
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

Veridise Inc.
June 27, 2022

▶ Prepared For:

Helio
https://helio.money

▶ Prepared By:

Bryan Tan
Jon Stephens
Jacob Van Geffen
Yanju Chen
Hongbo Wen

▶ Contact Us: contact@veridise.com

▶ Version History:

June 27, 2022 V1
June 17, 2022 Draft

© 2022 Veridise Inc. All Rights Reserved.

https://helio.money
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 6

4 Vulnerability Report 7
4.1 Detailed Description of Bugs . 8

4.1.1 V-HEL-VUL-001: Interaction withdraw denial of service 8
4.1.2 V-HEL-VUL-002: Fraudulent rewards can be generated with flashloan . 10
4.1.3 V-HEL-VUL-003: Missing jug initialization 11
4.1.4 V-HEL-VUL-004: Users can interact with vat directly 12
4.1.5 V-HEL-VUL-005: AuctionProxy needs more management methods . . . 13
4.1.6 V-PAR-HEL-006: Users can bypass AuctionProxy by using unprotected

MakerDAO functions . 14
4.1.7 V-HEL-VUL-007: No check for existing tokens in setCollateralType . . . 15
4.1.8 V-HEL-VUL-008: Problems with test suite 16
4.1.9 V-HEL-VUL-009: Not all liquidation incentives are passed onto the user 17
4.1.10 V-HEL-VUL-010: startAuction does not update rewards 18
4.1.11 V-HEL-VUL-011: Cannot Re-Enable Collateral 19
4.1.12 V-HEL-VUL-012: HelioRewards emits Stop event in start() method . . . 20
4.1.13 V-HEL-VUL-013: buyFromAuction can impact Interaction state 21
4.1.14 V-HEL-VUL-014: HelioProvider providelnABNBc() has awkward ap-

proval requirements . 22
4.1.15 V-HEL-VUL-015: Bugs when removing users from usersInDebt 23
4.1.16 V-HEL-VUL-016: enableCollateralType does not initialize ilks 24
4.1.17 V-HEL-VUL-017: AuctionProxy assumes permissions to USB/USB join . 25
4.1.18 V-HEL-VUL-018: buyFromAuction involves awkward HAY approval

process . 26
4.1.19 V-HEL-VUL-019: buyFromAuction does not revoke vat permissions . . . 27
4.1.20 V-HEL-VUL-020: Divided by zero #1 . 28
4.1.21 V-HEL-VUL-021: Divided by zero #2 . 29
4.1.22 V-HEL-VUL-022: removeCollateralType does not revoke gemJoin permis-

sions . 30
4.1.23 V-HEL-VUL-023: setRate does not check token initialization 31
4.1.24 V-HEL-VUL-024: Reinitializing pool causes rewards to be granted multiple

times . 32
4.1.25 V-HEL-VUL-025: Approve’s return value ignored 33
4.1.26 V-HEL-VUL-026: VatLike interface in jug does not match definition of vat 34

Veridise Audit Report: Helio © 2022 Veridise Inc.

4.1.27 V-HEL-VUL-027: Opportunities to avoid multiplication overflow 35
4.1.28 V-HEL-VUL-028: User added to usersInDebt in deposit 36
4.1.29 V-HEL-VUL-029: Potential HelioProvider and CerosRouter address desync 37
4.1.30 V-HEL-VUL-030: Divided by zero #3 . 38
4.1.31 V-HEL-VUL031: Unused Flop/Flap Code 39
4.1.32 V-HEL-VUL032: usb.sol does not implement atomic allowance modifica-

tion method . 40
4.1.33 V-HEL-VUL-033: Interaction.borrow has ineffective use of mulDiv . . . 41
4.1.34 V-HEL-VUL-034: Constants for “Year” do not account for leap years . . 42
4.1.35 V-HEL-VUL-035: Code inconsistent with comments 43
4.1.36 V-HEL-VUL-036: Should only cast to interfaces that contracts inherit from 44
4.1.37 V-HEL-VUL-037: Two different versions of OpenZeppelin are being used 45
4.1.38 V-HEL-VUL-038: Anyone can burn their own HAY stablecoin, affecting

total supply . 46
4.1.39 V-HEL-VUL-039: owner variable shadowing by function parameter . . . 47
4.1.40 V-HEL-VUL-040: Invalid cast to ICertToken in CeVault.sol 48
4.1.41 V-HEL-VUL-041: Dead Code . 49
4.1.42 V-HEL-VUL-042: ICertToken does not subclass IERC20 50

Executive Summary 1
From May 23 to June 13, Helio engaged Veridise to review the security of their Helio Protocol.
The review covered the Helio DAO code, the Ceros code, and the reused parts of the MakerDAO
smart contract code. Veridise conducted this assessment over 9 person-weeks, with 3 engineers
working on code from commit 36ef1d2 to 97137ed of the helio-money/helio-smart-contracts
repository. The auditing strategy involved tool-assisted analysis of the source code performed
by Veridise engineers. The tools that were used in the audit included a combination of static
analyzers and bounded model checkers.

Summary of issues detected. The audit uncovered 42 issues, 7 of which are assessed to be
of high or critical severity by Veridise auditors. The bugs discovered by Veridise can lead to
a variety of undesired behaviors of the Helio protocol, including a denial of service attack
that would prevent individuals from withdrawing their funds (V-HEL-VUL-001), a flashloan
attack that could be used to gain all helio rewards (V-HEL-VUL-002), an initialization error that
could allow the initial reward rate to be 100x the intended value (V-HEL-VUL-003) and missing
auction functions that could allow funds to be locked in a stale auction (V-HEL-VUL-005).
In addition to the high-severity bugs found, Veridise auditors also discovered a number of
moderate severity issues, including a missing update to helio rewards before a user is liquidated
(V-HEL-VUL-010).

Code assessment. The Helio Protocol is based on a fork of the Maker Protocol and shares
much of the same infrastructure from that project. Specifically, the Helio Protocol is broken
into three components: modified Multi-Collateral Dao (MCD), Helio DAO, and Ceros. The
developers modified the MCD code∗ by removing several components. The Helio DAO code is
a wrapper around the modified MCD and provides a convenient, but restricted, set of interfaces
to the MCD code. The Ceros smart contracts implement (1) a sort of "auxiliary" collateral token,
which we will refer to as "ceros tokens", that can be used as collateral in the Helio DAO; and (2)
a wrapper that allows third-party tokens to be transparently used as collateral in the Helio DAO
by automatically exchanging the third-party tokens for ceros tokens.

The client provided the source code of all three components for review. A test suite accompanied
the source code; however, only a few of the tests in the test suite were passing while the audit
was taking place. The client also provided a small slide deck on the motivation and goals of the
Helio Protocol.

Code Stability. Over the period of the audit, new code was pushed to the repository 64 times,
with the most recent commit occurring on June 16. Many of these commits involved bug fixes or
updates to the test suite rather than new features. The Veridise auditors have therefore reviewed
some portions of the code more than others.

∗ https://github.com/makerdao/dss

Veridise Audit Report: Helio © 2022 Veridise Inc.

helio-money/helio-smart-contracts

2 1 Executive Summary

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

© 2022 Veridise Inc. Veridise Audit Report: Helio

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
Helio Money 36ef1d2 - 97137ed Solidity Ethereum

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
May 22 - June , 2022 Manual & Tools 3 9 person-weeks

Table 2.3: Vulnerability Summary.

Name Number Resolved
Critical-Severity Issues 1 1
High-Severity Issues 6 6
Medium-Severity Issues 4 4
Low-Severity Issues 14 14
Warning-Severity Issues 15 15
Informational-Severity Issues 2 2
TOTAL 42 42

Table 2.4: Category Breakdown.

Name Number
Logic Error 15
Maintainability 7
Access Control 4
Divide by Zero 3
Dead Code 2
Usability Issue 2
Arithmetic Overflow 1
Denial of Service 1
Flashloan 1
Gas Optimizations 1
Invalid Interface 1
Locked Funds 1
Transaction Order 1
Unused Return 1
Variable Shadowing 1

Veridise Audit Report: Helio © 2022 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of the Helio Protocol, particularly
around their DAO contract. In our audit, we sought to answer the following questions:

▶ Can a user withdraw collateral without repaying their loan?
▶ Are users able to access their funds that are not used as collateral for a loan?
▶ Are helio rewards reflective of a user’s stake in the protocol?
▶ Are users fairly rewarded for using the HAY stablecoin?
▶ Are users able to interact with the administrative contracts?
▶ Is the method of interacting with the contract aligned with the user’s expectation?
▶ Is the deployment process straightforward and intuitive?
▶ Can user funds be locked or lost?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a combination of
human experts and automated program analysis & testing tools. In particular, we conducted
our audit with the aid of the following techniques:

▶ Static analysis. To identify potential common vulnerabilities, we leveraged our custom
smart contract analysis tool Vanguard, as well as the open-source tool Slither. These
tools are designed to find instances of common smart contract vulnerabilities, such as
reentrancy and uninitialized variables.

▶ Fuzzing/Property-based Testing. We also leverage fuzz testing to evaluate how the code
behaves given unexpected inputs. To do this, we created several unit tests using the
Foundry testing framework, and then we applied the property-based testing capabilities
of Foundry to fuzz potentially vulnerable methods.

Scope. To understand the scope of the audit, we first reviewed the Maker Protocol documentation
(because the Helio Protocol is based on a fork of Maker) and focused our efforts on understanding
the Maker Protocol components used by Helio. In this phase, our main goal was to understand
how the Helio Protocol interacts with the Multi-Collateral Dao contracts. Afterwards, we
assessed the other Helio Protocol contracts for bugs and security issues.

In terms of the scope of the audit, the key components we considered include the following:

▶ The Multi-Collateral Dao components used by Helio
▶ The Helio DAO deposit, borrow, payback, and withdraw methods
▶ The Ceros deposit and withdraw mechanisms
▶ The high level business logic

Veridise Audit Report: Helio © 2022 Veridise Inc.

6 3 Audit Goals and Scope

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Moderate

Likely Warning Low Moderate High
Very Likely Low Moderate High Critical

In this case, we judge the likelihood of a vulnerability as follows:

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows:

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2022 Veridise Inc. Veridise Audit Report: Helio

Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowleged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-HEL-VUL-001 Denial of Service Critical Fixed
V-HEL-VUL-002 Fraudulent Rewards High Fixed
V-HEL-VUL-003 Initialization Error High Fixed
V-HEL-VUL-004 Direct User Interaction High Fixed
V-HEL-VUL-005 Insufficient Methods High Fixed
V-HEL-VUL-006 User Bypass of Functions High Fixed
V-HEL-VUL-007 No Token Check High Fixed
V-HEL-VUL-008 Test Suite Problem Medium Acknowledged
V-HEL-VUL-009 Liquidation Incentives Medium Intended Behavior
V-HEL-VUL-010 No Rewards Update Medium Fixed
V-HEL-VUL-011 Cannot Re-Enable Collateral Medium Intended Behavior
V-HEL-VUL-012 Emit of Stop Event Low Fixed
V-HEL-VUL-013 Update Failure Low Acknowledged
V-HEL-VUL-014 Awkward Approval Criteria Low Intended Behavior
V-HEL-VUL-015 Bugs Removing Users Low Fixed
V-HEL-VUL-016 Ilk Initialization Failure Low Intended Behavior
V-HEL-VUL-017 Affected Method Revert Low Fixed
V-HEL-VUL-018 Awkward USB Approval Low Fixed
V-HEL-VUL-019 Vat Permission Revoke Low Fixed
V-HEL-VUL-020 Division by Zero #1 Low Fixed
V-HEL-VUL-021 Division by Zero #2 Low Fixed
V-HEL-VUL-022 gemJoin Permission Revoke Low Fixed
V-HEL-VUL-023 No Initialization Check Low Fixed
V-HEL-VUL-024 Multiple Rewards Grant Low Fixed
V-HEL-VUL-025 Ignored Return Value Low Fixed
V-HEL-VUL-026 Definition Mismatch Warning Fixed
V-HEL-VUL-027 Multiplication Overflow Warning Acknowledged
V-HEL-VUL-028 User Debt Error Warning Fixed
V-HEL-VUL-029 Address Desync Warning Acknowledged
V-HEL-VUL-030 Division by Zero #3 Warning Fixed
V-HEL-VUL-031 Unused Flop/Flap Code Warning Fixed
V-HEL-VUL-032 Add Atomic Allowance Methods Warning Fixed
V-HEL-VUL-033 Ineffective Use of mulDiv Warning Fixed
V-HEL-VUL-034 Rounding Error for Leap Years Warning Fixed
V-HEL-VUL-035 Inconsistent Comment Warning Fixed
V-HEL-VUL-036 Possible Interface Error Warning Acknowledged
V-HEL-VUL-037 OpenZeppelin Version Usage Warning Fixed
V-HEL-VUL-038 Burning of Stablecoin Warning Intended Behavior
V-HEL-VUL-039 Shadowing Function Parameter Warning Acknowledged
V-HEL-VUL-040 Incorrect State Variable Cast Warning Acknowledged
V-HEL-VUL-041 Dead Code Informational Fixed
V-HEL-VUL-042 Inconsistency with Interface Informational Acknowledged

Veridise Audit Report: Helio © 2022 Veridise Inc.

8 4 Vulnerability Report

4.1 Detailed Description of Bugs

In this section, we describe each uncovered vulnerability in more detail.

4.1.1 V-HEL-VUL-001: Interaction withdraw denial of service

Severity Critical Commit e46d015
Type Denial of Service Status Fixed
Files contracts/Interaction.sol

Functions withdraw()

Description Since GemJoin.join is public, it is possible to perform a denial of service attack
on the Interaction.withdraw method, which will prevent users from withdrawing their funds
through the Interaction contract. This is because a user can deposit free collateral using GemJoin.

join, which can then be withdrawn using Interaction.withdraw. Since this collateral was not
deposited via the Interaction contract, deposits[token] will be less than the value deposited
using Interaction.deposit. Users will therefore not be able to withdraw since the reduction of
deposits[token] by dink will underflow.

Theoretical Attack Scenario

1. Users normally deposit collateral through Interaction.deposit. This increases the value
of the deposits[token] state variable.

2. An attacker directly invokes the collateral’s GemJoin.join method to transfer collateral to
the vat.

3. The attacker calls Interaction.withdraw to withdraw their recently deposited collateral.
This decreases the deposits[token] state variable.

4. The attacker repeats steps 2-4 to repeatedly decrease deposits[token] until it reaches 0.
5. Users can no longer use Interaction.withdraw to retrieve their collateral because the

deposits[token] -= dink line will overflow.

1 function join(address usr, uint wad) external {

2 require(live == 1, "GemJoin/not-live");

3 require(int(wad) >= 0, "GemJoin/overflow");

4 vat.slip(ilk, usr, int(wad));

5 require(gem.transferFrom(msg.sender, address(this), wad),

6 "GemJoin/failed-transfer");

7 emit Join(usr, wad);

8 }

9

Snippet 4.1: Location of the join function that can be called directly to deposit funds

© 2022 Veridise Inc. Veridise Audit Report: Helio

4.1 Detailed Description of Bugs 9

1 function withdraw(

2 address participant,

3 address token,

4 uint256 dink

5) external returns (uint256) {

6 ...

7

8 // Collateral is actually transferred back to user inside ‘exit‘ operation.

9 // See GemJoin.exit()

10 collateralType.gem.exit(msg.sender, dink);

11 deposits[token] -= dink;

12

13 emit Withdraw(participant, dink);

14 return dink;

15 }

16

Snippet 4.2: Location where the funds are withdrawn and deposits is reduced

Recommendation If the intention is for a user to only interact with the Interaction contract,
add access controls to the GemJoin functions. If it is intended to allow users to interact with
the Maker contracts, remove deposits since it might not reflect the actual amount of deposited
funds.

Veridise Audit Report: Helio © 2022 Veridise Inc.

10 4 Vulnerability Report

4.1.2 V-HEL-VUL-002: Fraudulent rewards can be generated with flashloan

Severity High Commit 36e7d41
Type Flashloan Status Fixed
Files contracts/Interaction.sol

Functions borrow()

Description For any given ilk, the amount of rewards granted by HelioRewards is a function
of (1) the amount of locked collateral that the rewarded user has at the time of the drop; and (2)
the time elapsed since the last drop for that user. However, in Interaction.borrow, the reward
is dropped after the user debt has been updated. Thus, an attacker can theoretically harvest a
large number of rewards with a flashloan.

Theoretical Attack Scenario

1. An attacker initially uses a small amount X of collateral to borrow HAY, beginning the
reward tracking.

2. The attacker waits for a long period of time, say T.
3. The attacker takes out a flashloan, deposits a large amount Y of collateral, and uses it to

borrow HAY.
4. Because the reward drop occurs after the debt amount has been updated, the amount of

reward drop now depends on X+Y over the time T instead of X.
5. The attacker pays back the loaned HAY with payback , withdraws the collateral, and then

pays back the flashloan.

1 function borrow(address token, uint256 hayAmount) external returns (uint256) {

2 ...

3

4 vat.frob(collateralType.ilk, msg.sender, msg.sender, msg.sender, 0, dart);

5 vat.move(msg.sender, address(this), hayAmount * RAY);

6 hayJoin.exit(msg.sender, hayAmount);

7 dropRewards(token, msg.sender);

8

9 emit Borrow(msg.sender, hayAmount);

10 return uint256(dart);

11 }

Snippet 4.3: The location where the user’s debt is updated before rewards are dropped

Recommendation Moving the reward drop somewhere before vat.frobwill avoid the problem,
since the rewards will be calculated with respect to (1) the debt amount before the borrow; and
(2) the time elapsed since the last drop.

© 2022 Veridise Inc. Veridise Audit Report: Helio

4.1 Detailed Description of Bugs 11

4.1.3 V-HEL-VUL-003: Missing jug initialization

Severity High Commit 73b1cd1
Type Logical Error Status Fixed
Files contracts/Interaction.sol

Functions setCollateralType()

Description In setCollateralType, an ilk is initialized with vat.init, but there is no corre-
sponding jug.init to set the rate. This means that the duty field of the ilks storage variable in
the jug will be set to 0 for every ilk. Consequently:

▶ Since base is initially set to 0 and the rate calculated by jug.drip depends on the
computation base + ilks[ilk].duty, the updated rate will be set to 0 when the deployer
forgets to call jug.file("base", ...). A rate of 0 is considered to be an uninitialized ilk,
which causes methods such as vat.frob to revert.

▶ Even if the deployer calls jug.file("base", ...), the time period is calculated with
block.timestamp() - ilks[ilk].rho, where ilks[ilk].rho will be 0 on the first call to
jug.drip. For the first call, the time period is the time passed since the Unix epoch (January
1, 1970). This means that the rate may increase significantly after the first call. For example,
initializing base with 1000000003022266000000000000 will result in a rate of 1e27 before
any call to drip and 1.483e29 after the call to drip.

▶ Due to the high initial rate, the multiplications of ilk rate with quantities in the vat

.frob method will result in larger values and be more prone to overflow. enditemize
Furthermore, increases to the rate will have less effect, since the increases will be very
small compared to the initial rate.

1 function setCollateralType(

2 address token,

3 address gemJoin,

4 bytes32 ilk,

5 address clip

6) external auth {

7 vat.init(ilk);

8 enableCollateralType(token, gemJoin, ilk, clip);

9 }

Snippet 4.4: Location of the setCollateralType function

Recommendation We believe the proper use of jug is as follows:

▶ setCollateralType should call jug.init and then call jug.file(ilk, "duty", ...) to add
argument to the rate for the given provided collateral type.

▶ The current deploy and test scripts set base to be “ONE” + some percentage. The correct
way is to set a global rate with jug.init("base", ...)

▶ If only a global rate is desired, use jug.file(ilk, "duty", 0)

▶ Adjust the rates so that they are more consistent with the developers’ intended reward
schedule

Veridise Audit Report: Helio © 2022 Veridise Inc.

12 4 Vulnerability Report

4.1.4 V-HEL-VUL-004: Users can interact with vat directly

Severity High Commit e46d015
Type Access Control Status Fixed
Files contracts/vat.sol

Functions frob/flux/etc

Description Similar to V-HEL-VUL-006, by using unprotected MakerDAO functions, it is
possible for a user to interact with the vat (using the frob method in particular) to bypass
Interaction.sol. Thus the state variables tracked in the Interaction contract (e.g., usersInDebt
and deposits) may not reflect the actual state of the protocol. In addition, Interaction’s state
variables are intended to aid liquidators in finding individuals that are eligible for liquidation.
It is therefore possible that liquidators will miss individuals who are eligible for liquidation but
interacted with the vat directly.

1 function frob(

2 bytes32 i,

3 address u,

4 address v,

5 address w,

6 int dink,

7 int dart

8) external {

9 ...

10 }

Snippet 4.5: Location of the frob declaration in the Vat contract

Recommendation Restrict access to the Vat contract so that only authorized users may call its
functions.

© 2022 Veridise Inc. Veridise Audit Report: Helio

4.1 Detailed Description of Bugs 13

4.1.5 V-HEL-VUL-005: AuctionProxy needs more management methods

Severity High Commit c2b0aba
Type Logical Error Status Fixed
Files contracts/AuctionProxy.sol

Functions N/A

Description Although AuctionProxy wraps the MakerDAO auction logic (Clipper), it only
provides the methods startAuction and buyFromAuction. While these functions allow users to
create and buy from auctions, they do not capture all necessary auction functionality provided
by the Clipper contract. Specifically, they do not allow an auction to be reset, which is required
if an auction is not completed in a certain amount of time. As a result, funds can be locked in an
auction and would require an admin to rescue them by interacting with the Clipper contract. In
addition, the AuctionProxy contract does not provide functionality to check the status of or
cancel an auction. Finally, it does not call Clipper.upchost, which the Maker protocol assumes
will be called periodically to update the chost contract variable.

Recommendation Add the following functionality to AuctionProxy:

▶ Resetting an auction
▶ Checking the status of an auction
▶ Canceling an auction
▶ Call upchost

Developer Response The developers indicated that they do not intend to add functionality to
cancel an auction.

Veridise Audit Report: Helio © 2022 Veridise Inc.

14 4 Vulnerability Report

4.1.6 V-PAR-HEL-006: Users can bypass AuctionProxy by using unprotected
MakerDAO functions

Severity High Commit c2b0aba
Type Access Control Status Fixed
Files contracts/dog.sol, conracts/clip.sol

Functions bark, kick, redo, take

Description A user can bypass the AuctionProxy contract by instead directly calling functions
in the MakerDAO contract, such as bark. These functions are currently marked as external
with no access controls, allowing anyone to call them. Thus, the developers cannot enforce
the additional behaviors provided by AuctionProxy. If a user were to interact with the Maker
contracts, there can be negative consequences such as inaccessible liquidation funds.

1 function bark(

2 bytes32 ilk,

3 address urn,

4 address kpr

5) external auth returns (uint256 id) {

6 ...

7 }

Snippet 4.6: Location the bark function, which can be called by anyone

Recommendation Restrict access to the Dog and Clipper contracts so that only authorized
users may call its functions.

© 2022 Veridise Inc. Veridise Audit Report: Helio

4.1 Detailed Description of Bugs 15

4.1.7 V-HEL-VUL-007: No check for existing tokens in setCollateralType

Severity High Commit 36e7d41
Type Locked Funds Status Fixed
Files contracts/Interaction.sol

Functions setCollateralType

Description It is possible to call setCollateralType for an existing token, but with a different
ilk, causing an existing entry of collaterals to be overridden. This can lead to dangerous
behavior, since changing the ilk can cause borrows to be locked in the overwritten ilk. To
illustrate this, let’s say ilk1 was overwritten by ilk2 . If a user borrowed from ilk1 and then tried
to pay back the protocol after the switch to ilk2, upon the call to vat.frob() in Interaction.

payback(), the call can revert when the dart is added to ilk.art due to an underflow. In addition,
since the user’s urn is located using the ilk (in this case essentially urns[ilk2][msg.sender]),
the borrow also couldn’t be located if the ilk’s bytes32 identifier were changed.

1 function setCollateralType(

2 address token,

3 address gemJoin,

4 bytes32 ilk,

5 address clip

6) external auth {

7 vat.init(ilk);

8 collaterals[token] = CollateralType(GemJoinLike(gemJoin), ilk, 1, clip);

9 IERC20Upgradeable(token).safeApprove(gemJoin, type(uint256).max);

10 vat.rely(gemJoin);

11 emit CollateralEnabled(token, ilk);

12 }

Snippet 4.7: Location of the setCollateralType function that can overwrite the ilk for a token

Recommendation Don’t allow an admin to change the ilk if there are any outstanding debts
(likely don’t allow it at all). If the ilk needs to be adjusted, instead change the underlying Ilk
struct itself.

Veridise Audit Report: Helio © 2022 Veridise Inc.

16 4 Vulnerability Report

4.1.8 V-HEL-VUL-008: Problems with test suite

Severity Medium Commit 36e7d41
Type Maintainability Status Acknowledged
Files tests/*

Functions N/A

Description There are several problems with the test suite that prevent the developers from
testing their code effectively or thoroughly.

▶ Not all of the tests in the test suite pass. Furthermore, some of the tests do not work at all.
This means that it is harder to catch regressions resulting from changes to the source code.

▶ There is a significant amount of duplication in the test suite setup code.
▶ The test suite setup code and deployment scripts have duplicated code, which means that

they are more likely to diverge as development continues.
▶ The test suite only provides partial code coverage and mostly consists of integration tests.

Recommendation

▶ Refactor the shared setup code into reusable helper functions, and call these helper
functions inside of the test suite and the deployment scripts.

▶ Add smaller tests for the isolated components like CeVault and HelioRewards

© 2022 Veridise Inc. Veridise Audit Report: Helio

4.1 Detailed Description of Bugs 17

4.1.9 V-HEL-VUL-009: Not all liquidation incentives are passed onto the user

Severity Medium Commit c2b0aba
Type Logical Error Status Intended Behavior
Files contracts/AuctionProxy.sol

Functions startAuction, buyFromAuction

Description Incentives are currently passed onto the user by converting an internal HAY
balance into tokens. To do so, the developers divide vat.usb(address(this) by RAY. As a result
of this integer division, any incentives that are less than RAY will not be passed along to the
user. This means that (1) the leftover incentives will be given to other liquidators who did not
earn them; and (2) small purchases (< RAY) can result in no collateral being passed onto the
liquidator. It is therefore possible for small loans to go unliquidated.

1 function startAuction(

2 address user,

3 address keeper,

4 IERC20 usb,

5 UsbGemLike usbJoin,

6 VatLike vat,

7 DogLike dog,

8 HelioProviderLike helioProvider,

9 CollateralType calldata collateral

10) external onlyDao returns (uint256 id) {

11 uint256 usbBal = usb.balanceOf(address(this));

12 id = dog.bark(collateral.ilk, user, address(this));

13

14 usbJoin.exit(address(this), vat.usb(address(this)) / RAY);

15 usbBal = usb.balanceOf(address(this)) - usbBal;

16 usb.transfer(keeper, usbBal);

17

18 ...

19 }

Snippet 4.8: Location where incentives are forwarded to the keeper in startAuction

Recommendation Pass all rewards to the user via the vat.

Developer Response The developers indicated that since amounts < RAY are very small (less
than one token), they do not intend to implement a fix for this issue.

Veridise Audit Report: Helio © 2022 Veridise Inc.

18 4 Vulnerability Report

4.1.10 V-HEL-VUL-010: startAuction does not update rewards

Severity Medium Commit c2b0aba
Type Logical Error Status Fixed
Files contracts/Interaction.sol

Functions startAuction

Description A liquidated user’s Helio rewards are not updated once a liquidation is initiated
via startAuction. Consequently, if a user were to borrow HAY and then neglect to interact
with the contract until a liquidation was initiated, they would not be able to claim rewards for
the liquidated funds. Had the user called helioRewards.drop before liquidation, however, they
would have been rewarded for borrowing these funds.

1 function startAuction(

2 address user,

3 address keeper,

4 IERC20 usb,

5 UsbGemLike usbJoin,

6 VatLike vat,

7 DogLike dog,

8 HelioProviderLike helioProvider,

9 CollateralType calldata collateral

10) external onlyDao returns (uint256 id) {

11 uint256 usbBal = usb.balanceOf(address(this));

12 id = dog.bark(collateral.ilk, user, address(this));

13

14 usbJoin.exit(address(this), vat.usb(address(this)) / RAY);

15 usbBal = usb.balanceOf(address(this)) - usbBal;

16 usb.transfer(keeper, usbBal);

17

18 // Burn any derivative token (hBNB incase of ceabnbc collateral)

19 if (address(helioProvider) != address(0)) {

20 helioProvider.daoBurn(user, collateral.clip.sales(id).lot);

21 }

22 }

Snippet 4.9: Location of the startAuction function which does not drop rewards

Recommendation Drop helio rewards for the liquidated user in startAuction.

© 2022 Veridise Inc. Veridise Audit Report: Helio

4.1 Detailed Description of Bugs 19

4.1.11 V-HEL-VUL-011: Cannot Re-Enable Collateral

Severity Medium Commit f46da2d
Type Logical Error Status Intended Behavior
Files contracts/Interaction.sol

Functions setCollateralType, removeCollateralType

Description In some cases, the developer may intend to toggle whether a collateral is live or
not. The developer may attempt to do this by calling removeCollateralType to disable a collateral
type and then calling setCollateralType (with the same ilk) to re-enable the collateral type.
However, attempting to call setCollateralType again will always revert because the token / ilk
pair has already been initialized. Thus, a collateral type cannot be enabled ever again once it
has been removed, so users cannot withdraw their collateral.

1 function setCollateralType(

2 address token,

3 address gemJoin,

4 bytes32 ilk,

5 address clip

6) external auth {

7 require(collaterals[token].live == 0, "Interaction/token-already-init");

8 vat.init(ilk);

9 jug.init(ilk);

10 jug.file(ilk, "duty", 0);

11 collaterals[token] = CollateralType(GemJoinLike(gemJoin), ilk, 1, clip);

12 IERC20Upgradeable(token).safeApprove(gemJoin, type(uint256).max);

13 vat.rely(gemJoin);

14 emit CollateralEnabled(token, ilk);

15 }

Snippet 4.10: Location of the setCollateralType function which initializes the ilk

Recommendation Add a method to toggle whether a collateral is live or not. This method
should check that the token/ilk pair has already been initialized.

Developer Response The removeCollateralType function is intended to permanently remove
an ilk and therefore should not be re-enabled via setCollateralType.

Veridise Audit Report: Helio © 2022 Veridise Inc.

20 4 Vulnerability Report

4.1.12 V-HEL-VUL-012: HelioRewards emits Stop event in start() method

Severity Low Commit 36e7d41
Type Logical Error Status Fixed
Files contracts/HelioRewards.sol

Functions start

The start function emits an event named Stop, even though the contract has a Start event.

1 function start() public auth {

2 live = 1;

3 emit Stop(msg.sender);

4 }

Snippet 4.11: Location of the Stop emit in the start function

Recommendation Emit the Start event rather than Stop.

© 2022 Veridise Inc. Veridise Audit Report: Helio

4.1 Detailed Description of Bugs 21

4.1.13 V-HEL-VUL-013: buyFromAuction can impact Interaction state

Severity Low Commit e46d015
Type Logical Error Status Acknowledged
Files Interaction.sol

Functions buyFromAuction

Description The Interaction contract tracks a token’s cumulative deposits (deposits) and
which users have borrowed funds (usersInDebt). While both of these values can be impacted
upon a liqudation, neither value is updated in buyFromAuction. Thus, these values may not
reflect the current state of the protocol, which can make it difficult for liquidators to find users
eligible for liquidation.

1 function buyFromAuction(

2 address token,

3 uint256 auctionId,

4 uint256 collateralAmount,

5 uint256 maxPrice,

6 address receiverAddress

7) external {

8 CollateralType memory collateral = collaterals[token];

9 IHelioProvider helioProvider = IHelioProvider(helioProviders[token]);

10 auctionProxy.buyFromAuction(

11 msg.sender,

12 auctionId,

13 collateralAmount,

14 maxPrice,

15 receiverAddress,

16 usb,

17 usbJoin,

18 vat,

19 helioProvider,

20 collateral

21);

22 }

Snippet 4.12: Location of the buyFromAuction function in the Interaction contract

Recommendation Update both of these values in buyFromAuction.

Veridise Audit Report: Helio © 2022 Veridise Inc.

22 4 Vulnerability Report

4.1.14 V-HEL-VUL-014: HelioProvider providelnABNBc() has awkward approval
requirements

Severity Low Commit e46d015
Type Usability Issue Status Intended Behavior
Files contracts/HelioProvider.sol, contracts/ceros/CerosRouter.sol

Functions HelioProvider.provideInABNBc(),CerosRouter.depositABNBcFrom()

Description The HelioProvider’s provideInABNBc function calls _ceRouter.depositABNBcFrom,
which invokes the transferFrom method on the aBNBc token contract. This means that the user
must approve the _ceRouter, otherwise the transaction will revert. Consequently, users must be
aware of HelioProvider’s implementation details as it is unlikely that they will know to approve
the CerosRouter rather than the HelioProvider.

1 function provideInABNBc(uint256 amount)

2 external

3 override

4 nonReentrant

5 returns (uint256 value)

6 {

7 value = _ceRouter.depositABNBcFrom(msg.sender, amount);

8 // deposit ceToken as collateral

9 _provideCollateral(msg.sender, value);

10 emit Deposit(msg.sender, value);

11 return value;

12 }

Snippet 4.13: Location of provideInABNBc which requires _ceRouter to perform the transfer

Recommendation Have the user approve the HelioProvider instead. The HelioProvider can
transfer from the user to itself, and then the router can transfer tokens from the provider to the
router. This should be safe because depositABNBcFrom is marked as onlyProvider.

Developer Response The developers indicated that fixing this issue would require changes
to the behavior of the CerosRouter. Since this contract will be shared by several projects, the
developers don’t want to make adjustments to the interface.

© 2022 Veridise Inc. Veridise Audit Report: Helio

4.1 Detailed Description of Bugs 23

4.1.15 V-HEL-VUL-015: Bugs when removing users from usersInDebt

Severity Low Commit e46d015
Type Logical Error Status Fixed
Files contracts/Interaction.sol

Functions payback

Description The Interaction contract tracks the users who have borrowed funds to aid
liquidators in finding users to liquidate. It is therefore the case that when a user pays back
their loan, usersInDebt may require updating if the entire loan is paid off. While usersInDebt is
updated in the payback function, there are several cases where it may not be updated accurately.
First, the check for no debt is subject to rounding errors, which can prevent users from being
removed from usersInDebt even after the loan is paid off. Second, a user is removed from
usersInDebt when they have repaid all art in the corresponding urn. However, the case where a
single user has multiple urns is not considered so a user may be removed from the set while
they still have debt.

1 function payback(address token, uint256 usbAmount) external returns (int256) {

2 CollateralType memory collateralType = collaterals[token];

3 // _checkIsLive(collateralType.live); Checking in the ‘drip‘ function

4

5 IERC20Upgradeable(usb).safeTransferFrom(msg.sender,address(this),usbAmount);

6 usbJoin.join(msg.sender, usbAmount);

7 (,uint256 rate,,,) = vat.ilks(collateralType.ilk);

8 (, uint256 art) = vat.urns(collateralType.ilk, msg.sender);

9 int256 dart = int256(hMath.mulDiv(usbAmount, 10 ** 27, rate));

10 if (uint256(dart) * rate < usbAmount * (10 ** 27) &&

11 uint256(dart + 1) * rate <= vat.usb(msg.sender)

12) {

13 dart += 1;

14 // ceiling

15 }

16 vat.frob(collateralType.ilk, msg.sender, msg.sender, msg.sender, 0, - dart);

17

18 if ((int256(rate * art) / 10 ** 27) == dart) {

19 EnumerableSet.remove(usersInDebt, msg.sender);

20 }

21

22 ...

23 }

Snippet 4.14: Location where usersInDebt is updated in the Payback function

Recommendation First, check the urn when determining if a user has paid off their loan.
Second, track user debt for each collateral type.

Veridise Audit Report: Helio © 2022 Veridise Inc.

24 4 Vulnerability Report

4.1.16 V-HEL-VUL-016: enableCollateralType does not initialize ilks

Severity Low Commit 4997d0e
Type Maintainability Status Intended Behavior
Files contracts/Interaction.sol

Functions enableCollateralType

Description Previously, the developers indicated that calling enableCollateralType on an
existing token but with different ilks is a feature. However, if the ilk does not yet exist in the vat,
it will not be initialized. This will cause future calls to deposit and withdraw to revert when they
call vat.frob(). While this can be avoided by calling setCollateralType when using a new ilk,
there are no checks to enforce the desired interaction.

1 function enableCollateralType(

2 address token,

3 address gemJoin,

4 bytes32 ilk,

5 address clip

6) public auth {

7 collaterals[token] = CollateralType(GemJoinLike(gemJoin), ilk, 1, clip);

8 IERC20Upgradeable(token).approve(gemJoin, type(uint256).max);

9 vat.rely(gemJoin);

10 emit CollateralEnabled(token, ilk);

11 }

Snippet 4.15: Location of enableCollateralType

Recommendation Add a check to enableCollateralType to ensure that ilk exists in the vat.

Developer Response The intention is to call setCollateralType if the ilk has not been initialized
by the vat. The developers indicated that they will ensure that the correct function is called.

© 2022 Veridise Inc. Veridise Audit Report: Helio

4.1 Detailed Description of Bugs 25

4.1.17 V-HEL-VUL-017: AuctionProxy assumes permissions to USB/USB join

Severity Low Commit c2b0aba
Type Maintainability Status Fixed
Files contracts/AuctionProxy.sol

Functions startAuction, buyFromAuction

Description The AuctionProxy currently assumes that it has been authorized by the vat to
move funds via the usbJoin contract. If the developers forget to grant this authorization, the
startAuction and buyFromAuction functions will always revert.

1 function startAuction(...) external onlyDao returns (uint256 id) {

2 ...

3

4 usbJoin.exit(address(this), vat.usb(address(this)) / RAY);

5

6 ...

7 }

Snippet 4.16: Location where startAuction requires usbJoin authorization

1 function buyFromAuction(...) external onlyDao {

2 ...

3

4 usbJoin.exit(address(this), vat.usb(address(this)) / RAY);

5

6 ...

7 }

Snippet 4.17: Location where buyFromAuction requires usbJoin authorization

Recommendation Relying on developers to perform complex initialization can be error-prone.
Grant the required permissions in the contract logic instead.

Veridise Audit Report: Helio © 2022 Veridise Inc.

26 4 Vulnerability Report

4.1.18 V-HEL-VUL-018: buyFromAuction involves awkward HAY approval process

Severity Low Commit c2b0aba
Type Usability Issue Status Fixed
Files contracts/Interaction.sol, contracts/AuctionProxy.sol

Functions buyFromAuction

Description The buyFromAuction function in the Interaction contract requires the caller to
pay HAY in order to receive collateral. This payment occurs when the AuctionProxy invokes
transferFrom in its buyFromAuction function. Since the payment occurs from the AuctionProxy
contract though, the user must approve the AuctionProxy contract even though they invoke the
transaction through the Interaction contract. Consequently, users must be aware of the Interaction
contract’s implementation details as it is unlikely they will know to approve AuctionProxy
rather than Interaction.

1 function buyFromAuction(

2 address token,

3 uint256 auctionId,

4 uint256 collateralAmount,

5 uint256 maxPrice,

6 address receiverAddress

7) external {

8 CollateralType memory collateral = collaterals[token];

9 IHelioProvider helioProvider = IHelioProvider(helioProviders[token]);

10 auctionProxy.buyFromAuction(

11 msg.sender,

12 auctionId,

13 collateralAmount,

14 maxPrice,

15 receiverAddress,

16 usb,

17 usbJoin,

18 vat,

19 helioProvider,

20 collateral

21);

22 }

Snippet 4.18: Location of the buyFromAuction function in the Interaction contract

Recommendation Make the AuctionProxy a library that is used by the Interaction contract.

© 2022 Veridise Inc. Veridise Audit Report: Helio

4.1 Detailed Description of Bugs 27

4.1.19 V-HEL-VUL-019: buyFromAuction does not revoke vat permissions

Severity Low Commit c2b0aba
Type Access Control Status Fixed
Files contracts/AuctionProxy.sol

Functions buyFromAuction

Description The AuctionProxy contract’s buyFromAuction function calls vat.hope on the
collateral type’s clip but never revokes the permissions by calling vat.nope. For security
purposes, permissions should be revoked when they are no longer needed. Additionally,
it is desirable to grant more limited permissions to reduce the impact of potential security
vulnerabilities, so it is desirable to use vat.behalf rather than vat.hope.

1 function buyFromAuction(

2 address user,

3 uint256 auctionId,

4 uint256 collateralAmount,

5 uint256 maxPrice,

6 address receiverAddress,

7 IERC20 usb,

8 UsbGemLike usbJoin,

9 VatLike vat,

10 HelioProviderLike helioProvider,

11 CollateralType calldata collateral

12) external onlyDao {

13 ...

14

15 vat.hope(address(collateral.clip));

16

17 ...

18 }

Snippet 4.19: Location where vat permissions are granted via vat.hope

Recommendation Limit the permissions granted to AuctionProxy to only those that are
required and revoke the permissions when they are no longer needed.

Veridise Audit Report: Helio © 2022 Veridise Inc.

28 4 Vulnerability Report

4.1.20 V-HEL-VUL-020: Divided by zero #1

Severity Low Commit c2b0aba
Type Divide by Zero Status Fixed
Files contracts/Interaction.sol

Functions estimatedLiquidationPrice

Description The estimatedLiquidationPrice function can revert if the amount parameter is
set to -ink since uint256(int256(ink) + amount) will cause ink to be 0.

1 function estimatedLiquidationPrice(

2 address token,

3 address usr,

4 int256 amount

5) external view returns (uint256) {

6 ...

7

8 (uint256 ink, uint256 art) = vat.urns(collateralType.ilk, usr);

9 require(amount >= -int256(ink), "Cannot withdraw more than current amount");

10 if (amount < 0) {

11 ink = uint256(int256(ink) + amount);

12 } else {

13 ink += uint256(amount);

14 }

15

16 ...

17

18 return backedDebt / ink;

19 }

20 }

Snippet 4.20: Location of the divide-by-zero issue in estimatedLiquidationPrice

Recommendation Check if ink is zero and handle this case appropriately.

© 2022 Veridise Inc. Veridise Audit Report: Helio

4.1 Detailed Description of Bugs 29

4.1.21 V-HEL-VUL-021: Divided by zero #2

Severity Low Commit c2b0aba
Type Divide by Zero Status Fixed
Files contracts/Interaction.sol

Functions currentLiquidationPrice

Description If the user has not deposited any funds, then the function will revert because ink

will be 0.

1 function currentLiquidationPrice(

2 address token,

3 address usr

4) external view returns (uint256) {

5 CollateralType memory collateralType = collaterals[token];

6 _checkIsLive(collateralType.live);

7 (uint256 ink, uint256 art) = vat.urns(collateralType.ilk, usr);

8 (, uint256 rate,,,) = vat.ilks(collateralType.ilk);

9 (,uint256 mat) = spotter.ilks(collateralType.ilk);

10 uint256 backedDebt = (art * rate / 10 ** 36) * mat;

11 return backedDebt / ink;

12 }

Snippet 4.21: Location where currentLiquidationPrice reverts if ink is 0

Recommendation Add a check to determine if the ink is 0.

Veridise Audit Report: Helio © 2022 Veridise Inc.

30 4 Vulnerability Report

4.1.22 V-HEL-VUL-022: removeCollateralType does not revoke gemJoin permissions

Severity Low Commit c2b0aba
Type Access Control Status Fixed
Files contracts/Interaction.sol

Functions removeCollateralType

Description The enableCollateralType function calls vat.rely on the token’s gemJoin. How-
ever, removeCollateralType does not call vat.deny to revoke the permissions. To reduce the
impact of any potential vulnerabilities, permissions should be revoked when they are no longer
needed.

1 function removeCollateralType(address token) external auth {

2 collaterals[token].live = 0;

3 address gemJoin = address(collaterals[token].gem);

4 IERC20Upgradeable(token).approve(gemJoin, 0);

5 emit CollateralDisabled(token, collaterals[token].ilk);

6 }

Snippet 4.22: Location of removeCollateralType which does not revoke gemJoin permissions

Recommendation Call vat.deny in removeCollateralType.

© 2022 Veridise Inc. Veridise Audit Report: Helio

4.1 Detailed Description of Bugs 31

4.1.23 V-HEL-VUL-023: setRate does not check token initialization

Severity Low Commit c2b0aba
Type Logical Error Status Fixed
Files contracts/HelioRewards.sol

Functions setRate

Description The function setRate does not check that the argument token is initialized, so it
is possible for the owner to set the rate on a non-existent token. If this were to occur, there will
be no error messages, reverts, or warnings.

1 function setRate(address token, uint256 newRate) external auth {

2 Ilk storage pool = pools[token];

3 pool.rewardRate = newRate;

4 }

Snippet 4.23: Location of the setRate function

Recommendation Require that the token exists when setting the rate.

Veridise Audit Report: Helio © 2022 Veridise Inc.

32 4 Vulnerability Report

4.1.24 V-HEL-VUL-024: Reinitializing pool causes rewards to be granted multiple
times

Severity Low Commit c2b0aba
Type Logical Error Status Fixed
Files contracts/HelioRewards.sol

Functions initPool

Description If the owner calls the initPool function multiple times for the same token, then
the token will be duplicated in the poolsList array. Consequently, rewards will be awarded
multiple times for the same token due to the duplicate entries.

1 function initPool(address token, bytes32 ilk, uint256 rate) external auth {

2 pools[token] = Ilk(rate, block.timestamp, ilk);

3 poolsList.push(token);

4 }

Snippet 4.24: Location of the initPool function

Recommendations Developers should add logic to handle calls to initPool on tokens that are
already initialized.

© 2022 Veridise Inc. Veridise Audit Report: Helio

4.1 Detailed Description of Bugs 33

4.1.25 V-HEL-VUL-025: Approve’s return value ignored

Severity Low Commit c2b0aba
Type Unused Return Status Fixed
Files contracts/Interaction.sol

Functions enableCollateralType, removeCollateralType

Description An IERC20 contract’s approve function returns a boolean that indicates if the
approval was successful. While approve typically succeeds, different token implementations
might have different conditions that need to be fulfilled to be approved. By not checking the
return value, it is possible to list a collateral type where users cannot deposit their collateral.

1 function enableCollateralType(

2 address token,

3 address gemJoin,

4 bytes32 ilk,

5 address clip

6) public auth {

7 collaterals[token] = CollateralType(GemJoinLike(gemJoin), ilk, 1, clip);

8 IERC20Upgradeable(token).approve(gemJoin, type(uint256).max);

9 vat.rely(gemJoin);

10 emit CollateralEnabled(token, ilk);

11 }

Snippet 4.25: Location where approve is called in enableCollateralType

1 function removeCollateralType(address token) external auth {

2 collaterals[token].live = 0;

3 address gemJoin = address(collaterals[token].gem);

4 IERC20Upgradeable(token).approve(gemJoin, 0);

5 emit CollateralDisabled(token, collaterals[token].ilk);

6 }

Snippet 4.26: Location where approve is called in removeCollateralType

Recommendation Check the return value of approve calls.

Veridise Audit Report: Helio © 2022 Veridise Inc.

34 4 Vulnerability Report

4.1.26 V-HEL-VUL-026: VatLike interface in jug does not match definition of vat

Severity Warning Commit 73b1cd1
Type Invalid Interface Status Fixed
Files contracts/jug.sol

Functions VatLike

Description The return type of the ilks function of the VatLike interface in jug.sol does not
match the return type of ilks in vat.sol.

1 interface VatLike {

2 function ilks(bytes32) external returns (

3 uint256 Art, // [wad]

4 uint256 rate // [ray]

5);

6 function fold(bytes32,address,int) external;

7 }

Snippet 4.27: Location of the VatLike interface declaration in jug.sol

1 contract Vat is VatLike {

2 struct Ilk {

3 uint256 Art; // Total Normalised Debt [wad]

4 uint256 rate; // Accumulated Rates [ray]

5 uint256 spot; // Price with Safety Margin [ray]

6 uint256 line; // Debt Ceiling [rad]

7 uint256 dust; // Urn Debt Floor [rad]

8 }

9

10 mapping (bytes32 => Ilk) public ilks;

11

12 ...

13 }

Snippet 4.28: Location of ilks function provided by the public ilks contract variable in vat.sol

Recommendation Rather than declaring a new VatLike interface in jug.sol, import the VatLike
interface that Vat inherits from where the declaration is correct.

© 2022 Veridise Inc. Veridise Audit Report: Helio

4.1 Detailed Description of Bugs 35

4.1.27 V-HEL-VUL-027: Opportunities to avoid multiplication overflow

Severity Warning Commit 36e7d41
Type Arithmetic Overflow Status Acknowledged
Files contracts/AuctionProxy.sol, contracts/ceros/CeVault.sol

Functions buyFromAuction, _deposit and _withdraw

Description The developers’ hMath library can be used to avoid overflows in computations
with multiplications and divisions. Currently, there are a few locations where multiplications
and divisions are directly used rather than the hMath library.

1 function buyFromAuction(...) external onlyDao {

2 ...

3

4 uint256 usbMaxAmount = (maxPrice * collateralAmount) / RAY;

5

6 ...

7 }

Snippet 4.29: Location in AuctionProxy.buyFromAuction that may overflow

1 function _deposit(...) private returns (uint256) {

2 uint256 ratio = _aBNBc.ratio();

3 _aBNBc.transferFrom(msg.sender, address(this), amount);

4 uint256 toMint = (amount * 1e18) / ratio;

5

6 ...

7 }

Snippet 4.30: Location in CeVault._deposit that may overflow

1 function _withdraw(...) private returns (uint256) {

2 uint256 ratio = _aBNBc.ratio();

3 uint256 realAmount = (amount * ratio) / 1e18;

4

5 ...

6 }

Snippet 4.31: Location in CeVault._withdraw that may overflow

Recommendation Use the hMath library for computations that involve multiplications and
divisions to avoid overflows.

Veridise Audit Report: Helio © 2022 Veridise Inc.

36 4 Vulnerability Report

4.1.28 V-HEL-VUL-028: User added to usersInDebt in deposit

Severity Warning Commit e46d015
Type Logical Error Status Fixed
Files contracts/Interaction.sol

Functions deposit

Description The Interaction contract tracks the users who have debt to allow liquidators
to iterate over individuals who may require liquidation. Currently a user is added to the set
usersInDebt upon a deposit, but at this point a user has no debt. This pollutes the set and can
make it more difficult to discover users eligible for liquidation.

1 function deposit(

2 address participant,

3 address token,

4 uint256 dink

5) external returns (uint256) {

6 ...

7

8 EnumerableSet.add(usersInDebt, participant);

9

10 emit Deposit(participant, dink);

11 return dink;

12 }

Snippet 4.32: Location where a user is added to usersInDebt in the deposit function

Recommendation Add a user to usersInDebt in the borrow function.

© 2022 Veridise Inc. Veridise Audit Report: Helio

4.1 Detailed Description of Bugs 37

4.1.29 V-HEL-VUL-029: Potential HelioProvider and CerosRouter address desync

Severity Warning Commit 119cbd0
Type Logical Error Status Acknowledged
Files contracts/ceros/CerosRouter.sol, contracts/ceros/HelioProvider.sol

Functions N/A

Description In CerosRouter contract, it is possible to change the provider with the changeProvider
function; however, there is no analogous function in HelioProvider that allows the _ceRouter to
be changed. This means that it is possible for the HelioProvider to reference a CerosRouter with
a different provider.

1 function changeProvider(address provider) external onlyOwner {

2 _provider = provider;

3 emit ChangeProvider(provider);

4 }

Snippet 4.33: Location of the changeProvider function in CerosRouter

Recommendation Add a function to change a provider’s _ceRouter.

Veridise Audit Report: Helio © 2022 Veridise Inc.

38 4 Vulnerability Report

4.1.30 V-HEL-VUL-030: Divided by zero #3

Severity Warning Commit 119cbd0
Type Divide by Zero Status Fixed
Files contracts/Interaction.sol

Functions collateralRate

Description If the deployer forgets to call spot.file() on the token, then mat will be 0, causing
a divide-by-zero error and therefore a revert.

1 function collateralRate(address token) external view returns (uint256) {

2 CollateralType memory collateralType = collaterals[token];

3 _checkIsLive(collateralType.live);

4 (,uint256 mat) = spotter.ilks(collateralType.ilk);

5 // (,,uint256 spot,,) = vat.ilks(collateralType.ilk);

6 // return spot / 10**9;

7 return 10 ** 45 / mat;

8 }

Snippet 4.34: Location where a divide-by-zero may occur in collateralRate

Recommendation The developers should require that mat is nonzero to provide a more helpful
message so that the user knows why a revert occurred. Additionally, call any necessary methods
like spot.file in methods such as the Interaction contract’s enableCollateralType to avoid
potential deployment errors.

© 2022 Veridise Inc. Veridise Audit Report: Helio

4.1 Detailed Description of Bugs 39

4.1.31 V-HEL-VUL031: Unused Flop/Flap Code

Severity Warning Commit 119cbd0
Type Dead Code Status Fixed
Files contracts/vow.sol

Functions flop/flap/cage

Description The Vow contract has code from MakerDAO that was intended to interact with
the Flop/Flap contracts, which are not used by this project.

1 function flop() external returns (uint id) {

2 require(sump <= sub(sub(vat.sin(address(this)), Sin), Ash),

3 "Vow/insufficient-debt");

4 require(vat.usb(address(this)) == 0, "Vow/surplus-not-zero");

5 Ash = add(Ash, sump);

6 id = flopper.kick(address(this), dump, sump);

7 }

8 // Surplus auction or send surplus to multisig

9 function flap() external returns (uint id) {

10 if (lever != 0) {

11 require(vat.usb(address(this)) >= add(add(vat.sin(address(this)), bump),

12 hump), "Vow/insufficient-surplus");

13 require(sub(sub(vat.sin(address(this)), Sin), Ash) == 0,

14 "Vow/debt-not-zero");

15 id = flapper.kick(bump, 0);

16 } else {

17 require(vat.usb(address(this)) >= add(vat.sin(address(this)), hump),

18 "Vow/insufficient-surplus");

19 require(sub(vat.sin(address(this)), Sin) == 0, "Vow/debt-not-zero");

20 uint rad = sub(vat.usb(address(this)),add(vat.sin(address(this)), hump));

21 vat.move(address(this), multisig, rad);

22 }

23 }

24

25 function cage() external auth {

26 require(live == 1, "Vow/not-live");

27 live = 0;

28 Sin = 0;

29 Ash = 0;

30 flapper.cage(vat.usb(address(flapper)));

31 flopper.cage();

32 vat.heal(min(vat.usb(address(this)), vat.sin(address(this))));

33 }

Snippet 4.35: Location of the functions in the Vow contract that use the Flop/Flap contracts

Recommendation Since these contracts are not used in this project, these functions should be
removed along with the FlopLike and FlapLike interfaces.

Veridise Audit Report: Helio © 2022 Veridise Inc.

40 4 Vulnerability Report

4.1.32 V-HEL-VUL032: usb.sol does not implement atomic allowance modification
method

Severity Warning Commit c2b0aba
Type Transaction Order Status Fixed
Files contracts/usb.sol

Functions N/A

Description Due to well-known transaction reordering attacks on the ERC20 approve method,
the developers should consider adding functions that atomically modify the allowance value.

Recommendation Consider adding the increaseAllowance and decreaseAllowance methods
from the OpenZeppelin ERC20 implementation.

© 2022 Veridise Inc. Veridise Audit Report: Helio

4.1 Detailed Description of Bugs 41

4.1.33 V-HEL-VUL-033: Interaction.borrow has ineffective use of mulDiv

Severity Warning Commit c2b0aba
Type Gas Optimization Status Fixed
Files contracts/Interaction.sol

Functions borrow()

Description Explicit use of usbAmount * (10 ** 27) in the “ceiling” check negates the benefit
of using hMath.mulDiv to avoid uint256 multiplication overflow. Given that usbAmount * RAY is
also computed and passed to vat.move, there is no benefit to using hMath.mulDiv over a simple
multiply and divide.

1 function borrow(address token, uint256 usbAmount) external returns (uint256) {

2 ...

3

4 int256 dart = int256(hMath.mulDiv(usbAmount, 10 ** 27, rate));

5 if (uint256(dart) * rate < usbAmount * (10 ** 27)) {

6 dart += 1; //ceiling

7 }

8 vat.frob(collateralType.ilk, msg.sender, msg.sender, msg.sender, 0, dart);

9 uint256 mulResult = rate * uint256(dart);

10 vat.move(msg.sender, address(this), usbAmount * RAY);

11

12 ...

13 }

Snippet 4.36: Location were gas can be saved by using multiply/divide rather than muldiv

Recommendation Simply use multiply/divide to save on gas.

Veridise Audit Report: Helio © 2022 Veridise Inc.

42 4 Vulnerability Report

4.1.34 V-HEL-VUL-034: Constants for “Year” do not account for leap years

Severity Warning Commit c2b0aba
Type Logical Error Status Fixed
Files contracts/HelioRewards.sol, contracts/Interaction.sol

Functions

Description There are several constants of the form YEAR = 365 * 24 * 3600 which represent
the number of seconds in a year. However, on average, a year lasts 365.25 days. This leads to a
slight rounding error where the duration will be off by 1 day every 4 years.

1 contract Interaction is Initializable, UUPSUpgradeable, OwnableUpgradeable {

2 ...

3

4 uint256 constant YEAR = 365 * 24 * 3600; //seconds

5

6 ...

7 }

Snippet 4.37: Location of the YEAR constant in the Interaction contract

Recommendation For more precision, consider leap years in the computation.

© 2022 Veridise Inc. Veridise Audit Report: Helio

4.1 Detailed Description of Bugs 43

4.1.35 V-HEL-VUL-035: Code inconsistent with comments

Severity Warning Commit c2b0aba
Type Logical Error Status Fixed
Files contracts/ceros/CerosRouter.sol

Functions deposit()

Description A comment in the deposit function is inconsistent with the computation of the
local variable poolABNBcAmount. The comment states that poolABNBcAmount should be amount -

relayerFee - amount*(1-ratio), while the logic essentially sets the variable to amount * ratio

- relayerFee.

1 function deposit() external payable override nonReentrant

2 returns (uint256 value)

3 {

4 ...

5

6 // let’s calculate returned amount of aBNBc from BinancePool

7 // poolABNBcAmount = amount - relayerFee - amount*(1-ratio);

8 uint256 minumunStake = _pool.getMinimumStake();

9 uint256 relayerFee = _pool.getRelayerFee();

10 uint256 ratio = _certToken.ratio();

11 uint256 poolABNBcAmount;

12 if (amount >= minumunStake + relayerFee) {

13 poolABNBcAmount = ((amount - relayerFee) * ratio) / 1e18;

14 }

15

16 ...

17 }

Snippet 4.38: Location where a comment is inconsistent with the program logic in deposit

Recommendation Determine which value for poolABNBcAmount is correct and update the
incorrect version of the computation.

Veridise Audit Report: Helio © 2022 Veridise Inc.

44 4 Vulnerability Report

4.1.36 V-HEL-VUL-036: Should only cast to interfaces that contracts inherit from

Severity Warning Commit c2b0aba
Type Maintainability Status Fixed
Files All

Functions Ex. Interaction.totalPegLiquidity

Description There are many instances where addresses are cast to interfaces that the underlying
contract does not inherit from. This is common in MakerDAO as they typically define the
interfaces required by a contract in its corresponding file. However, this pattern makes it difficult
to maintain the source code since any updates to an interface will require updates to many
locations. If one of these interfaces is incorrect, it could lead to a DOS or undefined behavior.
Greater confidence is gained by only calling functions in inherited interfaces since the compiler
will complain if the underlying implementation does not contain a concrete implementation of
a function declared in the interface.

1 interface GemJoinLike {

2 function join(address usr, uint256 wad) external;

3

4 function exit(address usr, uint256 wad) external;

5

6 function gem() external view returns (IERC20Upgradeable);

7 }

Snippet 4.39: The declaration of the GemJoinLike interface in Interaction.sol

1 contract GemJoin {

2 ...

3 }

Snippet 4.40: The GemJoin contract declaration that does not inherit from GemJoinLike

Recommendation Update the contract definitions so that they inherit from the interfaces used
by other contracts. In addition, only make calls to contracts using interfaces that the contract
inherits from.

© 2022 Veridise Inc. Veridise Audit Report: Helio

4.1 Detailed Description of Bugs 45

4.1.37 V-HEL-VUL-037: Two different versions of OpenZeppelin are being used

Severity Warning Commit c2b0aba
Type Maintainability Status Fixed
Files All

Functions N/A

Description Currently two different versions of OpenZeppelin are in use. One is the vanilla
OpenZeppelin library while the other is the upgradable OpenZeppelin library.

1 import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";

2 import "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol";

3 import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";

4 import "@openzeppelin/contracts-upgradeable/token/ERC20/utils/SafeERC20Upgradeable.

sol";

5 import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";

Snippet 4.41: The OpenZeppelin imports in Interaction.sol

1 import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

2 import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

Snippet 4.42: The OpenZeppelin imports in AuctionProxy.sol

Recommendation Since the same contracts are cast to interfaces from both libraries, we suggest
only using one of these libraries for consistency and in case of implementation differences.

Veridise Audit Report: Helio © 2022 Veridise Inc.

46 4 Vulnerability Report

4.1.38 V-HEL-VUL-038: Anyone can burn their own HAY stablecoin, affecting total
supply

Severity Warning Commit c2b0aba
Type Logical Error Status Intended Behavior
Files contracts/usb.sol

Functions burn

Description Currently anyone can burn their own HAY stablecoin, reducing the total supply.
Without proper mitigation methods, giving users such an ability could affect the price of the
stablecoin and therefore could cause HAY to unpeg from the target currency.

1 function burn(address usr, uint wad) external {

2 require(balanceOf[usr] >= wad, "Hay/insufficient-balance");

3 if (usr != msg.sender && allowance[usr][msg.sender] != type(uint256).max) {

4 require(allowance[usr][msg.sender] >= wad, "Hay/insufficient-allowance");

5 allowance[usr][msg.sender] = sub(allowance[usr][msg.sender], wad);

6 }

7 balanceOf[usr] = sub(balanceOf[usr], wad);

8 totalSupply = sub(totalSupply, wad);

9 emit Transfer(usr, address(0), wad);

10 }

Snippet 4.43: The burn function of the HAY stablecoin

Recommendation The burning behavior of users should transfer the coins to an admin
account. The admin can then be given the ability to truly burn coins to protect the stability of
the currency.

Developer Response The developers acknowledged this risk and stated that they have other
mechanisms to protect the stability of the HAY stablecoin.

© 2022 Veridise Inc. Veridise Audit Report: Helio

4.1 Detailed Description of Bugs 47

4.1.39 V-HEL-VUL-039: owner variable shadowing by function parameter

Severity Warning Commit c2b0aba
Type Variable Shadowing Status Acknowledged
Files contracts/ceros/{CeToken,CerosRouter,CeVault}.sol

Functions depositABNBcFrom, _withdraw, _deposit, claimYieldsFor, etc.

Description Although the affected contracts use the Ownable interface (or some derivative),
they contain some functions that each declare owner as a function parameter. This can lead to
issues where the owner function parameter is used rather than the owner contract variable. In
addition, if the function parameter is renamed it can also cause the owner contract variable to be
mistakenly used instead of the function parameter if the code isn’t updated properly.

1 contract CeVault is IVault, OwnableUpgradeable, PausableUpgradeable,

2 ReentrancyGuardUpgradeable

3 {

4 ...

5

6 function _deposit(

7 address owner,

8 address recipient,

9 uint256 amount

10) private returns (uint256) {

11 uint256 ratio = _aBNBc.ratio();

12 _aBNBc.transferFrom(msg.sender, address(this), amount);

13 uint256 toMint = (amount * 1e18) / ratio;

14 _depositors[owner] += amount; // aBNBc

15 _ceTokenBalances[owner] += toMint;

16 // mint ceToken to recipient

17 ICertToken(_ceToken).mint(recipient, toMint);

18 emit Deposited(msg.sender, recipient, toMint);

19 return toMint;

20 }

21

22 ...

23 }

Snippet 4.44: A function that shadows the owner contract variable

Recommendation To avoid confusion, never use owner as a function parameter name.

Veridise Audit Report: Helio © 2022 Veridise Inc.

48 4 Vulnerability Report

4.1.40 V-HEL-VUL-040: Invalid cast to ICertToken in CeVault.sol

Severity Warning Commit c2b0aba
Type Maintainability Status Acknowledged
Files contracts/ceros/CeVault.sol

Functions _deposit, _burn

Description Based on the test cases provided by the developers, the _ceToken state variable
is intended to be instantiated with a contract of type CeToken. However, the _ceToken state
variable is incorrectly cast to ICertToken, which is not implemented by CeToken. Although the
methods in CeVault currently do not invoke any ICertToken methods on _ceToken state variable,
any attempted use of ICertToken methods will result in reverts.

1 function _deposit(

2 address owner,

3 address recipient,

4 uint256 amount

5) private returns (uint256) {

6 ...

7

8 ICertToken(_ceToken).mint(recipient, toMint);

9

10 ...

11 }

Snippet 4.45: Location where _ceToken is cast to an ICertToken

Recommendation The developers should change the type of _ceToken to IERC20 and update
the _ceToken casts in _deoosit and _burn.

© 2022 Veridise Inc. Veridise Audit Report: Helio

4.1 Detailed Description of Bugs 49

4.1.41 V-HEL-VUL-041: Dead Code

Severity Informational Commit c2b0aba
Type Dead Code Status Fixed
Files contracts/Interaction.sol

Functions borrowApr

Description There are currently two calls to _checkIsLive(collateralType.live) that imme-
diately follow each other. Since this function is pure, the second call is redundant.

1 function borrowApr(address token) public view returns (uint256) {

2 CollateralType memory collateralType = collaterals[token];

3 _checkIsLive(collateralType.live);

4 _checkIsLive(collateralType.live);

5

6 ...

7 }

Snippet 4.46: Location of the dead code

Recommendation Remove one of the _checkIsLive(collateralType.live) calls.

Veridise Audit Report: Helio © 2022 Veridise Inc.

50 4 Vulnerability Report

4.1.42 V-HEL-VUL-042: ICertToken does not subclass IERC20

Severity Informational Commit c2b0aba
Type Maintainability Status Acknowledged
Files contracts/ceros/interfaces/ICertToken.sol

Functions N/A

Description Although ICertToken appears to be derived from IERC20, it does not inherit from
IERC20. This puts it at risk of being inconsistent with the IERC20 interface.

1 interface ICertToken {

2 function totalSupply() external view returns (uint256);

3 function balanceOf(address account) external view returns (uint256);

4 function transfer(address to, uint256 amount) external returns (bool);

5 function approve(address spender, uint256 amount) external returns (bool);

6 function allowance(

7 address owner,

8 address spender

9) external view returns (uint256);

10

11 function transferFrom(

12 address from,

13 address to,

14 uint256 amount

15) external returns (bool);

16

17 function burn(address account, uint256 amount) external;

18 function mint(address account, uint256 amount) external;

19

20 event Transfer(address indexed from, address indexed to, uint256 value);

21 event Approval(

22 address indexed owner,

23 address indexed spender,

24 uint256 value

25);

26

27 function balanceWithRewardsOf(address account) external returns (uint256);

28 function isRebasing() external returns (bool);

29 function ratio() external view returns (uint256);

30 }

Snippet 4.47: The declaration of ICertToken

Recommendation Change the ICertToken contract so it inherits from IERC20.

© 2022 Veridise Inc. Veridise Audit Report: Helio

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Bugs

	Detailed Description of Bugs
	V-HEL-VUL-001: Interaction withdraw denial of service
	V-HEL-VUL-002: Fraudulent rewards can be generated with flashloan
	V-HEL-VUL-003: Missing jug initialization
	V-HEL-VUL-004: Users can interact with vat directly
	V-HEL-VUL-005: AuctionProxy needs more management methods
	V-PAR-HEL-006: Users can bypass AuctionProxy by using unprotected MakerDAO functions
	V-HEL-VUL-007: No check for existing tokens in setCollateralType
	V-HEL-VUL-008: Problems with test suite
	V-HEL-VUL-009: Not all liquidation incentives are passed onto the user
	V-HEL-VUL-010: startAuction does not update rewards
	V-HEL-VUL-011: Cannot Re-Enable Collateral
	V-HEL-VUL-012: HelioRewards emits Stop event in start() method
	V-HEL-VUL-013: buyFromAuction can impact Interaction state
	V-HEL-VUL-014: HelioProvider providelnABNBc() has awkward approval requirements
	V-HEL-VUL-015: Bugs when removing users from usersInDebt
	V-HEL-VUL-016: enableCollateralType does not initialize ilks
	V-HEL-VUL-017: AuctionProxy assumes permissions to USB/USB join
	V-HEL-VUL-018: buyFromAuction involves awkward HAY approval process
	V-HEL-VUL-019: buyFromAuction does not revoke vat permissions
	V-HEL-VUL-020: Divided by zero #1
	V-HEL-VUL-021: Divided by zero #2
	V-HEL-VUL-022: removeCollateralType does not revoke gemJoin permissions
	V-HEL-VUL-023: setRate does not check token initialization
	V-HEL-VUL-024: Reinitializing pool causes rewards to be granted multiple times
	V-HEL-VUL-025: Approve’s return value ignored
	V-HEL-VUL-026: VatLike interface in jug does not match definition of vat
	V-HEL-VUL-027: Opportunities to avoid multiplication overflow
	V-HEL-VUL-028: User added to usersInDebt in deposit
	V-HEL-VUL-029: Potential HelioProvider and CerosRouter address desync
	V-HEL-VUL-030: Divided by zero #3
	V-HEL-VUL031: Unused Flop/Flap Code
	V-HEL-VUL032: usb.sol does not implement atomic allowance modification method
	V-HEL-VUL-033: Interaction.borrow has ineffective use of mulDiv
	V-HEL-VUL-034: Constants for “Year” do not account for leap years
	V-HEL-VUL-035: Code inconsistent with comments
	V-HEL-VUL-036: Should only cast to interfaces that contracts inherit from
	V-HEL-VUL-037: Two different versions of OpenZeppelin are being used
	V-HEL-VUL-038: Anyone can burn their own HAY stablecoin, affecting total supply
	V-HEL-VUL-039: owner variable shadowing by function parameter
	V-HEL-VUL-040: Invalid cast to ICertToken in CeVault.sol
	V-HEL-VUL-041: Dead Code
	V-HEL-VUL-042: ICertToken does not subclass IERC20

