
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

Veridise Inc.
May 6, 2022

▶ Prepared For:

DogeChain.
dogechain.info

▶ Prepared By:

Ben Mariano
Chaofan Shou
Jacob Van Geffen
Andreea Buterchi
Bryan Tan
Yu Feng
Isil Dillig

▶ Contact Us: contact@veridise.com

▶ Version History:

May 20, 2022 V1
May 5, 2022 Draft

© 2022 Veridise Inc. All Rights Reserved.

dogechain.info
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5

3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 6

4 Common Vulnerability Analysis 9

4.1 Detailed Description of Bugs . 9
4.1.1 Misbehaving nodes are not reported or punished by the consensus layer 9
4.1.2 Segmentation violation in the consensus module 11
4.1.3 Denial of service in the transaction pool module 12
4.1.4 Segmentation violation during block gossiping A1 13
4.1.5 Segmentation violation during block gossiping B1 14
4.1.6 Segmentation fault during block gossiping B2 15
4.1.7 Segmentation fault during transaction gossiping 17
4.1.8 Index out of range in consensus message verification 18
4.1.9 Panic in the consensus module . 19
4.1.10 Panic in send transaction JSON RPC endpoint 20
4.1.11 Potential divided-by-zero in GetEpoch 20
4.1.12 Potential division-by-zero in IsLastOfEpoch 21
4.1.13 TestExtraEncoding in extra_test.go fails on edge cases 21
4.1.14 Potential panic in handling message . 22
4.1.15 Denial of service in RoundChangeState 23
4.1.16 Index out of range in fastrlp . 23
4.1.17 Index out of range in go-web3 (ethgo) . 25

5 Formalization and Analysis of Custom Correctness Properties 27

5.1 Summary of Custom Properties . 27
5.2 Formalization . 28
5.3 Results . 29

5.3.1 Picking a new round indefinitely . 29
5.3.2 Failing AwaitingProposal-to-Preparing transition 31
5.3.3 Incorrect timeouts . 33
5.3.4 Failing Preparing-to-Ready transition . 35

6 Smart Contract Audit 37

6.1 Detailed Description of Issues . 37
6.1.1 Bug in Governance contract leads to double-spending attack 37
6.1.2 ETH fee cannot be recovered from Bridge contract 38
6.1.3 Bridge withdraw method has no access controls 39

Veridise Audit Report: Dogechain © 2022 Veridise Inc.

6.1.4 Bridge order signers can be invalidated 39
6.1.5 Missing check allows creation of "ghost validators" 40
6.1.6 Potential Reentrancy issues . 41
6.1.7 Unchecked casts to IGovernor interface 42
6.1.8 Staking for PoS with no cool down period 43

Executive Summary 1

From May 1 to May 20, 2022, DogeChain engaged Veridise to review the security of the
DogeChain consensus mechanism. The review covered block validation, signature generation
and verification, JsonRPC, helpers, update mechanisms, node resumption, and distributed key
generation. Veridise conducted this assessment over 15 person-weeks, with five engineers work-
ing from commit 9dc1491 of the dogechain-lab/jury and ./jury-main-contract repository.
The auditing strategy involved tool-assisted analysis of the source code performed by Veridise
engineers. The tools that were used in the audit included a combination of static analysis,
fuzzing, property-based testing, bounded model checking, and formal verification. Some of
these tools were developed specifically for the purpose of performing a thorough audit of the
DogeChain protocols and contracts.

Summary of issues detected. The audit uncovered 29 issues, 15 of which are assessed to be
high severity by Veridise auditors. One of the high-severity issues (V-DOGE-VUL-001) involves
missing input validation, which could lead to memory exhaustion. The issue could be leveraged
by a malicious node operator to launch denial-of-service attacks against other nodes on the
same subnet. The second high-severity issue (V-DOGE-VUL-002) is related to validators in the
set listening on gossips from other validators to form consensus. Developers should assume
that these gossips could be from a malicious validator in the network and properly sanitize the
incoming messages in the channel. However, the current implementation does not fully validate
and sanitize these unsafe messages.

V-DOGE-VUL-003 is another issue of high severity. The transaction pool module sets a threshold
on the amount of transactions that could be kept inside the transaction pool (i.e., having more
transactions than threshold makes the transaction pool overflow). The threshold is tracked by
using a counter inside the slotGauge interface. When the counter is equal to the threshold, no
new transactions would be added to the transaction pool. By flooding the JSON RPC interface
with a significant amount of valid transactions (e.g., 40960 transactions when threshold is
4096), it is possible to make the counter of slotGauge equal to the threshold while never
getting decremented, even when the transaction pool is empty later. This bug could cause the
transaction pool to get locked and throw ErrTxPoolOverflow exceptions for all following new
transactions.

Code assessment. The core DogeChain consensus protocol is based on IBFT, another Byzantine
fault-tolerant protocol whose implementation (in Golang) is originally forked from Polygon-edge.
At a high level, Byzantine consensus is achieved deterministically as follows: 1) a leader or bid-
der/proposer is selected. 2) Each proposed block goes through several stages of communication
between the nodes before being added and confirmed on the blockchain.

The protocol’s implementation relies on a number of components that take turns validating
incoming artifacts, proposing new blocks, notarizing validated blocks, and finalizing notarized
blocks. This type of loosely coupled implementation makes it easier to ensure that the protocol’s
security properties are upheld by the implementation. The codebase has reasonable test coverage

Veridise Audit Report: Dogechain © 2022 Veridise Inc.

dogechain-lab/jury
./jury-main-contract

2 1 Executive Summary

in terms of unit test cases. However, since a lot of issues that we discovered are also present in
Polygon-edge, we strongly recommend the DogeChain team to resolve the high severity issues in
conjunction with the developers Polygon-edge.

Other recommendations. In accordance with the contract between DogeChain and Veridise,
our audit only covered a fraction of the core DogeChain codebase. Going forward, we strongly
recommend that the DogeChain team extend their test harness to test for more types of malicious
behavior, such as message spam (e.g., nodes spamming the network with duplicate or invalid
messages). We also recommend that the DogeChain team implement property tests (e.g., using
a framework like quickcheck) to ensure that messages with randomized fields are handled
correctly by the artifact validation mechanism. Finally, we also advise the DogeChain team to
apply formal methods tools to other critical parts of the code base that were out of scope for the
Veridise audit. As formal verification considers all possible edge cases, such technology can
uncover deeper logical bugs that are not easy to identify using testing or manual inspection.

Disclaimer. The Veridise model checker takes as input a software artifact and a specification
and formally proves that the artifact satisfies the specification in all scenarios (up to some
bound). Importantly, the guarantees of the Veridise’s model checker are scoped to the provided
specification, and the tool does not check any cases not covered by the specification. Furthermore,
as standard in software model checking, Veridise also considers all inputs up to some fixed;
hence, the guarantees provided by the model checker only pertain to inputs up to that bound.

To complement verification, the Veridise fuzzer utilizes a best-effort strategy to maximize the
number of bugs that can be found by the tool within the given time frame. In contrast to the
model checker, the fuzzer does not systematically cover all cases; however, it can construct
malicious inputs that exceed the bound of the model checker.

We hope that this report is informative but provide no warranty of any kind, explicit or implied.
The contents of this report should not be construed as a complete guarantee that the system
is secure in all dimensions. In no event shall Veridise or any of its employees be liable for any
claim, damages or other liability, whether in an action of contract, tort or otherwise, arising
from, out of or in connection with the results reported here.

© 2022 Veridise Inc. Veridise Audit Report: Dogechain

Project Dashboard 2

Table 2.1: Application Summary.

Name Version Type Platform

DogeChain-consensus 9dc1491 Golang Native/Linux
DogeChain-contracts 636f666 Solidity Native/Linux

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort

May 1-21, 2022 Manual & Tools 5 15 person-weeks

Table 2.3: Vulnerability Summary.

Name Number Fixed

High-Severity Issues 19 8
Medium-Severity Issues 4 2
Low-Severity Issues 8 4
Informational-Severity Issues 0 1
Undetermined-Severity Issues 0 1

Table 2.4: Category Breakdown.

Name Number

Auditing & logging 5
Data Validation 20
Logic 6

Veridise Audit Report: Dogechain © 2022 Veridise Inc.

Audit Goals and Scope 3

3.1 Audit Goals

The engagement was scoped to provide a security assessment of the DogeChain consensus
protocol and its smart contract implementation. Specifically, for the DogeChain consensus
protocol, we sought to answer the following questions:

▶ Is the protocol robust to the number of malicious nodes tolerated by IBFT (𝑛−1
3)?

▶ Can a non-validator node ever improperly send a prepare or preprepare message?
▶ Will an inactive proposer eventually be replaced?
▶ Can the assignment of a new proposer be controlled by a malicious node?
▶ Can the validator set be updated after each epoch?
▶ Can a non-proproser node propose a block?
▶ Can a node enter the CommitState and insert a block without having received the

appropriate number of preprepare/commit messages?
▶ Will a node in the RoundChange state always eventually exit the RoundChange state?
▶ Can an ill-formed message ever cause a node to crash?
▶ Will a validator eventually transition out of the SyncState to the AcceptState?

For DogeChain contracts, we focus on the follow questions:

▶ Can a stakeholder always reclaim their $DOGE using the Bridge contract?
▶ Is the reward correctly calculated for both staked $DOGE and staked $DC?
▶ Can an unstaked user incorrectly withdraw staked funds?
▶ If a node is made a validator, does it always meet the criteria to become a validator (i.e.,

have staked at least the minimum threshold and have passed community authority/au-
thentication?

▶ Can a non-authorized node change the threshold to become a validator?
▶ Can the number of validators ever fall under the minimum threshold?

3.2 Audit Methodology & Scope

Audit Methodology. Since our goal is to audit a wide spectrum of the DogeChain code base,
ranging from low-level consensus protocol implementation to smart contracts at the application
level, our audit methodology involved a combination of human experts and wide variety of
automated program analysis tools. In particular, we conducted our audit with the aid of the
following technologies:

▶ Static analysis. Since the core part of the DogeChain blockchain is written in Golang, we
utilized a number of static analysis tools for Golang. In particular, we used static analysis
to identify common vulnerabilities in Golang programs as well as suspicious code that is
not idiomatic. Such static analysis was performed with the aid of a customized version of
the gosec analyzer.

Veridise Audit Report: Dogechain © 2022 Veridise Inc.

6 3 Audit Goals and Scope

▶ Fuzzing. We also performed fuzz testing to evaluate whether the code behaves correctly
under unexpected inputs. Leveraging the LibAFL tool, our fuzzing strategy tests the
DogeChain consensus protocol by applying structural mutations to inputs. Using this
fuzzing strategy, we were able to uncover a number of DoS issues as well as logical flaws
in the protocol implementation (Section 4).

▶ Property-based testing. We complement fuzzing with another testing technique called
property-based testing. The goal of this approach is to automatically generate test cases that
satisfy a given pre-condition and check that the desired property holds for all generated
inputs. We perform property-based testing using a tool called Rapid. In more detail,
we formalized important correctness properties of the consensus protocol in Veridise’s
specification language and implemented a tool to translate these properties to suitable
tests in Rapid.

▶ Formal verification. For properties that are not falsified using testing or static analysis,
we also used our Veridise infrastructure to perform verification. In particular, we built
a bounded verifier for Go on top of the Rosette framework, with the goal of statically
checking important correctness properties of the DogeChain consensus protocol. To this
end, we formalized key properties of the protocol (Section 5) and used our verifier to
statically check whether these properties hold.

Scope. To determine the scope of this audit, we first reviewed the provided documentation on the
DogeChain consensus protocol. During this phase, we tried to identify any implicit assumptions
made by the protocol, potential edge cases, under-specified components of the protocol, and
the behavior of the system contract. Based on the documentation, we formalized key properties
to be checked in Veridise’s specification language, which are useful both for verification and
property-based testing, as described earlier.

In terms of the scope of the audit, the key components we considered include the following:

▶ The IBFT consensus protocol
▶ JsonRPC
▶ System contract for staking
▶ Helper functions such as keccak, keystore, bridge, etc
▶ DogeChain application contract

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Moderate

Likely Warning Low Moderate High
Very Likely Low Moderate High Critical

In this case, we judge the likelihood of a vulnerability as follows:

© 2022 Veridise Inc. Veridise Audit Report: Dogechain

3.3 Classification of Vulnerabilities 7

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows:

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

Veridise Audit Report: Dogechain © 2022 Veridise Inc.

Common Vulnerability Analysis 4

To evaluate the robustness of DogeChain consensus protocol, part of our audit focused on the
detection of common security problems that appear in distributed systems and blockchains. To
perform this audit, we first identified a set of common bugs and vulnerabilities from existing
databases and built a comprehensive fuzzing infrastructure based on LibAFL. Our fuzzer
simulates the behavior of a malicious validator that actively generates adversarial transactions
to exercise edge cases that are unlikely to be revealed by regular unit test cases. Table 4.1
summarizes a list of serious issues that are discovered by our tool so far.

Table 4.1: Summary of Checking for Common Vulnerabilities.

ID Description Severity Status

V-DOGE-VUL-001 Misbehaved node high open
V-DOGE-VUL-002 Segmentation fault high fixed
V-DOGE-VUL-003 Denial of Service high open
V-DOGE-VUL-004 Segmentation fault high fixed
V-DOGE-VUL-005 Segmentation fault high fixed
V-DOGE-VUL-006 Segmentation fault high fixed
V-DOGE-VUL-007 Segmentation fault high fixed
V-DOGE-VUL-008 Index out of range high fixed
V-DOGE-VUL-009 Panic high fixed
V-DOGE-VUL-010 Panic Moderate fixed
V-DOGE-VUL-011 divide-by-zero Low fixed
V-DOGE-VUL-012 divide-by-zero Low fixed
V-DOGE-VUL-013 Test case failed Low fixed
V-DOGE-VUL-014 Panic Low fixed
V-DOGE-VUL-015 Denial of service high open
V-DOGE-VUL-016 Index error in fastrlp high Unknown
V-DOGE-VUL-017 Index error in go-web3 Moderate Unknown

4.1 Detailed Description of Bugs

In this section, we provide a detailed description of each vulnerability.

4.1.1 Misbehaving nodes are not reported or punished by the consensus layer

Severity High Difficulty Medium
Type Data Validation Finding ID V-DOGE-VUL-001

Target jury/consensus/ibft.go Status Open

Veridise Audit Report: Dogechain © 2022 Veridise Inc.

10 4 Common Vulnerability Analysis

Description The consensus protocol implemented by DogeChain assumes that at most (N - 1)
/ 3 nodes are Byzantine, where N is the size of the committee. (To be able to aggregate threshold
signature shares for new CUPs, a committee of (2N - 1) / 3 honest nodes is required.) Typically,
economic incentives are used to encourage participating nodes to follow the protocol and to
punish Byzantine nodes. However, the current implementation of the protocol does not take
any action when potentially malicious messages are detected. This is true even for messages
that are certain to be malicious, like equivocations from the lowest ranked block maker. This
gives Byzantine nodes more freedom to act maliciously without being detected or punished by
the honest nodes in the network.

1 func (i *Ibft) runSyncState() {

2 ...

3 for i.isState(SyncState) {

4 // try to sync with the best-suited peer

5 p := i.syncer.BestPeer()

6 if p == nil {

7 // if we do not have any peers, and we have been a validator

8 // we can start now. In case we start on another fork this will be

9 // reverted later

10 if i.isValidSnapshot() {

11 // initialize the round and sequence

12 header := i.blockchain.Header()

13 i.state.view = &proto.View{

14 Round: 0,

15 Sequence: header.Number + 1,

16 }

17 //Set the round metric

18 i.metrics.Rounds.Set(float64(i.state.view.Round))

19

20 i.setState(AcceptState)

21 } else {

22 time.Sleep(1 * time.Second)

23 }

24

25 continue

26 }

Exploit Scenario A malicious node operator executes a denial-of-service attack against a
number of nodes in the network. Some of the malicious messages are detected as malformed by
honest nodes, but since there is no built-in mechanism to report or punish the attacker, other
honest nodes are not alerted, and the malformed messages are simply dropped.

Recommendations In the short term, we recommend improving the validation of incoming
messages and revising the validation mechanism so that it returns a different error type for
messages that are malicious. We recommend that you ensure that the system broadcasts any
malicious behavior across the network so that it becomes known to all nodes.

In the long term, we recommend implementing a slashing mechanism to disincentivize nodes
from acting maliciously.

© 2022 Veridise Inc. Veridise Audit Report: Dogechain

4.1 Detailed Description of Bugs 11

Severity High Difficulty Medium
Type Data Validation Finding ID V-DOGE-VUL-002

Target jury/consensus/ibft.go Status Fixed

4.1.2 Segmentation violation in the consensus module

Description Validators in the set listen on gossips from other validators to form consensus.
Developers should assume that these gossips could be from a malicious validator in the
network and properly sanitize the incoming messages in the channel. However, the current
implementation does not fully validate and sanitize these unsafe messages. Specifically, the
proposal attribute of gossiping message could be set to an arbitrary object, including being nil,
while the following code attempts to dereference this attribute without proper validation. The
missing validation could allow a malicious validator to trigger a null pointer dereference on all
other validators, thereby crashing all of them or leading to denial of service (or potentially even
more serious consequences).

1 func (i *Ibft) runAcceptState() {

2 ...

3 for i.getState() == AcceptState {

4 msg, ok := i.getNextMessage(timeout)

5 if !ok {

6 return

7 }

8

9 if msg == nil {

10 i.setState(RoundChangeState)

11 continue

12 }

13

14 if msg.From != i.state.proposer.String() {

15 i.logger.Error("msg received from wrong proposer")

16 continue

17 }

18

19 // retrieve the block proposal

20 block := &types.Block{}

21 if err := block.UnmarshalRLP(msg.Proposal.Value); err != nil {

22 i.logger.Error("failed to unmarshal block", "err", err)

23 i.setState(RoundChangeState)

24

25 return

26 }

27 ...

28 }

29 }

Exploit Scenario An attacker owning a validator node could send a maliciously-crafted gossip
message to all validators and conduct a denial of service attack to bring down all validators
in the network. With no validator in the network, no new block would be formed and no new
transaction could be processed. An attacker could also make their validator node the only
validator to survive in the validators set and conduct 51% attack, allowing them to manipulate
transactions in the new blocks.

Veridise Audit Report: Dogechain © 2022 Veridise Inc.

12 4 Common Vulnerability Analysis

Recommendations Consider adding a validation check as following:

1 func (i *Ibft) runAcceptState() {

2 ...

3 for i.getState() == AcceptState {

4 msg, ok := i.getNextMessage(timeout)

5 if !ok {

6 return

7 }

8

9 if msg == nil {

10 i.setState(RoundChangeState)

11 continue

12 }

13

14 if msg.From != i.state.proposer.String() {

15 i.logger.Error("msg received from wrong proposer")

16 continue

17 }

18

19 + if msg.Proposal == nil {

20 + // A malicious node conducted a DoS attack

21 + continue

22 + }

23

24 // retrieve the block proposal

25 block := &types.Block{}

26 if err := block.UnmarshalRLP(msg.Proposal.Value); err != nil {

27 i.logger.Error("failed to unmarshal block", "err", err)

28 i.setState(RoundChangeState)

29

30 return

31 }

32 ...

33 }

34 }

4.1.3 Denial of service in the transaction pool module

Severity High Difficulty Medium
Type Data Validation Finding ID V-DOGE-VUL-003

Target jury/consensus/ibft.go Status Open

Description The transaction pool module sets a threshold on amount of transactions that
could be kept inside the transaction pool (i.e., having more transactions than threshold makes
the transaction pool overflow). The threshold is tracked by using counter inside slotGauge

interface. When the counter is equal to the threshold, no new transactions would be added
to the transaction pool. By flooding the JSON RPC interface with significant amount of valid
transactions (e.g., 40960 transactions when threshold is 4096), it is possible to make the counter of
slotGauge equal to the threshold while never get decremented, even when the transaction pool
is empty later. This bug could make the transaction pool locked and throw ErrTxPoolOverflow

exceptions for all following new transactions. We are still investigating the reason why the
counter is not decremented after transactions are removed from the transaction pool.

© 2022 Veridise Inc. Veridise Audit Report: Dogechain

4.1 Detailed Description of Bugs 13

1 func (p *TxPool) addTx(origin txOrigin, tx *types.Transaction) error {

2 ...

3 // check for overflow

4 if p.gauge.read()+slotsRequired(tx) > p.gauge.max {

5 return ErrTxPoolOverflow

6 }

7 ...

8 }

Exploit Scenario A malicious client with funds (for gas fee of the transactions) can conduct
denial of service. Such an attack could cause all nodes in the network no longer able to accept
new transactions permanently unless they are restarted or reset.

Recommendations In the short term, we recommend removing the overflow check in addTx

function because the transaction pool can support as many transactions as memory of the node
can tolerate. Another option could be setting sloGauge.max to be a very large value.

In the long term, we recommend investigating the true root cause of the bug and fix it in a more
principled way.

4.1.4 Segmentation violation during block gossiping A1

Severity High Difficulty Easy
Type Data Validation Finding ID V-DOGE-VUL-004

Target jury/protocol/service_v1.go Status Fixed

Description All participating nodes in the blockchain listen on the gossip of new blocks
leveraging Protobuf and libp2p. Developers should not assume that these gossips are from
valid nodes and should properly validate and sanitize the gossip messages. Specifically, the
proposal attribute of gossiping message could be set to an arbitrary object, including nil, but
the following code attempts to dereference this attribute without proper validation. The missing
validation could allow a malicious validator to trigger a null pointer dereference on all other
nodes (including validators), thus crashing all of them and leading to denial of service or
potentially more serious consequences.

1 func (s *serviceV1) Notify(ctx context.Context, req *proto.NotifyReq) (*empty.Empty, error) {

2 ...

3

4 b := new(types.Block)

5 if err := b.UnmarshalRLP(req.Raw.Value);

6 ...

7 }

Exploit Scenario Although the endpoint is intended to listen only on messages from validators
(consensus module), anyone can access such an endpoint. As a result, any attacker could send a
maliciously-crafted gossip message to all nodes, including validators, and conduct a denial of
service attack to bring down all nodes in the network. With no nodes in the network, no new

Veridise Audit Report: Dogechain © 2022 Veridise Inc.

14 4 Common Vulnerability Analysis

block would be formed and no new transactions could be processed. An attacker could also
make their validator node the only validator to survive in the validators set and conduct a 51%
attack, allowing them to manipulate transactions in the new blocks.

Recommendations Consider adding a validation check as following:

1 func (s *serviceV1) Notify(ctx context.Context, req *proto.NotifyReq) (*empty.Empty, error) {

2 ...

3

4 b := new(types.Block)

5 + if req.Raw == nil {

6 + // malicious node conducted denial of service

7 + return &empty.Empty{}, nil

8 + }

9 if err := b.UnmarshalRLP(req.Raw.Value);

10 ...

11 }

4.1.5 Segmentation violation during block gossiping B1

Severity High Difficulty Medium
Type Data Validation Finding ID V-DOGE-VUL-005

Target jury/protocol/service_v1.go Status Fixed

Description All participating nodes in the blockchain request information from peers leverag-
ing Protobuf and libp2p. Developers should not assume that the peers of a node are benign and
should properly validate or sanitize their responses. Specifically, the block syncer’s requests
header from peers and parse the responses. The Spec attribute of responses could be set to
an arbitrary object, including being nil, while the following code attempts to dereference this
attribute without proper validation. The missing validation could allow a malicious node to
trigger a null pointer dereferencing on all its peers (including validators), thereby crashing them
or leading to denial of service (or potentially more serious consequences).

1 func getHeaders(clt proto.V1Client, req *proto.GetHeadersRequest) ([]*types.Header, error) {

2 resp, err := clt.GetHeaders(context.Background(), req)

3 ...

4 for _, obj := range resp.Objs {

5 header := &types.Header{}

6 if err := header.UnmarshalRLP(obj.Spec.Value); err != nil {

7 return nil, err

8 }

9

10 headers = append(headers, header)

11 }

12

13 return headers, nil

14 }

Exploit Scenario A malicious node could send a maliciously-crafted response to all its peers,
including validators, and conduct a denial of service attack to bring down nodes in the network.

© 2022 Veridise Inc. Veridise Audit Report: Dogechain

4.1 Detailed Description of Bugs 15

A resourceful attacker could also leverage this vulnerability to bring down all nodes in the
network, as long as they trick all nodes to add their malicious node as a peer. With no nodes in
the network, no new block would be formed and no new transaction could be processed. An
attacker could also make their validator node the only validator to survive in the validators set
and conduct a 51% attack, allowing them to manipulate transactions in the new blocks.

Recommendations Consider adding a validation check as following:

1 func getHeaders(clt proto.V1Client, req *proto.GetHeadersRequest) ([]*types.Header, error) {

2 resp, err := clt.GetHeaders(context.Background(), req)

3 ...

4 for _, obj := range resp.Objs {

5 header := &types.Header{}

6 + if obj.Spec == nil { continue }

7 if err := header.UnmarshalRLP(obj.Spec.Value); err != nil {

8 return nil, err

9 }

10

11 headers = append(headers, header)

12 }

13

14 return headers, nil

15 }

4.1.6 Segmentation fault during block gossiping B2

Severity High Difficulty Medium
Type Data Validation Finding ID V-DOGE-VUL-006

Target jury/protocol/syncer.go Status Fixed

Description All participating nodes in the blockchain request information from peers leverag-
ing Protobuf and libp2p. Developers should not assume that the peers of a node are benign and
should properly validate or sanitize their responses. Specifically, the block syncer’s requests
header from peers and parse the responses. The Spec attribute of responses could be set to an
arbitrary object, including nil, but the following code attempts to dereference this attribute
without proper validation. The missing validation could allow a malicious node to trigger a
null pointer dereference on all its peers (including validators), thereby causing them to crash or
resulting in denial of service (or potentially even more serious consequences).

1 func getHeader(clt proto.V1Client, num *uint64, hash *types.Hash) (*types.Header, error) {

2 req := &proto.GetHeadersRequest{}

3 ...

4

5 resp, err := clt.GetHeaders(context.Background(), req)

6 if err != nil {

7 return nil, err

8 }

9

10 if len(resp.Objs) == 0 {

11 return nil, nil

12 }

Veridise Audit Report: Dogechain © 2022 Veridise Inc.

16 4 Common Vulnerability Analysis

13

14 if len(resp.Objs) != 1 {

15 return nil, fmt.Errorf("unexpected more than 1 result")

16 }

17

18 header := &types.Header{}

19

20 if err := header.UnmarshalRLP(resp.Objs[0].Spec.Value); err != nil {

21 return nil, err

22 }

23

24 return header, nil

25 }

Exploit Scenario A malicious node could respond a maliciously-crafted response to all its
peers, including validators, and conduct a denial of service attack to bring down nodes in
the network. A resourceful attacker could also leverage this vulnerabilities to bring down all
nodes in the network, as long as they trick all nodes to add their malicious node as a peer. With
no nodes in the network, no new block would be formed and no new transaction could be
processed. An attacker could also make their validator node the only validator to survive in the
validators set and conduct 51% attack, allowing them to manipulate transactions in the new
blocks.

Recommendations Consider adding a validation check as following:

1 func getHeader(clt proto.V1Client, num *uint64, hash *types.Hash) (*types.Header, error) {

2 req := &proto.GetHeadersRequest{}

3 ...

4

5 resp, err := clt.GetHeaders(context.Background(), req)

6 if err != nil {

7 return nil, err

8 }

9

10 if len(resp.Objs) == 0 {

11 return nil, nil

12 }

13

14 if len(resp.Objs) != 1 {

15 return nil, fmt.Errorf("unexpected more than 1 result")

16 }

17

18 header := &types.Header{}

19

20 + if resp.Objs[0].Spec == nil {

21 + return nil, err

22 + }

23

24 if err := header.UnmarshalRLP(resp.Objs[0].Spec.Value); err != nil {

25 return nil, err

26 }

27

28 return header, nil

29 }

© 2022 Veridise Inc. Veridise Audit Report: Dogechain

4.1 Detailed Description of Bugs 17

4.1.7 Segmentation fault during transaction gossiping

Severity High Difficulty Easy
Type Data Validation Finding ID V-DOGE-VUL-007

Target jury/txpool/txpool.go Status Fixed

Description Validators listen on gossips from other validators to form consensus. Developers
should assume that these gossips could be from a malicious validator in the network and
properly sanitize the incoming messages in the channel. However, the current implementation
does not fully validate and sanitize these unsafe messages. Specifically, the raw attribute of
gossiping message could be set to an arbitrary object, including nil, but the following code
attempts to dereference this attribute without proper validation. The missing validation could
allow a malicious node to trigger a null pointer dereference on all validators, thus crashing all
of them, leading to denial of service or potentially more serious consequences.

1 func (p *TxPool) addGossipTx(obj interface{}) {

2 if !p.sealing {

3 return

4 }

5

6 raw := obj.(*proto.Txn) // nolint:forcetypeassert

7 tx := new(types.Transaction)

8

9 // decode tx

10 if err := tx.UnmarshalRLP(raw.Raw.Value); err != nil {

11 p.logger.Error("failed to decode broadcasted tx", "err", err)

12

13 return

14 }

15

16 // add tx

17 if err := p.addTx(gossip, tx); err != nil {

18 p.logger.Error("failed to add broadcasted txn", "err", err)

19 }

20 }

Exploit Scenario An attacker could send a maliciously-crafted gossip message to all validators
and conduct a denial of service attack to bring down all validators in the network. With no
validator in the network, no new block would be formed and no new transaction could be
processed. An attacker could also make their validator node the only validator to survive in the
validators set and conduct 51% attack, allowing them to manipulate transactions in the new
blocks.

Recommendations Consider adding a validation check like the following:

1 func (p *TxPool) addGossipTx(obj interface{}) {

2 if !p.sealing {

3 return

4 }

5

6 raw := obj.(*proto.Txn) // nolint:forcetypeassert

Veridise Audit Report: Dogechain © 2022 Veridise Inc.

18 4 Common Vulnerability Analysis

7 tx := new(types.Transaction)

8

9 + if raw.Raw == nil { return }

10

11 // decode tx

12 if err := tx.UnmarshalRLP(raw.Raw.Value); err != nil {

13 p.logger.Error("failed to decode broadcasted tx", "err", err)

14

15 return

16 }

17

18 // add tx

19 if err := p.addTx(gossip, tx); err != nil {

20 p.logger.Error("failed to add broadcasted txn", "err", err)

21 }

22 }

4.1.8 Index out of range in consensus message verification

Severity High Difficulty Easy
Type Data Validation Finding ID V-DOGE-VUL-008

Target jury/consensus/ibft.go Status Fixed

Description Validators listen on gossips from other validators to form consensus. Developers
should assume that these gossips could be from a malicious validator in the network and
properly sanitize the incoming messages in the channel. The current implementation uses
ecrecoverImpl to verify the signature of the gossip messages from other validators, which
calls RecoverPubkey. If the signature is crafted to be an empty string, the following code would
panic with an index out of range exception. The missing validation could allow a malicious
node to trigger a panic on all validators, thus crashing all of them, leading to denial of service
or potentially more serious consequences.

1 func RecoverPubkey(signature, hash []byte) (*ecdsa.PublicKey, error) {

2 size := len(signature)

3 term := byte(27)

4

5 if signature[size-1] == 1 {

6 term = 28

7 }

8

9 sig := append([]byte{term}, signature[:size-1]...)

10 pub, _, err := btcec.RecoverCompact(S256, sig, hash)

11

12 if err != nil {

13 return nil, err

14 }

15

16 return pub.ToECDSA(), nil

17 }

Exploit Scenario An attacker could send a maliciously-crafted gossip message to all validators
and conduct a denial of service attack to bring down all validators in the network. With no

© 2022 Veridise Inc. Veridise Audit Report: Dogechain

4.1 Detailed Description of Bugs 19

validator in the network, no new block would be formed and no new transaction could be
processed. An attacker could also make their validator node the only validator to survive in the
validators set and conduct 51% attack, allowing them to manipulate transactions in the new
blocks.

Recommendations Consider adding a validation check as following:

1 func RecoverPubkey(signature, hash []byte) (*ecdsa.PublicKey, error) {

2 size := len(signature)

3 + if size == 0 {

4 + return nil, fmt.Errorf("empty signature")

5 + }

6 term := byte(27)

7

8 if signature[size-1] == 1 {

9 term = 28

10 }

11

12 sig := append([]byte{term}, signature[:size-1]...)

13 pub, _, err := btcec.RecoverCompact(S256, sig, hash)

14

15 if err != nil {

16 return nil, err

17 }

18

19 return pub.ToECDSA(), nil

20 }

4.1.9 Panic in the consensus module

Severity High Difficulty Medium
Type Data Validation Finding ID V-DOGE-VUL-009

Target jury/consensus/ibft.go Status Fixed

Description Validators in the set listen on gossips from other validators to form consensus.
Developers should consider that these gossips could be from a malicious validator in the
network and properly sanitize the incoming messages in the channel. However, the current
implementation has not fully validate and sanitize these unsafe messages. Specifically, the
proposal attribute of gossiping message could be set to an arbitrary value, while the following
code can only parse hex value and panic otherwise. The missing validation could allow a
malicious validator to trigger a panic on all other validators, thus crashing all of them, leading
to denial of service or potentially more serious consequences.

1 func (i *Ibft) insertBlock(block *types.Block) error {

2 committedSeals := [][]byte{}

3 for _, commit := range i.state.committed {

4 // no need to check the format of seal here because writeCommittedSeals will check

5 committedSeals = append(committedSeals, hex.MustDecodeHex(commit.Seal))

6 }

7 ...

8 }

Veridise Audit Report: Dogechain © 2022 Veridise Inc.

20 4 Common Vulnerability Analysis

Exploit Scenario An attacker could send a maliciously-crafted gossip message to all nodes,
including validators, and conduct a denial of service attack to bring down all nodes in the
network. With no nodes in the network, no new block would be formed and no new transaction
could be processed. An attacker could also make their validator node the only validator to
survive in the validators set and conduct 51% attack, allowing them to manipulate transactions
in the new blocks.

Recommendations Consider adding a validation check, removing the panic, or adding a
mechanism for recovering from panic.

4.1.10 Panic in send transaction JSON RPC endpoint

Severity Moderate Difficulty Easy
Type Data Validation Finding ID V-DOGE-VUL-010

Target jury/jsonrpc/eth_endpoint.go Status Fixed

Description All nodes have JSON RPC endpoints and they are intended to be exposed to the
public. Developers should consider that the RPC requests could be from a malicious actor and
properly validate and sanitize the request before conducting further processing. Specifically, in
send transaction JSON RPC endpoint, the code attempts to parse the transaction string as a hex
value, and panics otherwise. Although such a panic is later recovered, it may cause potential
issues including resource leak in future development.

1 func (e *Eth) SendRawTransaction(input string) (interface{}, error) {

2 buf := hex.MustDecodeHex(input)

3 ...

4 }

5

Exploit Scenario N/A

Recommendations Consider adding a validation check, removing the panic, or adding a
mechanism for recovering from panic.

4.1.11 Potential divided-by-zero in GetEpoch

Severity Low Difficulty Easy
Type Data Validation Finding ID V-DOGE-VUL-011

Target jury/consensus/ibft.go Status Fixed

© 2022 Veridise Inc. Veridise Audit Report: Dogechain

4.1 Detailed Description of Bugs 21

Description In ibft.go, line 1297: the function getEpoch performs a check of the follow-
ing: number%i.epochSize == 0. If i.epochSize is equal to 0, this will crash. Right now, the
only way that epochSize can be updated is from the command line when the protocol is started,
so this is not a high-priority issue. However, if the code changes in the future to allow the epoch
size to be updated, this could cause a crash.

1 // GetEpoch returns the current epoch

2 func (i *Ibft) GetEpoch(number uint64) uint64 {

3 if number%i.epochSize == 0 {

4 return number / i.epochSize

5 }

6 return number/i.epochSize + 1

7 }

Exploit Scenario N/A

Recommendations To fix it, just add a check for epoch size of 0 to the function.

4.1.12 Potential division-by-zero in IsLastOfEpoch

Severity Low Difficulty Easy
Type Data Validation Finding ID V-DOGE-VUL-012

Target jury/consensus/ibft.go Status Fixed

Description In ibft.go, line 1307: the function IsLastOfEpoch performs a check of the
following: number%i.epochSize == 0. If i.epochSize is equal to 0, this will crash. Right now,
the only way that epochSize can be updated is from the command line when the protocol is
started, so this is not a high-priority issue. However, if the code changes in the future to allow
the epoch size to be updated, this could cause a crash.

1 // IsLastOfEpoch checks if the block number is the last of the epoch

2 func (i *Ibft) IsLastOfEpoch(number uint64) bool {

3 return number > 0 && number%i.epochSize == 0

4 }

Exploit Scenario N/A

Recommendations To fix it, just add a check for epoch size of 0 to the function.

4.1.13 TestExtraEncoding in extra_test.go fails on edge cases

Severity Low Difficulty Easy
Type Test Suite Finding ID V-DOGE-VUL-013

Target jury/consensus/extra_test.go Status Fixed

Veridise Audit Report: Dogechain © 2022 Veridise Inc.

22 4 Common Vulnerability Analysis

Description This issue only arises when we instantiate an IstanbulExtra struct and pass
empty values for its fields. The JSON encoding/decoding process seems to be correct (We’ve
printed the values and they are the same), but the reflect.DeepEqual fails. We suppose it is a
problem with the reflect package, not with the actual code.

1 &IstanbulExtra{

2 Validators: []types.Address{},

3 Seal: []byte{},

4 CommittedSeal: [][]byte{},

5 }

Exploit Scenario N/A

Recommendations To fix it, just add a check for empty struct.

4.1.14 Potential panic in handling message

Severity Low Difficulty Easy
Type Data Validation Finding ID V-DOGE-VUL-014

Target jury/consensus/ibft.go Status Fixed

Description Here, adding a new message type could realistically trigger this panic. Instead, a
better way to prevent a bug of this nature would be to (1) enable error handling that logs the
issue rather than panicing and (2) writing unit tests that ensure the issue does not happen.

1 func (i *Ibft) runValidateState() {

2 hasCommitted := false

3 sendCommit := func() {

4 ...

5 switch msg.Type {

6 case proto.MessageReq_Prepare:

7 i.state.addPrepared(msg)

8

9 case proto.MessageReq_Commit:

10 i.state.addCommitted(msg)

11

12 default:

13 panic(fmt.Sprintf("BUG: %s", reflect.TypeOf(msg.Type)))

14 }

Exploit Scenario N/A

Recommendations We would recommend writing a test that sends a message of every type
while a particular validator is in the ValidateState and ensure that the validator only processes
commit and prepare messages.

© 2022 Veridise Inc. Veridise Audit Report: Dogechain

4.1 Detailed Description of Bugs 23

4.1.15 Denial of service in RoundChangeState

Severity High Difficulty Medium
Type Data Validation Finding ID V-DOGE-VUL-015

Target jury/consensus/msg_queue.go Status Open

Description A node in the RoundChange state uses the readMessage method to read messages
from other nodes to reach a consensus on the next round. Upon receiving, these messages are
stored in a queue and sorted by the view (i.e., the position inside the blockchain) of the sender
node, firstly by sequence and then by round. While having the messages sorted is the intended
behavior since it allows the readMessage method to discard old/future messages easily, it can
also be a source of vulnerability, as presented below.

1 func (m msgQueueImpl) Less(i, j int) bool {

2 ti, tj := m[i], m[j]

3 // sort by sequence

4 if ti.view.Sequence != tj.view.Sequence {

5 return ti.view.Sequence < tj.view.Sequence

6 }

7 // sort by round

8 if ti.view.Round != tj.view.Round {

9 return ti.view.Round < tj.view.Round

10 }

11 // sort by message

12 return ti.msg < tj.msg

13 }

Exploit Scenario A malicious node could perform a Denial of Service attack by spamming
nodes in the RoundChange state with crafted messages that have sequences lower than the
sequences of the attacked nodes. Consequently, the attacker’s messages will be added to the top
of the queue. This attack makes the nodes in the RoundChange state considerably slow, as they
have to read the attacker’s messages first. Based on our experiments, this attack could lead to
a block generation time delayed by 350 seconds instead of 2 seconds, which is the normally
expected delay.

Recommendations We encourage the developers to find an alternative for storing/reading
messages that mitigates the risks presented above.

4.1.16 Index out of range in fastrlp

Severity High Difficulty High
Type Data Validation Finding ID V-DOGE-VUL-016

Target umbracle/fastrlp/parser.go Status Open

Description The blockchain implementation heavily leverages third-party dependencyfastrlp
for serialization and deserialization. Specifically, endpoints leverage fastrlp.Parser.Parse

Veridise Audit Report: Dogechain © 2022 Veridise Inc.

24 4 Common Vulnerability Analysis

to parse user inputs in bytes like transactions and accounts. However, this function does not
properly validate the input and directly conducts deserialization. Passing unsanitized messages
can cause an index out of range panic, leading to denial of service and bringing down the
node.

In the code below, the parseValue function attempts to use the first byte of the byte array (b)
provided by users to determine its length. If the first byte is 0xff (i.e., b[0]= 0xf9), this function
would attempt to read two bytes from the array. If the byte array length is only one, then an
index out of range panic is thrown.

1 func parseValue(b []byte, c *cache) (*Value, []byte, error) {

2 if len(b) == 0 {

3 return nil, b, fmt.Errorf("cannot parse empty string")

4 }

5

6 cur := b[0]

7 ...

8

9 intSize := int(cur - 0xF7)

10 size := readUint(b[1:intSize+1], c.buf[:])

11 if size < 56 {

12 return nil, nil, fmt.Errorf("bad size")

13 }

14 v, tail, err := parseList(b[intSize+1:], intSize, int(size), c)

15 if err != nil {

16 return nil, tail, fmt.Errorf("cannot parse long array: %s", err)

17 }

18 return v, tail, nil

19 }

Function fastrlp.Parser.Parse provided by the third-party dependency is widely used
throughout the code. One example is deserializing transactions in bytes supplied by the users
or validators in libp2p endpoint and gRPC endpoint, which all leverages the function below.

1 func UnmarshalRlp(obj unmarshalRLPFunc, input []byte) error {

2 pr := fastrlp.DefaultParserPool.Get()

3

4 v, err := pr.Parse(input)

5 if err != nil {

6 fastrlp.DefaultParserPool.Put(pr)

7

8 return err

9 }

10

11 if err := obj(pr, v); err != nil {

12 fastrlp.DefaultParserPool.Put(pr)

13

14 return err

15 }

16

17 fastrlp.DefaultParserPool.Put(pr)

18

19 return nil

20 }

© 2022 Veridise Inc. Veridise Audit Report: Dogechain

4.1 Detailed Description of Bugs 25

Exploit Scenario There can be multiple ways to conduct a DoS attack to exploit this vulernabil-
ity in fastrlp. The easiest one could be an attacker sending a maliciously-crafted gossip message
to all nodes, conducting a denial of service attack to bring down all nodes in the network. With
no validator in the network, no new block would be formed and no new transaction could be
processed. An attacker could also make their validator node the only validator to survive in the
validators set and conduct 51% attack, allowing them to manipulate transactions in the new
blocks.

Recommendations Consider adding a bound checking before reading elements of slices or
adding a recover after using the vulnerable function.

4.1.17 Index out of range in go-web3 (ethgo)

Severity Moderate Difficulty High
Type Data Validation Finding ID V-DOGE-VUL-017

Target umbracle/ethgo/abi/abi.go Status Open

Description The transaction event handler leverages third-party dependency go-web3 (ethgo)
for parsing event logs. Specifically, blockchain leverages ethgo.Event.ParseLog to parse bridge
event logs from bridge contract. However, this function does not properly validate the input
and directly conducts parsing. Passing unsanitized messages can cause an index out of range
panic, leading to denial of service and bringing down the node.

In the code below, the decode function used by ParseLog function to parse data attempts to
read 32+length bytes from user input but there is only a validation check of whether user input
length is greater than or equal to 32.

1 func decode(t *Type, input []byte) (interface{}, []byte, error) {

2 var data []byte

3 var length int

4 var err error

5

6 // safe check, input should be at least 32 bytes

7 if len(input) < 32 {

8 return nil, nil, fmt.Errorf("incorrect length")

9 }

10

11 if t.isVariableInput() {

12 length, err = readLength(input)

13 if err != nil {

14 return nil, nil, err

15 }

16 } else {

17 data = input[:32]

18 }

19

20 switch t.kind {

21 ...

22 switch t.kind {

23 case KindBool:

24 val, err = decodeBool(data)

Veridise Audit Report: Dogechain © 2022 Veridise Inc.

26 4 Common Vulnerability Analysis

25

26 case KindInt, KindUInt:

27 val = readInteger(t, data)

28

29 case KindString:

30 val = string(input[32 : 32+length])

31

32 case KindBytes:

33 val = input[32 : 32+length]

34 ...

35 }

36 ...

37 }

Exploit Scenario A resourceful attacker can potentially leverage this vulnerability to conduct
DoS attack by chaining with other bugs in consensus module.

Recommendations Consider adding a bounds check before reading elements of slices or
adding a recover after using the vulnerable function.

© 2022 Veridise Inc. Veridise Audit Report: Dogechain

Formalization and Analysis of Custom

Correctness Properties 5

5.1 Summary of Custom Properties

The expected behavior of the IBFT protocol can be summarized using the state machine in
Figure 5.1. The state machine defines a set of crucial states and transitions.

The original IBFT paper defines four states:

▶ Awaiting Proposal. Validator is waiting for a new block to be supplied by the current
proposer. If the validator is the proposer for this round, they prepare the proposed block
and transmit it in a pre-prepare message.

▶ Preparing. Has received a (valid) proposed block and notified validator-peers; is now
waiting for validator-peers to notify their acceptance of the block.

▶ Ready. Has received validator-peer’s acceptance of block, and is waiting for them to be a
in a similar position. At this stage the proposed block has been ‘locked-in’, and cannot be
replaced until an attempt at insertion has been conducted.

▶ Round Change. The round timed out before consensus was reached or the block failed to
insert. Wait for all validators to agree on the next round number.

There are six crucial transitions:

▶ Awaiting Proposal → Preparing. On reception of a new block (Preprepare message) from
the proposer (i.e. the block is valid in its content, as is its proposed chain insertion point).

▶ Awaiting Proposal → Round Change. The received proposal was not a valid block according
to a given set of rules (e.g. invalid proposer, incorrect round numbering).

▶ Preparing → Ready. On reception of 2F+1 notifications (Prepare message) from validator-
peers indicating the proposed block is suitable for insertion.

▶ Ready → Awaiting Proposal. On reception of 2F+1 notifications (Commit message) from
validator-peers indicating they are ready to append the block to the chain. On transition,
the process of appending the block to the chain is performed (success).

▶ Ready → Round Change. As per Ready->Awaiting Proposal, however, block insertion has
failed.

▶ Round Change → Awaiting Proposal. 2F+1 of validators agree on the next round number to
be used.

Table 5.1: Summary of Formal Verification.

ID Description Severity Status

V-DOGE-FV-001 RoundChange state high open
V-DOGE-FV-002 Failing transition high open
V-DOGE-FV-003 Incorrect timeout high open
V-DOGE-FV-004 Incorrect timeout high open
V-DOGE-FV-005 Incorrect timeout high open
V-DOGE-FV-006 Failing transition high open

Veridise Audit Report: Dogechain © 2022 Veridise Inc.

28 5 Formalization and Analysis of Custom Correctness Properties

Figure 5.1: IBFT State Machine.

5.2 Formalization

Specification Syntax To allow auditors and developers to specify properties, we extend Golang
and Solidity’s syntax with temporal quantifiers. In particular, we make use of the following
operators from Linear Temporal Logic (LTL):

▶ always, denoted □. □𝜙 indicates the condition 𝜙 (e.g. 𝑜𝑤𝑛𝑒𝑟 = 0𝑥0) is true at all times
including and after the current point during execution of the program.

▶ eventually, denoted ⋄. ⋄𝜙 indicates that either 𝜙 holds at the current point or 𝜙 will
eventually hold at some point in the future.

For instance, □(claimRefund() → sum(deposits) < 10000) represents that "Investors cannot claim
refunds while more than 10,000 ether is collected."

V-DOGE-FV-001: A node in the RoundChange state will always eventually exit the Round-
Change state:

Variables Ibft 𝑖
Property □(𝑖.𝑔𝑒𝑡𝑆𝑡𝑎𝑡𝑒() = RoundChange

→ ⋄𝑖.𝑔𝑒𝑡𝑆𝑡𝑎𝑡𝑒() ≠ RoundChange)

V-DOGE-FV-002: A node in AwaitingProposal will always eventually proceed to the Prepar-
ing state after receiving a valid preprepare message from the proposer:

© 2022 Veridise Inc. Veridise Audit Report: Dogechain

5.3 Results 29

Variables Ibft 𝑖 , Message 𝑚

Property □((𝑖.𝑔𝑒𝑡𝑆𝑡𝑎𝑡𝑒() = AwaitingProposal ∧ received(𝑖 , 𝑚) ∧ isValid(𝑚)
∧ isPreprepare(𝑚) ∧ isProposer(𝑚.𝑠𝑒𝑛𝑑𝑒𝑟)) → ⋄𝑖.𝑔𝑒𝑡𝑆𝑡𝑎𝑡𝑒() = Preparing)

V-DOGE-FV-004: A node in the AwaitingProposal state will always eventually exit the
AwaitingProposal state:

Variables Ibft 𝑖
Property □(𝑖.𝑔𝑒𝑡𝑆𝑡𝑎𝑡𝑒() = AwaitingProposal

→ ⋄𝑖.𝑔𝑒𝑡𝑆𝑡𝑎𝑡𝑒() ≠ AwaitingProposal)

V-DOGE-FV-006: A node in the Preparing state will always eventually exit the Preparing
state:

Variables Ibft 𝑖
Property □(𝑖.𝑔𝑒𝑡𝑆𝑡𝑎𝑡𝑒() = Preparing

→ ⋄𝑖.𝑔𝑒𝑡𝑆𝑡𝑎𝑡𝑒() ≠ Preparing)

V-DOGE-FV-009: A node in the Ready state will always eventually exit the Ready state:

Variables Ibft 𝑖
Property □(𝑖.𝑔𝑒𝑡𝑆𝑡𝑎𝑡𝑒() = Ready

→ ⋄𝑖.𝑔𝑒𝑡𝑆𝑡𝑎𝑡𝑒() ≠ Ready)

V-DOGE-FV-010: A node in Preparing will always proceed to the Ready state after it has
received at least 2𝐹 + 1 prepare messages:

Variables Ibft 𝑖
Property □(𝑖.𝑔𝑒𝑡𝑆𝑡𝑎𝑡𝑒() = Preparing ∧ numPrepareReceived(𝑖) > 2𝐹)

→ ⋄(𝑖.𝑔𝑒𝑡𝑆𝑡𝑎𝑡𝑒() = Ready)

5.3 Results

In this section, we provide a detailed description of properties that are violated by the
implementation.

5.3.1 Picking a new round indefinitely

Severity High Difficulty Medium
Type Data Validation Finding ID V-DOGE-FV-001

Target jury/consensus/ibft.go Status Open

Veridise Audit Report: Dogechain © 2022 Veridise Inc.

30 5 Formalization and Analysis of Custom Correctness Properties

Description Since there is no bound on the number of times validator nodes can propose
new rounds in the RoundChangeState, it is possible to get into a state where all validator
nodes remain in the RoundChangeState indefinitely. This occurs when all validator nodes
continuously propose different round numbers. Since a consensus is never reached, the locally
proposed round numbers of each validator node increase separately, resulting in the nodes to
never agree.

There are two ways that the consensus protocol could exit this loop, both of which may not
happen in some executions. The first way that the consenus protocol could exit this state is by
some node entering the SyncState. However, since this will only happen when some validator
node’s blockchain is out of sync, breaking out of this bad state would not be possible when all
validator nodes’ blockchain is in sync. The second way the system could escape all nodes being
stuck in the RoundChangeState is by waiting for enough validators to propose the same round
number. If an execution occurs where all validator nodes execute in lock-step, this will never
happen, and all validator nodes will be trapped in RoundChangeState.

The code below shows the execution loop for RoundChangeState. The function checkTimeout
can move the validator to the state SyncState and the num == i.state.NumValid() branch can
move the validator to AcceptState, but these cases can both be avoided as discussed above.

1 func (i *Ibft) runRoundChangeState() {

2 checkTimeout := func() {

3 ... // if there is an advanced peer, do i.setState(SyncState)

4

5 // otherwise, it seems that we are in sync

6 // and we should start a new round

7 sendNextRoundChange()

8 }

9 ...

10 for i.getState() == RoundChangeState {

11 msg, ok := i.getNextMessage(timeout)

12 if !ok {

13 // closing

14 return

15 }

16

17 if msg == nil {

18 i.logger.Debug("round change timeout")

19 checkTimeout()

20 // update the timeout duration

21 timeout = exponentialTimeout(i.state.view.Round)

22

23 continue

24 }

25

26 // we only expect RoundChange messages right now

27 num := i.state.AddRoundMessage(msg)

28

29 if num == i.state.NumValid() {

30 // start a new round immediately

31 i.state.view.Round = msg.View.Round

32 i.setState(AcceptState)

33 } else if num == i.state.validators.MaxFaultyNodes()+1 {

34 // weak certificate, try to catch up if our round number is smaller

35 if i.state.view.Round < msg.View.Round {

© 2022 Veridise Inc. Veridise Audit Report: Dogechain

5.3 Results 31

36 // update timer

37 timeout = exponentialTimeout(i.state.view.Round)

38 sendRoundChange(msg.View.Round)

39 }

40 }

41 }

42 ...

43 }

Exploit Scenario This vulnerability can be triggered in two ways, one through malicious
execution and one through standard execution. To maliciously trigger this vulnerability, a single
malicious validator node sends enough round change messages to each other altruistic validator
that all altruistic validators are in different rounds. From this state, if all altruistic validators
execute in lock step (or near lock step), the validators will never agree on a round number
and will remain in RoundChangeState indefinitely. A similar behavior can occur without a
malicious validator simply if some round change messages from an altruistic validator get
dropped. Specifically, if enough round change messages are dropped going to each validator
such that the system appears to be in a different round to each validator, then the system could
reach this state.

Recommendation In the short term, validators can propose round number 0 when the number
of iterations in the RoundChangeState loop surpasses some maximum threshold.

1 func (i *Ibft) runRoundChangeState() {

2 ...

3 for i.getState() == RoundChangeState {

4 // check for

5 if iterations > MAX_ITERATIONS {

6 sendRoundChange(0)

7 // Do not perform checkTimeout() in this case

8 }

9 ...

10 }

11 ...

12 }

In the long term, a proof that non-compromised validators will always eventually exit the round
change state would ensure that bugs like these do not appear again.

5.3.2 Failing AwaitingProposal-to-Preparing transition

Severity High Difficulty Medium
Type Data Validation Finding ID V-DOGE-FV-002

Target jury/consensus/ibft.go Status Open

Description Based on the implementation of getNextMessage(...), validators must process
all messages of the correct message type. Since duplicate messages are allowed, a malicious
validator can send an arbitrary number of messages to delay the processing of a valid proposal.
In runAcceptState():

Veridise Audit Report: Dogechain © 2022 Veridise Inc.

32 5 Formalization and Analysis of Custom Correctness Properties

1 func (i *Ibft) runAcceptState() {

2 ...

3 for i.getState() == AcceptState {

4 msg, ok := i.getNextMessage(timeout)

5

6 ... // Move to RoundChangeState if msg == nil

7

8 if msg.From != i.state.proposer.String() {

9 i.logger.Error("msg received from wrong proposer")

10

11 continue

12 }

13 ...

14 }

As discussed in the previous section, this if statement allows a malicious node to force the
validator to continually process messages. However, depending on messages received from
other non-malicious nodes, the correct behavior here may not be a timeout. Specifically, consider
the case where the validator has received a proposal from a non-malicous proposer. Based on
the current implementation, the non-malicoius validator that receives the proposal must first
process an arbitrary number of messages from the malicious validator before it can process the
message from the proposer.

Ideally, the validator will spend a bounded amount of time processing malicoius messages so
that after receiving a valid proposal, it is still able to transition to the ValidateState (given a
reasonable timeout).

Exploit Scenario To trigger the bug, consider the case where there is exactly one malicious
node, and all nodes execute normally until reaching the AcceptState. At this point, the
malicious node (who is not the proposer) should repeatedly send prepare messages. Each
non-malicious node will execute i.state.addPrepared(msg) upon receiving the message,
but since i.state.numPrepared() counts the number of prepare messages sent from distinct
validators, sendCommit() will never execute. Similarly, since the malicious node is repeatedly
sending new messages, all other validators will never timeout. Thus, a denial-of-service will be
achieved.

Though this is similar to the exploit in subsection 5.3.3, the cause is slightly different. As a result,
the fix for this vulnerability requires more than adding a timeout to runAcceptState().

Recommendation In the short term, processing only one message from each validator per state
transition (or equivalently, dropping duplicate received messages) would eliminate this exploit.
It would also mean that arbitrary of malicious validator messages, nodes in the AcceptState will
correctly transition whenever they receive a proposal that can be validated (given a reasonable
timeout).

In the long term, additional test cases should be written to show that whenever a validatable
proposal is received in the AcceptState from the proposer, the validator transitions to the
ValidateState.

© 2022 Veridise Inc. Veridise Audit Report: Dogechain

5.3 Results 33

5.3.3 Incorrect timeouts

Severity High Difficulty Medium
Type Data Validation Finding ID V-DOGE-FV-003

V-DOGE-FV-004
V-DOGE-FV-005

Target jury/consensus/ibft.go Status Open

Description In the runCycle() execution loop, timeouts only occur whenever no message is
received within the current timeout window. This means that so long as a node is constantly
receiving messages, the node will never timeout and enter the RoundChange state. This is a
problem because, in some states, it allows a single malicious node to flood the message queue of
another validator and trap that validator in its current state indefinitely. So far, we have found
two ways this can occur in the runCycle() loop.

The first can be triggered in runValidateState():

1 func (i *Ibft) runValidateState() {

2 ...

3 for i.getState() == ValidateState {

4 msg, ok := i.getNextMessage(timeout)

5

6 ... // Move to RoundChangeState if msg == nil

7

8 switch msg.Type {

9 case proto.MessageReq_Prepare:

10 i.state.addPrepared(msg)

11

12 case proto.MessageReq_Commit:

13 i.state.addCommitted(msg)

14

15 default:

16 panic(fmt.Sprintf("BUG: %s", reflect.TypeOf(msg.Type)))

17 }

18

19 if i.state.numPrepared() > i.state.NumValid() {

20 // we have received enough pre-prepare messages

21 sendCommit()

22 }

23

24 if i.state.numCommitted() > i.state.NumValid() {

25 // we have received enough commit messages

26 sendCommit()

27

28 // try to commit the block (TODO: just to get out of the loop)

29 i.setState(CommitState)

30 }

31 }

32 ...

33 }

Here, the loop only exits when either

1. Enough commit messages are received, or
2. There are no new messages to process

Veridise Audit Report: Dogechain © 2022 Veridise Inc.

34 5 Formalization and Analysis of Custom Correctness Properties

If a single malicious validator repeatedly sends (for example) prepare messages, any non-
malicious validator could indefinitely execute this loop without making any progress.

A similar potential vulnerability can be found in runAcceptState():

1 func (i *Ibft) runAcceptState() {

2 ...

3 for i.getState() == AcceptState {

4 msg, ok := i.getNextMessage(timeout)

5

6 ... // Move to RoundChangeState if msg == nil

7

8 if msg.From != i.state.proposer.String() {

9 i.logger.Error("msg received from wrong proposer")

10

11 continue

12 }

13 ...

14 }

When a malicious validator that is not the proposer sends messages to a validator that is in
the accept state, it will hit this continue statement and continue exiting the loop. When this
validator only receives messages from the malicious node, then the non-malicious validator
will become trapped in the AcceptState.

Additionally, in the case where the malicious node is the proposer, the loop can also be continu-
ously executed when the following hook generates an error other thanerrBlockVerificationFailed:

1 func (i *Ibft) runAcceptState() {

2 ...

3 for i.getState() == AcceptState {

4 ...

5 if hookErr := i.runHook(VerifyBlockHook, block.Number(), block); hookErr != nil {

6 if errors.As(hookErr, &errBlockVerificationFailed) {

7 i.logger.Error(...)

8 i.handleStateErr(errBlockVerificationFailed)

9 } else {

10 i.logger.Error(fmt.Sprintf("Unable to run hook %s, %v", VerifyBlockHook, hookErr))

11 }

12

13 continue

14 }

15 ...

16 }

17 }

Exploit Scenario To trigger the bug that fixes all non-malicious nodes in the ValidateState,
consider the case where there is exactly one malicious node, and all nodes execute normally until
reaching the ValidateState. At this point, assume all previous messages are dropped. Then, the
malicious node should repeatedly send prepare messages. Each non-malicious node will execute
i.state.addPrepared(msg) upon receiving the message, but since i.state.numPrepared()

counts the number of prepare messages sent from distinct validators, sendCommit() will never
execute. Similarly, since the malicious node is repeatedly sending new messages, all other
validators will never timeout. Thus, a denial-of-service will be achieved.

© 2022 Veridise Inc. Veridise Audit Report: Dogechain

5.3 Results 35

Recommendation In the short term, implement a timeout for the functions runSyncState(),
runValidateState(), and runAcceptState() such that the validator transitions to the Round-
Change state whenever the timeout is reached.

In the long term, consider ignoring repeat messages to minimize the influence that malicious
nodes can have on the system.

5.3.4 Failing Preparing-to-Ready transition

Severity High Difficulty Medium
Type Data Validation Finding ID V-DOGE-FV-006

Target jury/consensus/ibft.go Status Open

Description Like subsection 5.3.2, malicious validators can take advantage of the fact that
nodes process all valid messages. In runValidateState():

1 func (i *Ibft) runValidateState() {

2 ...

3 for i.getState() == ValidateState {

4 msg, ok := i.getNextMessage(timeout)

5

6 ... // Move to RoundChangeState if msg == nil

7

8 switch msg.Type {

9 case proto.MessageReq_Prepare:

10 i.state.addPrepared(msg)

11

12 case proto.MessageReq_Commit:

13 i.state.addCommitted(msg)

14

15 default:

16 panic(fmt.Sprintf("BUG: %s", reflect.TypeOf(msg.Type)))

17 }

18

19 if i.state.numPrepared() > i.state.NumValid() {

20 // we have received enough pre-prepare messages

21 sendCommit()

22 }

23 ...

24 }

If a validator floods the message queue with Prepare messages, the transition to the Ready
state will be delayed by processing all of these messages. An important note here is that
i.state.numPrepared() counts the number of Prepare messages from distinct nodes, so the
flood of messages from the malicious validator will not satisfy the if condition.

Exploit Scenario To trigger the bug, (1) ensure that some validator is in the ValidateState
with no processed Prepare messages, and (2) have a malicious node repeatedly send Prepare
messages of the correct sequence and round number.

Veridise Audit Report: Dogechain © 2022 Veridise Inc.

36 5 Formalization and Analysis of Custom Correctness Properties

Recommendation In the short term, avoid processing repeat messages.

In the long term, additional test cases should be written to show that whenever the threshold
number of prepare messages is received in the ValidateState, the validator sends a commit
message within a reasonable timeout.

© 2022 Veridise Inc. Veridise Audit Report: Dogechain

Smart Contract Audit 6

We carried out an audit of the application contracts on commit f8b31815e13b97d58da. To evaluate
the robustness of the Jury-contract, part of our audit focused on the detection of common
security problems that appear in smart contracts. To perform this audit, we first identified
a set of common bugs and vulnerabilities from existing databases and leveraged Vanguard,
Veridise’s static analyzer for blockchain applications; as well as open source static analysis tools
such as Slither. In addition, we also performed manual code review. Table 6.1 summarizes a list
of serious issues that are discovered by our tool and manual auditing.

Table 6.1: Summary of Smart Contract Audit.

ID Description Severity Status

V-DOGE-CT-001 Governance double-spending high Fixed
V-DOGE-CT-002 ETH fee can’t be recovered high Open
V-DOGE-CT-003 Lack of access control Moderate Open
V-DOGE-CT-004 Signers can be invalidated Low Open
V-DOGE-CT-005 Ghost validators Low Open
V-DOGE-CT-006 Potential reentrancy Moderate Fixed
V-DOGE-CT-007 Unchecked IGovernor cast Low Open
V-DOGE-CT-008 No cool down period on PoS Low Open

6.1 Detailed Description of Issues

In this section, we provide a detailed description of each issue.

6.1.1 Bug in Governance contract leads to double-spending attack

Severity High Difficulty Easy
Type Double-Spending Finding ID V-DOGE-CT-001

Target contracts/Governance.sol Status Fixed

Description In the claim() method, the sender’s total spend is set to their remaining amount
of tokens to be earned. However, this behavior is inconsistent with the idea that the sender
should have "spent" everything after claiming all tokens.

1 function claim() external {

2 uint256 balance = getBalance(msg.sender);

3 require(balance > 0, "Insufficient Balance");

4
_whitelist[msg.sender].spend = balance;

5 IGovernance(address(this)).safeTransfer(msg.sender, balance);

6 emit claimed(msg.sender, balance);

7 }

8

Veridise Audit Report: Dogechain © 2022 Veridise Inc.

38 6 Smart Contract Audit

9 function getBalance(address admin) view public returns (uint256) {

10 return _whitelist[admin].balance.sub(_whitelist[admin].spend);

11 }

Exploit Scenario Suppose a malicious token has a balance of b. To trigger the bug, a malicious
token can invoke withdraw(b - 1) to withdraw their current balance minus 1, so that their
spend becomes b - 1. This results a transfer of b - 1 tokens from the governance contract to
the sender. Then, they can invoke claim() to reset their spend to b - (b - 1) = 1. Because their
spend is now reset to 1, they are free to continue calling withdraw and claim until all tokens have
been drained from the governance contract.

Recommendation The calculation of spend should be corrected:

1
_whitelist[msg.sender].spend = _whitelist[msg.sender].balance;

This bug appears to be the result of flawed software engineering practices. To prevent similar bugs
from occurring in the future, we recommend the developers adopt the following practices:

▶ Document each method with a clear description of what the method should do conceptu-
ally.

▶ To avoid confusion, use clear terminology when naming methods and variables. We
believe that this bug likely resulted from a developer confusing the meaning of getBalance
() with the .balance field of the User struct. Furthermore, it is also easy to confuse the
ERC20 methods and terminology with the "balances" defined by getBalance() and the
User struct.
As an example, the following methods and fields can be renamed as follows to improve
clarity:

• getBalance(): rename to getRemainingClaims().
• User.spend: rename to claimed.
• User.balance: rename to maxClaims.

6.1.2 ETH fee cannot be recovered from Bridge contract

Severity High Difficulty Easy
Type Locked Funds Finding ID V-DOGE-CT-002

Target contracts/Bridge.sol Status Open

Description Although the bridge contract allows ETH payments to be made to the withdraw()

method, there are no methods that allow ETH to be retrieved from the bridge contract. This
does not seem to be the intention of the developers, as the withdraw() method takes a "fee" from
the ETH payment that is not added to the _totalSupply variable.

Recommendation Unless the developers intend for the withdraw() method to act as a "black
hole" for ETH, they should add a method that allows authorized accounts to transfer ETH away
from the contract. This type of issue can also be detected by static analysis tools, which we
recommend the developers incorporate into their workflow.

© 2022 Veridise Inc. Veridise Audit Report: Dogechain

6.1 Detailed Description of Issues 39

6.1.3 Bridge withdraw method has no access controls

Severity Medium Difficulty Medium
Type Access Control Finding ID V-DOGE-CT-003

Target contracts/Bridge.sol Status Open

Description The withdraw() method has no access controls, despite the deposit() method
having strong access controls. Specifically:

▶ The deposit() method requires a simple majority of the signers in order for an Order to
be approved for a receiver, while withdraw() does not check any properties involving the
receiver.

▶ In deposit(), the _totalSupply variable can only be increased if an order is approved in
deposit(). However, anybody can decrease _totalSupply as long as they pay enough ETH
to withdraw().

Exploit Scenario A wealthy Ethereum account can call withdraw() with _totalSupply * 1000

/ (1000 - _rate) wei to reduce _totalSupply to zero. Furthermore, they are able to choose
any receiver to be used in the emitted Withdrawn event.

Recommendation The developers should enforce some sort of access controls in withdraw()

by checking properties of the receiver parameter. For example, they may want to introduce
a mapping that tracks the total deposits made by each receiver. The value of receiver in the
mapping can be increased in deposit() and decreased in withdraw(). The developers could
add a require statement to the beginning of withdraw() that checks that the receiver is able to
withdraw that amount.

6.1.4 Bridge order signers can be invalidated

Severity Low Difficulty Medium
Type Data Validation Finding ID V-DOGE-CT-004

Target contracts/Bridge.sol Status Open

Description The bridge contract allows the owner to remove signers with the deleteSigner()

method. However, this does not update remove those signers from any existing unapproved
orders. Because the deposit() method only checks that the size of an order’s signers array
exceeds half of the size of the current signers set, this means that signers that have been removed
may still count as "votes" for the simple majority of current signers:

1 if (order.signers.length > _signers.length/2 && !order.finished) {

2 order.finished = true;

3
_totalSupply = _totalSupply.add(amount);

4 emit Deposited(order.receiver, order.amount, order.txid, order.sender);

5 }

Veridise Audit Report: Dogechain © 2022 Veridise Inc.

40 6 Smart Contract Audit

For example, if there are currently two signers C, D but an order has been approved by signers
A, B that were previously removed, then signer C calling deposit() on the order would cause
the order to be finished, even though only one of the two current signers have approved the
order.

Exploit Scenario We believe that it would be difficult, but still possible, to exploit this bug. If
a block includes transactions where 1) an owner removes a signer; 2) an owner adds a signer;
and 3) the signer being removed approves an order so that it is 1 signer away from simple
majority, then a malicious miner may reorder the 2nd and 3rd transactions to ensure that the
order is approved before requiring the approval of the new signer. The consequences of such a
reordering are highly situational, however.

Recommendation If this is not the behavior intended by the developers, or if it is and the
developers nevertheless want to eliminate the possibility of such an exploit ever occurring, we
recommend that the developers insert code in the deposit()method to count the number of valid
signers. This count should be used for the majority check instead of order.signers.length.

6.1.5 Missing check allows creation of "ghost validators"

Severity Low Difficulty Easy
Type Data Validation Finding ID V-DOGE-CT-005

Target contracts/ValidatorSet.sol Status Open

Description addValidator() will insert the provided address into the _validators array.
However, if the provided address is already a validator, then the address will be inserted into
_validators again even if it is already in the array.

1 function addValidator(address account) external onlyOwner {

2 require(_addressToStakedAmount[account] >= _threshold, "Account must be staked enough");

3
_addressToValidatorIndex[account] = _validators.length;

4
_addressToIsValidator[account] = true;

5
_validators.push(account);

6 emit ValidatorAdded(msg.sender, account);

7 }

Exploit Scenario The _owner may invoke addValidator() by accident, which inserts a validator
multiple times into the _validators array. Then, even if the _owner invokes deleteValidator()

to remove that validator, the validator will remain in the _validators array. An account that
then calls the validators() method will obtain an incorrect list of validators.

Recommendation To fix this bug, insert a require statement to check validator status:

1 function addValidator(address account) external onlyOwner {

2 require(_addressToStakedAmount[account] >= _threshold, "Account must be staked enough");

3 require(!_addressToIsValidator[account], "Account cannot already be a validator");

4
_addressToValidatorIndex[account] = _validators.length;

© 2022 Veridise Inc. Veridise Audit Report: Dogechain

6.1 Detailed Description of Issues 41

5
_addressToIsValidator[account] = true;

6
_validators.push(account);

7 emit ValidatorAdded(msg.sender, account);

8 }

To avoid similar issues in future projects, the developers may want to consider using a well-tested
and audited set data structure library, such as OpenZeppelin’s EnumerableSet library.

6.1.6 Potential Reentrancy issues

Severity Moderate Difficulty Medium
Type Reentrancy Finding ID V-DOGE-CT-006

Target See description Status Open

Description We ran the Slither static analyzer on the DogeChain application contracts to look
for issues. The tool reported multiple reentrancy issues on almost all of the contracts. Most of
the issues are due to events being emitted after external calls, allowing an attacker to reorder
events by using reentrancy.

After reviewing the results, we identified the following reported issues to be of concern:

1 Reentrancy in ValidatorSet.stake(uint256) (contracts/ValidatorSet.sol#80-86)

2 Reentrancy in ValidatorSet.unstake() (contracts/ValidatorSet.sol#88-103)

We believe these have the potential to be problematic if a malicious owner sets a malicious
governor contract:

▶ In stake(), the Staked event is emitted after the transfer, so a reentrancy attack can be
used to reorder the Staked events.

▶ In unstake(), it may be possible to construct a reentrancy attack in which the governor
token has withdrawn funds from the ValidatorSet contract, but the sender has not yet
been removed as a validator.

Assuming the governance token can be trusted, we identified the following reported issues as
false positives:

1 Reentrancy in Governance.claim() (contracts/Governance.sol#50-56)

2 Reentrancy in Governance.withdraw(uint256) (contracts/Governance.sol#58-63)

3 Reentrancy in MerkleDistributor.claim(uint256,address,uint256,bytes32[]) (contracts/

MerkleDistributor.sol#36-50)

4 Reentrancy in StakedReward.unstake() (contracts/StakedReward.sol#107-124)

5 Reentrancy in StakedReward.changePerBlock(uint256) (contracts/StakedReward.sol

#142-147)

6 Reentrancy in StakedReward.claim() (contracts/StakedReward.sol#126-140)

7 Reentrancy in StakedReward.stake() (contracts/StakedReward.sol#92-105)

8 Reentrancy in StakedReward.updateReward() (contracts/StakedReward.sol#37-48)

9 Reentrancy in TimeLock.create(address,uint256,uint256,uint256) (contracts/TimeLock.

sol#30-38)

10 Reentrancy in TimeLock.unlock() (contracts/TimeLock.sol#51-67)

We believe the issues are false positives for the following reasons:

Veridise Audit Report: Dogechain © 2022 Veridise Inc.

42 6 Smart Contract Audit

▶ In Governance.sol, the reentrant calls are to its own ERC20 methods, which do not make
any further calls.

▶ In StakedReward, the detected calls are due to transfers to either externally owned accounts
(which cannot make reentrant calls) or to what is assumed to be the governance token.

▶ In MerkleDistributor.sol and TimeLock, the detected calls are to what is assumed to be
the governance token.

We again emphasize that our analysis relies on the assumption that the governance token can
be trusted, and that it corresponds to the source code in Governance.sol. Consequently, these
issues may no longer be false positives if Governance.sol is modified to make additional external
calls.

Exploit Scenario Suppose the owner is malicious, so that they initialize the contracts with a
malicious governance token or that they change the governance token to a malicious one.

A malicious governance token may use reentrant calls to manipulate the order of events, so
that any off-chain applications that monitor the event log will be subject to this manipulated
ordering.

It may also be possible to construct a reentrancy attack that abuses the behavior of ValidatorSet
.unstake(), although we did not construct a concrete scenario in which such behavior can
exploited.

Recommendation Although we identified most of the reentrancy issues reported by Slither as
false positives, our reasoning relies on assumptions that the governance token can be trusted.
Future changes to the code may invalidate such assumptions. Therefore, we suggest that the
developers should address the reentrancy issues by ensuring that all events are emitted and
all state variable updates are performed before making external method calls. The developers
should then re-run Slither on their contracts to ensure that the issues have been fixed.

6.1.7 Unchecked casts to IGovernor interface

Severity Low Difficulty Medium
Type Data Validation Finding ID V-DOGE-CT-007

Target Governance.sol Status Open

Description Multiple contracts take in an address that is later cast to IGovernor. However,
none of these contracts check that the address satisfies the IGovernor interface. If these contracts
are deployed with the address set to a non-IGovernor contract, perhaps by mistake, then these
contracts will not function correctly.

1 function claim() external {

2 uint256 balance = getBalance(msg.sender);

3 require(balance > 0, "Insufficient Balance");

4
_whitelist[msg.sender].spend = _whitelist[msg.sender].spend.add(balance);

5 IGovernance(address(this)).safeTransfer(msg.sender, balance);

6 emit claimed(msg.sender, balance);

7 }

© 2022 Veridise Inc. Veridise Audit Report: Dogechain

6.1 Detailed Description of Issues 43

8

9 function withdraw(uint256 amount) external {

10 require(getBalance(msg.sender) >= amount, "Insufficient Balance");

11
_whitelist[msg.sender].spend = _whitelist[msg.sender].spend.add(amount);

12 IGovernance(address(this)).safeTransfer(msg.sender, amount);

13 emit Withdrawn(msg.sender, amount);

14 }

Recommendation To improve compile time type safety, the casts should occur when the
address is set, such as in the constructor or in any setXY() methods (note, however, that the
casts are merely assumptions and do not actually check that the interface holds). It may also be
possible to insert code to dynamically check that the provided address satisfies the IGovernor
interface, although such code would be high effort to write.

6.1.8 Staking for PoS with no cool down period

Severity Low Difficulty Easy
Type Data Validation Finding ID V-DOGE-CT-007

Target validatorset.sol Status Open

Description Proof of stake mechanism allows any nodes to join the validator set as long as
they have staked an arbitrary amount of token and approved by the contract owner, of which
the logic is implemented using a smart contract validatorset.sol. The consensus module
sync the validator set by querying the smart contract after each epoch and recognize all nodes
in validator set at that time as validators for next epoch. Given that the smart contract also
allows for unstaking immediately after staking, one could stake before one epoch ends and
unstake immediately after next epochs start. By doing so, the staking amount only requires to
be in position by one for a few seconds while they can make their nodes as a validators for next
epoch (by default 20,000 seconds).

1 function unstake() external onlyEOA {

2 uint256 amount = _addressToStakedAmount[msg.sender];

3 require(amount > 0, "Only staker can call function");

4

5
_addressToStakedAmount[msg.sender] = 0;

6
_stakedAmount = _stakedAmount.sub(amount);

7

8 IERC20(_token).transfer(msg.sender, amount);

9

10 if (_addressToIsValidator[msg.sender]) {

11 require(_validators.length > _minimum, "Validators can’t be less than minimum");

12
_deleteFromValidators(msg.sender);

13 }

14

15 emit Unstaked(msg.sender, amount);

16 }

17

Veridise Audit Report: Dogechain © 2022 Veridise Inc.

44 6 Smart Contract Audit

Exploit Scenario An attacker can easily make their nodes to significantly outnumber the
legit nodes in the validator set with extremely low cost. With more faulty validators than legit
validators in the network, no new block would be formed and no new transaction could be
processed. An attacker could also conduct 51% attack, allowing them to manipulate transactions
in the new blocks.

Recommendations Contract owner should evaluate the staker carefully before adding them
to the validator set. In the meantime, consider adding a cool down period in the staking contract
so that the users could not immediately unstake after staking.

© 2022 Veridise Inc. Veridise Audit Report: Dogechain

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Common Vulnerability Analysis
	Detailed Description of Bugs

	Detailed Description of Bugs
	Misbehaving nodes are not reported or punished by the consensus layer
	Segmentation violation in the consensus module
	Denial of service in the transaction pool module
	Segmentation violation during block gossiping A1
	Segmentation violation during block gossiping B1
	Segmentation fault during block gossiping B2
	Segmentation fault during transaction gossiping
	Index out of range in consensus message verification
	Panic in the consensus module
	Panic in send transaction JSON RPC endpoint
	Potential divided-by-zero in GetEpoch
	Potential division-by-zero in IsLastOfEpoch
	TestExtraEncoding in extra_test.go fails on edge cases
	Potential panic in handling message
	Denial of service in RoundChangeState
	Index out of range in fastrlp
	Index out of range in go-web3 (ethgo)
	Formalization and Analysis of Custom Correctness Properties
	Summary of Custom Properties

	Summary of Custom Properties
	Formalization

	Formalization
	Results

	Results
	Picking a new round indefinitely
	Failing AwaitingProposal-to-Preparing transition
	Incorrect timeouts
	Failing Preparing-to-Ready transition
	Smart Contract Audit
	Detailed Description of Issues

	Detailed Description of Issues
	Bug in Governance contract leads to double-spending attack
	ETH fee cannot be recovered from Bridge contract
	Bridge withdraw method has no access controls
	Bridge order signers can be invalidated
	Missing check allows creation of "ghost validators"
	Potential Reentrancy issues
	Unchecked casts to IGovernor interface
	Staking for PoS with no cool down period

