) {

12 ...

13

14 vars.liquidationProtocolFeePercentage = collateralReserve

15 .configuration

16 .getLiquidationProtocolFee();

17

18 vars.collateralPriceInDebtAsset = ((vars.collateralPrice *
19 vars.debtAssetUnit) /

20 (vars.debtAssetPrice * vars.collateralAssetUnit));

21

22 uint256 globalDebtPrice = (userGlobalTotalDebt / vars.debtAssetPrice) *
23 BASE_CURRENCY_DECIMALS;

24

25 vars.collateralDiscountedPrice = vars

26 .collateralPriceInDebtAsset

27 .percentDiv(liquidationBonus);

28

29 ...

30 }

Snippet 4.14: Location where the liquidation fee and collateral discount are computed

Recommendations Eliminate (or reduce) the protocol fee when a liquidator is not paying any
debt.

Veridise Audit Report: Parallel © 2022 Veridise Inc.

28 4 Vulnerability Report

4.1.19 V-PAR-VUL-019: Address Provider DoS

Severity Moderate Commit 6f1a895
Type Logical Error Status Fixed
Files contracts/protocol/configuration/PoolAddressesProviderRegistry.sol

Functions registerAddressesProvider

Description Currently, when a poolAddressesProvider is registered, it is possible to set it
to address (0x0). As long as its id is different from 0, it is added to the list of providers in the
registry. However, no operation can be performed (e.g. setting the pool, the data provider, etc.)
by the Provider, because deploying a poolAddressesProvider contract with its owner set to
address (0x0) is not allowed (see transferOwnership from Ownable.sol).

1 function registerAddressesProvider(address provider, uint256 id)

2 external

3 override

4 onlyOwner

5 {

6 require(id != 0, Errors.INVALID_ADDRESSES_PROVIDER_ID);

7 require(

8 _idToAddressesProvider[id] == address(0),

9 Errors.INVALID_ADDRESSES_PROVIDER_ID

10);

11 require(

12 _addressesProviderToId[provider] == 0,

13 Errors.ADDRESSES_PROVIDER_ALREADY_ADDED

14);

15

16 ...

17 }

Snippet 4.15: Location where registerAddressesProvider omits a check on provider

Recommendations Check if the passed value for provider is not address (0x0).

© 2022 Veridise Inc. Veridise Audit Report: Parallel

4.1 Detailed Description of Bugs 29

4.1.20 V-PAR-VUL-020: ERC721 Supply after Cap

Severity Moderate Commit e753591
Type Logical Error Status Fixed
Files /contracts/protocol/libraries/logic/ValidationLogic.sol

Functions validateSupply

Description The protocol uses the supply cap to restrict the number of tokens that can be
supplied to the pool. Initially this cap is set to zero, which equates to no cap. If the admin sets a
supply cap for an ERC721 though, tokens can be provided even after it is exceeded. This can
cause the pool to be flooded with risky collateral, which increases risk.

1 function validateSupply(

2 DataTypes.ReserveCache memory reserveCache,

3 uint256 amount,

4 DataTypes.AssetType assetType

5) internal view {

6 ...

7

8 if (assetType == DataTypes.AssetType.ERC20) {

9 uint256 supplyCap = reserveCache

10 .reserveConfiguration

11 .getSupplyCap();

12 require(

13 supplyCap == 0 ||

14 (IPToken(reserveCache.xTokenAddress)

15 .scaledTotalSupply()

16 .rayMul(reserveCache.nextLiquidityIndex) + amount) <=

17 supplyCap *
18 (10**reserveCache.reserveConfiguration.getDecimals()),

19 Errors.SUPPLY_CAP_EXCEEDED

20);

21 }

22 }

Snippet 4.16: Location where supplyCap is checked for an ERC20, but omitted for an ERC721

Recommendations Even if it is desired not to have a cap for ERC721s, we would still recommend
checking the supply cap since the default is an unlimited cap. This allows admins to change
their mind if they grow concerned about collateral risk.

Veridise Audit Report: Parallel © 2022 Veridise Inc.

30 4 Vulnerability Report

4.1.21 V-PAR-VUL-021: Incorrect Liquidation Logic Event

Severity Low Commit 709297a
Type Uninitialized Variable Status Fixed
Files contracts/protocol/libraries/logic/LiquidationLogic.sol

Functions executeERC721LiquidationCall

Description The ERC721LiquidationCall event emitted at the end of executeERC721LiquidationCall
includes vars.actualCollateralToLiquidate which is never set and therefore will always be 0.

1 function executeERC721LiquidationCall(

2 mapping(address => DataTypes.ReserveData) storage reservesData,

3 mapping(uint256 => address) storage reservesList,

4 mapping(address => DataTypes.UserConfigurationMap) storage usersConfig,

5 DataTypes.ExecuteERC721LiquidationCallParams memory params

6) external {

7 ...

8 emit ERC721LiquidationCall(

9 params.collateralAsset,

10 params.liquidationAsset,

11 params.user,

12 vars.actualDebtToLiquidate,

13 vars.actualCollateralToLiquidate,

14 msg.sender,

15 params.receiveNToken

16);

17 }

Snippet 4.17: Location where ERC721LiquidationCall is emitted with an uninitialized variable

Recommendations We suspect this should be params.collateralTokenID instead.

© 2022 Veridise Inc. Veridise Audit Report: Parallel

4.1 Detailed Description of Bugs 31

4.1.22 V-PAR-VUL-022: No Type Validation

Severity Low Commit 709297a
Type Validation Error Status Fixed
Files contracts/protocol/libraries/logic/LiquidationLogic.sol

contracts/protocol/libraries/logic/SupplyLogic.sol
Functions executeERC721LiquidationCall, executeSupply, exeucteSupplyERC721,

executeWithdraw, executeWithdrawERC721

Description Currently if someone calls these functions with the wrong asset type, the call
will revert once a function is invoked that is not shared by NToken and PToken. While this is
the intended behavior, the user might not know why the revert occurred.

1 function validateWithdraw(

2 DataTypes.ReserveCache memory reserveCache,

3 uint256 amount,

4 uint256 userBalance

5) internal pure {

6 require(amount != 0, Errors.INVALID_AMOUNT);

7 require(

8 amount <= userBalance,

9 Errors.NOT_ENOUGH_AVAILABLE_USER_BALANCE

10);

11

12 (bool isActive, , , , bool isPaused) = reserveCache

13 .reserveConfiguration

14 .getFlags();

15 require(isActive, Errors.RESERVE_INACTIVE);

16 require(!isPaused, Errors.RESERVE_PAUSED);

17 }

Snippet 4.18: Location where an ERC20 withdraw is validated without checking the asset type

Recommendations Add an asset type check and provide an informational error message if
the wrong type of asset is provided. Note, this check would also simplify the validation logic
since this asset type information could be assumed.

Veridise Audit Report: Parallel © 2022 Veridise Inc.

32 4 Vulnerability Report

4.1.23 V-PAR-VUL-023: Wrong Interface

Severity Low Commit 709297a
Type Code Consistency Status Fixed
Files contracts/protocol/libraries/logic/LiquidationLogic.sol

Functions _liquidatePTokens

Description _liquidatePTokens is intended to liquidate a PToken, but makes the call through
the INToken interface. While this will result in the intended behavior since INToken and
IPToken share the invoked function, this could lead to mistakes later on if INToken’s interface is
changed.

1 function _liquidatePTokens(

2 mapping(address => DataTypes.ReserveData) storage reservesData,

3 mapping(uint256 => address) storage reservesList,

4 mapping(address => DataTypes.UserConfigurationMap) storage usersConfig,

5 DataTypes.ReserveData storage collateralReserve,

6 DataTypes.ExecuteLiquidationCallParams memory params,

7 LiquidationCallLocalVars memory vars

8) internal {

9 uint256 liquidatorPreviousPTokenBalance = IERC20(vars.collateralXToken)

10 .balanceOf(msg.sender);

11 INToken(vars.collateralXToken).transferOnLiquidation(

12 params.user,

13 msg.sender,

14 vars.actualCollateralToLiquidate

15);

16

17 ...

18 }

Snippet 4.19: Location where the INToken interface is used rather than the IPToken interface

Recommendations Change the code to cast to IPToken and always cast to interfaces that the
intended contract inherits from.

© 2022 Veridise Inc. Veridise Audit Report: Parallel

4.1 Detailed Description of Bugs 33

4.1.24 V-PAR-VUL-024: Restrictive Flashclaim Require

Severity Low Commit 381f174
Type Logic Error Status Fixed
Files contracts/protocol/libraries/logic/ValidationLogic.sol

Functions validateFlashClaim

Description The validateFlashClaim function checks that !caller.isContract() which means
that if anyone wanted to build contracts on top of the Omni Money Market (and therefore
would be considered the owner of the token), they would not be able to use the flashClaim
functionality.

1 function validateFlashClaim(

2 DataTypes.ReserveData storage reserve,

3 DataTypes.ExecuteFlashClaimParams memory params

4) internal view {

5 address caller = msg.sender;

6 require(!caller.isContract(), Errors.NOT_EOA);

7 require(

8 params.receiverAddress != address(0),

9 Errors.ZERO_ADDRESS_NOT_VALID

10);

11

12 // only token owner can do flash claim

13 for (uint256 i = 0; i < params.nftTokenIds.length; i++) {

14 require(

15 INToken(reserve.xTokenAddress).ownerOf(params.nftTokenIds[i]) ==

16 caller,

17 Errors.NOT_THE_OWNER

18);

19 }

20 }

Snippet 4.20: Location where flashClaim checks if the caller is a contract

Recommendations Remove this check unless the desired behavior is that certain contracts
would be unable to use the flashClaim functionality.

Veridise Audit Report: Parallel © 2022 Veridise Inc.

34 4 Vulnerability Report

4.1.25 V-PAR-VUL-025: Potential for flashClaim of ERC20

Severity Low Commit 381f174
Type Validation Error Status Fixed
Files contracts/protocol/libraries/logic/ValidationLogic.sol

Functions validateFlashClaim

Description The validateFlashClaim function should check the assetType of the reserve to
ensure someone is attempting to flashClaim an ERC721. Currently if someone attempted to
flashClaim an ERC20, the call to ownerOf will revert, however if ownerOf is added to PToken in
the future, flashClaim could be used to perform a flashLoan of ERC20 tokens.

1 function validateFlashClaim(

2 DataTypes.ReserveData storage reserve,

3 DataTypes.ExecuteFlashClaimParams memory params

4) internal view {

5 address caller = msg.sender;

6 require(!caller.isContract(), Errors.NOT_EOA);

7 require(

8 params.receiverAddress != address(0),

9 Errors.ZERO_ADDRESS_NOT_VALID

10);

11

12 // only token owner can do flash claim

13 for (uint256 i = 0; i < params.nftTokenIds.length; i++) {

14 require(

15 INToken(reserve.xTokenAddress).ownerOf(params.nftTokenIds[i]) ==

16 caller,

17 Errors.NOT_THE_OWNER

18);

19 }

20 }

Snippet 4.21: Location where a flashClaim is validated without checking the asset type

Recommendations Add an asset type check to flashClaim to ensure only ERC721 tokens can
be flashClaimed.

© 2022 Veridise Inc. Veridise Audit Report: Parallel

4.1 Detailed Description of Bugs 35

4.1.26 V-PAR-VUL-026: ERC721 Liquidation Bonus

Severity Low Commit e747ba6
Type Logical Error Status Intended Behavior
Files contracts/protocol/libraries/logic/LiquidationLogic.sol

Functions _calculateLiquidationBonus

Description Liquidators are incentivized to liquidate collateral as a way of returning borrowed
funds back to the pool. As it stands, however, ERC721 liquidators may not receive the full
liquidation bonus even if they liquidate a full ERC721 token. The liquidation bonus is currently
scaled by how much of a user’s debt is being liquidated. Thus, if someone has a large debt with
respect to the value of the ERC721 token, liquidators might receive little to no bonus at all.

1 function _calculateLiquidationBonus(

2 uint256 protocolMaxBonus,

3 uint256 debtToBeRepaid,

4 uint256 totalGlobalDebt

5) internal view returns (uint256) {

6 return (debtToBeRepaid * protocolMaxBonus) / totalGlobalDebt;

7 }

Snippet 4.22: Location where the liquidation bonus is calculated

Recommendations If the intention is to provide a bonus based on how much of the ERC721
is liquidated, the denominator of the division should be the price of the ERC721 instead of
totalGlobalDebt.

Developer Response The developers indicated that this was the intended behaviour because
they want to incentivize a liquidator to liquidate the ERC721 that would pay back the largest
amount of debt.

Veridise Audit Report: Parallel © 2022 Veridise Inc.

36 4 Vulnerability Report

4.1.27 V-PAR-VUL-027: Underflow on Borrow

Severity Low Commit e753591
Type Validation Error Status Intended Behavior
Files contracts/protocol/pool/DefaultReserveInterestRateStrategy.sol

Functions calculateInterestRates

Description If a user attempts to borrow more tokens than is available in the pool, the
transaction can revert from an arithmetic underflow in the function calculateInterestRates.
While this is the intended behavior, it does not inform the user of why the revert occurred.

1 function calculateInterestRates(

2 DataTypes.CalculateInterestRatesParams calldata params

3) external view override returns (uint256, uint256, uint256)

4 {

5 ...

6

7 if (vars.totalDebt != 0) {

8 vars.stableToTotalDebtRatio = params.totalStableDebt.rayDiv(

9 vars.totalDebt

10);

11 vars.availableLiquidity =

12 IERC20(params.reserve).balanceOf(params.xToken) +

13 params.liquidityAdded -

14 params.liquidityTaken;

15

16 ...

17 }

18

19 ...

20 }

Snippet 4.23: Location where an underflow occurs if more funds are borrowed than available

Recommendations When validating a borrow, check that the pool has enough funds to fulfill
the request. If it does not, revert with an informative message.

Developer Response Since this case cannot lead to harmful behaviors and is not likely to
occur often the developers are not intending to fix this issue in the contract. They will include
additional checks in the frontend to provide the necessary error reporting.

© 2022 Veridise Inc. Veridise Audit Report: Parallel

4.1 Detailed Description of Bugs 37

4.1.28 V-PAR-VUL-028: Forcing Collateral Reserve

Severity Low Commit e753591
Type Protocol Issue Status Acknowledged
Files contracts/protocol/libraries/logic/LiquidationLogic.sol

Functions executeERC721LiquidationCall

Description When an ERC721 is purchased during liquidation, any funds in excess of the
selected debt to cover are supplied back to the user. If the user has more debt, these funds are
marked as collateral by marking the reserve as collateral. The liquidated user might already
have non-collateral funds in this reserve though, which means it is possible to mark additional
funds as collateral against the user’s intention. This could therefore cause tokens to be liquidated
that the user had intended to protect from liquidation. Additionally, it is possible for liquidators
to exploit this system so that they can gain access to more desirable tokens to liquidate in the
future.

1 function executeERC721LiquidationCall(

2 mapping(address => DataTypes.ReserveData) storage reservesData,

3 mapping(uint256 => address) storage reservesList,

4 mapping(address => DataTypes.UserConfigurationMap) storage usersConfig,

5 DataTypes.ExecuteERC721LiquidationCallParams memory params

6) external {

7 ...

8

9 if (vars.collateralDiscountedPrice > toPrtocolAmount) {

10 if (vars.userGlobalTotalDebt > vars.actualDebtToLiquidate) {

11 SupplyLogic.executeSupply(reservesData, reservesList, userConfig,

12 DataTypes.ExecuteSupplyParams({

13 asset: params.liquidationAsset,

14 amount: vars.collateralDiscountedPrice -

15 vars.actualDebtToLiquidate -

16 vars.liquidationProtocolFeeAmount,

17 onBehalfOf: params.user,

18 referralCode: 0 }));

19

20 if (!userConfig.isUsingAsCollateral(liquidationAssetReserveId)) {

21 userConfig.setUsingAsCollateral(liquidationAssetReserveId, true);

22 emit ReserveUsedAsCollateralEnabled(

23 params.liquidationAsset,

24 params.user);

25 }

26 }

27 ...

28 }

29 ...

30 }

Snippet 4.24: Location where the reserve is set as collateral after a supply

Veridise Audit Report: Parallel © 2022 Veridise Inc.

38 4 Vulnerability Report

Recommendations This situation seems somewhat unlikely but users should be aware that
this is a possibility.

Developer Response The developers acknowledged this issue and stated that they will
consider possible design changes in future iterations to address this problem directly.

© 2022 Veridise Inc. Veridise Audit Report: Parallel

Other Recommendations 5
During the course of our audit, we noticed a number of optimization opportunities and
inconsistencies in the code. While these issues do not constitute vulnerabilities, we include
them in this report to guide further development efforts. For each issue found, we indicate the
type of the issue, its location in the code, and its current status. Table 5.1 summarizes the issues
found:

Table 5.1: Summary of Optimizations/Recommendations.

ID Description Status
V-PAR-INFO-001 Inconsistent Naming Convention Acknowledged
V-PAR-INFO-002 Unconventional Casting Acknowledged
V-PAR-INFO-003 Unnecessary Require in Loop Fixed
V-PAR-INFO-004 Custom Errors Acknowledged
V-PAR-INFO-005 Unused Variable/Computation Fixed
V-PAR-INFO-006 Redundant check Fixed

5.1 Results

In this section, we elaborate on the detailed description of each optimization/recommendation.

Veridise Audit Report: Parallel © 2022 Veridise Inc.

40 5 Other Recommendations

5.1.1 V-PAR-INFO-001: Inconsistent Naming Convention

Severity Informational Commit bfc2d4b
Type Code Consistency Status Acknowledged
Files contracts/protocol/libraries/logic/ValidationLogic.sol

Functions validateDropReserve

Description The code typically refers to an asset that can be either a PToken or an NToken as
a xToken; however, some functions and variable names simply refer to a PToken even though
they’re intended to be used for both asset types.

1 /**
2 * @notice Updates the xToken implementation and initializes it

3 * @dev Emits the ‘PTokenUpgraded‘ event

4 * @param cachedPool The Pool containing the reserve with the xToken

5 * @param input The parameters needed for the initialize call

6 */

7 function executeUpdatePToken(

8 IPool cachedPool,

9 ConfiguratorInputTypes.UpdatePTokenInput calldata input

10) public {

11 DataTypes.ReserveData memory reserveData = cachedPool.getReserveData(

12 input.asset

13);

14

15 ...

16

17 _upgradeTokenImplementation(

18 reserveData.xTokenAddress,

19 input.implementation,

20 encodedCall

21);

22

23 emit PTokenUpgraded(

24 input.asset,

25 reserveData.xTokenAddress,

26 input.implementation

27);

28 }

Snippet 5.1: Location where an NToken can be referred to as a PToken

Recommendations For clarity and consistency we believe the xToken naming convention
should be adopted globally.

© 2022 Veridise Inc. Veridise Audit Report: Parallel

5.1 Results 41

5.1.2 V-PAR-INFO-002: Unconventional Casting

Severity Informational Commit bfc2d4b
Type Code Consistency Status Acknowledged
Files contracts/protocol/libraries/logic/ConfiguratorLogic.sol

Functions executeUpdatePToken

Description There are several instances in which an address is cast to an interface type that
the underlying contract does not inherit from. This is a dangerous pattern that can lead to
maintenance problems since this makes it difficult to find all of the locations that need to be
updated when a contract’s interface changes. Major problems could arise from changing the
interface but not updating a callsite, such as a denial of service. Note that in the below case,
xTokenAddress can refer to an NToken which does not inherit from IERC20.

1 function validateDropReserve(

2 mapping(uint256 => address) storage reservesList,

3 DataTypes.ReserveData storage reserve,

4 address asset

5) internal view {

6 require(asset != address(0), Errors.ZERO_ADDRESS_NOT_VALID);

7 require(

8 reserve.id != 0 || reservesList[0] == asset,

9 Errors.ASSET_NOT_LISTED

10);

11 require(

12 IERC20(reserve.stableDebtTokenAddress).totalSupply() == 0,

13 Errors.STABLE_DEBT_NOT_ZERO

14);

15 require(

16 IERC20(reserve.variableDebtTokenAddress).totalSupply() == 0,

17 Errors.VARIABLE_DEBT_SUPPLY_NOT_ZERO

18);

19 require(

20 IERC20(reserve.xTokenAddress).totalSupply() == 0,

21 Errors.ATOKEN_SUPPLY_NOT_ZERO

22);

23 }

Snippet 5.2: Location where an NToken can be cast to an IERC20 even though it doesn’t inherit

Recommendations We recommend that calls to shared functions be made through shared
interfaces.

Veridise Audit Report: Parallel © 2022 Veridise Inc.

42 5 Other Recommendations

5.1.3 V-PAR-INFO-003: Unnecessary Require in Loop

Severity Informational Commit 2226f6e
Type Gas Optimization Status Fixed
Files contracts/protocol/libraries/tokenization/MintableIncentivizedERC70

Functions _mintMultiple

Description The require in the first statement of the for loop checks the variable “to” but it is
never changed.

1 function _mintMultiple(

2 address to,

3 DataTypes.ERC721SupplyParams[] calldata tokenData

4) internal virtual returns (bool) {

5 uint64 oldBalance = _userState[to].balance;

6 uint256 oldTotalSupply = totalSupply();

7 uint64 collaterizedTokens;

8

9 for (uint256 index = 0; index < tokenData.length; index++) {

10 require(to != address(0), "ERC721: mint to the zero address");

11 ...

12 }

13 ...

14 }

Snippet 5.3: Location where a require can be promoted outside of a loop

Recommendations Move this statement outside of the for loop.

© 2022 Veridise Inc. Veridise Audit Report: Parallel

5.1 Results 43

5.1.4 V-PAR-INFO-004: Custom Errors

Severity Informational Commit 2226f6e
Type Gas Optimization Status Acknowledged
Files NA

Functions NA

Description Long messages in a revert can consume large amounts of gas.

Recommendations We recommend the use of custom errors to cut down on gas require-
ments.

Veridise Audit Report: Parallel © 2022 Veridise Inc.

44 5 Other Recommendations

5.1.5 V-PAR-INFO-005: Unused Variable/Computation

Severity Informational Commit 19d718c
Type Gas Optimization Status Fixed
Files contracts/protocol/libraries/logic/SupplyLogic.sol

Functions executeSupplyERC721

Description The number of collateralized tokens (usedAsCollateral) is calculated but never
used.

1 function executeSupplyERC721(

2 mapping(address => DataTypes.ReserveData) storage reservesData,

3 mapping(uint256 => address) storage reservesList,

4 DataTypes.UserConfigurationMap storage userConfig,

5 DataTypes.ExecuteSupplyERC721Params memory params

6) external {

7 ...

8

9 uint256 usedAsCollateral;

10

11 for (uint256 index = 0; index < amount; index++) {

12 if (params.tokenData[index].useAsCollateral) {

13 usedAsCollateral++;

14 }

15

16 ...

17 }

18 ...

19 }

Snippet 5.4: Location where usedAsCollateral is computed

Recommendations If this variable isn’t needed, remove it.

© 2022 Veridise Inc. Veridise Audit Report: Parallel

5.1 Results 45

5.1.6 V-PAR-INFO-006: Redundant check

Severity Informational Commit e747ba6
Type Gas Optimization Status Fixed
Files contracts/protocol/libraries/logic/ValidationLogic.sol

Functions validateERC721LiquidationCall

Description The variable liquidatingERC721 is always true in function validateERC721LiquidationCall
because of the earlier asset type check.

1 function validateERC721LiquidationCall(

2 DataTypes.UserConfigurationMap storage userConfig,

3 DataTypes.ReserveData storage collateralReserve,

4 DataTypes.ValidateERC721LiquidationCallParams memory params

5) internal view {

6 require(

7 params.assetType == DataTypes.AssetType.ERC721,

8 Errors.INVALID_ASSET_TYPE

9);

10

11 ...

12

13 bool liquidatingERC721 = params.assetType == DataTypes.AssetType.ERC721;

14

15 if (liquidatingERC721) {

16 require(

17 params.liquidationAmount >= params.collateralDiscountedPrice,

18 Errors.LIQUIDATION_AMOUNT_NOT_ENOUGH

19);

20 }

21

22 vars.isCollateralEnabled =

23 collateralReserve.configuration.getLiquidationThreshold() != 0 &&

24 userConfig.isUsingAsCollateral(collateralReserve.id) &&

25 (

26 liquidatingERC721

27 ? ICollaterizableERC721(params.xTokenAddress)

28 .isUsedAsCollateral(params.tokenId)

29 : true

30);

31

32 ...

33 }

Snippet 5.5: Location where a typecheck guarantees the value of liquidatingERC721

Recommendations Remove the liquidatingERC721 variable.

Veridise Audit Report: Parallel © 2022 Veridise Inc.

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Bugs

	Detailed Description of Bugs
	V-PAR-VUL-001: No Type Validation
	V-PAR-VUL-002: Dropped Collateral
	V-PAR-VUL-003: Active Reserve Dropped
	V-PAR-VUL-004: Illegal Collateral Withdrawal
	V-PAR-VUL-005: Incorrect Collateral Balance
	V-PAR-VUL-006: Function Signature Mismatch
	V-PAR-VUL-007: DoS in liquidationERC721
	V-PAR-VUL-008: Liquidation Transfer DoS
	V-PAR-VUL-009: Collateral Not Reset
	V-PAR-VUL-010: Illegal Token Burn
	V-PAR-VUL-011: Illegal Withdrawal
	V-PAR-VUL-012: Flashclaim Price Manipulation
	V-PAR-VUL-013: NFT Price Volatility
	V-PAR-VUL-014: Governance
	V-PAR-VUL-015: Inefficient State Update
	V-PAR-VUL-016: Trusted NFTs
	V-PAR-VUL-017: Illegal ERC721 Borrow
	V-PAR-VUL-018: Liquidation Double Fee
	V-PAR-VUL-019: Address Provider DoS
	V-PAR-VUL-020: ERC721 Supply after Cap
	V-PAR-VUL-021: Incorrect Liquidation Logic Event
	V-PAR-VUL-022: No Type Validation
	V-PAR-VUL-023: Wrong Interface
	V-PAR-VUL-024: Restrictive Flashclaim Require
	V-PAR-VUL-025: Potential for flashClaim of ERC20
	V-PAR-VUL-026: ERC721 Liquidation Bonus
	V-PAR-VUL-027: Underflow on Borrow
	V-PAR-VUL-028: Forcing Collateral Reserve
	Other Recommendations
	Results

	Results
	V-PAR-INFO-001: Inconsistent Naming Convention
	V-PAR-INFO-002: Unconventional Casting
	V-PAR-INFO-003: Unnecessary Require in Loop
	V-PAR-INFO-004: Custom Errors
	V-PAR-INFO-005: Unused Variable/Computation
	V-PAR-INFO-006: Redundant check

